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 
Abstract— We propose our Confidence-Aware Particle 

Filter (CAPF) framework that analyzes a series of estimated 
changes in blood pressure (BP) to provide several true 
state hypotheses for a given instance. Particularly, our 
novel confidence-awareness mechanism assigns 
likelihood scores to each hypothesis in an effort to discard 
potentially erroneous measurements – based on the 
agreement amongst a series of estimated changes and the 
physiological plausibility when considering DBP/SBP pairs. 
The particle filter formulation (or sequential Monte Carlo 
method) can jointly consider the hypotheses and their 
probabilities over time to provide a stable trend of 
estimated BP measurements. In this study, we evaluate BP 
trend estimation from an emerging bio-impedance (Bio-Z) 
prototype wearable modality although it is applicable to all 
types of physiological modalities. Each subject in the 
evaluation cohort underwent a hand-gripper exercise, a 
cold pressor test, and a recovery state to increase the 
variation to the captured BP ranges. Experiments show that 
CAPF yields superior continuous pulse pressure (PP), 
diastolic blood pressure (DBP), and systolic blood pressure 
(SBP) estimation performance compared to ten baseline 
approaches. Furthermore, CAPF performs on track to 
comply with AAMI and BHS standards for achieving a 
performance classification of Grade A, with mean error 
accuracies of -0.16 ± 3.75 mmHg for PP (r=0.81), 0.42 ± 4.39 
mmHg for DBP (r=0.92), and -0.09 ± 6.51 mmHg for SBP 
(r=0.92) from more than test 3500 data points.      

Index Terms—Blood pressure, blood pressure variability, 
particle filtering, confidence-aware, ensemble modeling 

I. Introduction 

ardiovascular diseases (CVDs) remain amongst the leading 
causes for death worldwide [1]. Of the risk factors 

associated with CVDs, high blood pressure (BP) has been 
identified as the most prominent [2]. While a majority of the 
population measure BP levels only during annual medical 
examinations, ambulatory BP monitoring (ABPM) provide 
continuous measurements throughout patients’ daily activities 
[3], generating comprehensive insight for healthcare providers 
and thus enabling the early detection of life-threatening 
illnesses. The current gold standard ABPM devices depend on 
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repeated cuff inflations that cause discomfort over time. 
However, advances in non-invasive wearable devices – 
leveraging modalities such as bio-impedance (Bio-Z) [4], 
photoplethysmogram (PPG) [5], or electrocardiogram (ECG) 
[6] – enable a more convenient alternative while providing beat-
to-beat BP monitoring. Yet, existing theoretical modeling and 
machine learning-based solutions focus on time-invariant 
absolute estimation that only considers physiological waveform 
morphology information from the current cardiac cycle or time 
window for which a measurement will be assigned. 
Furthermore, they do not consider any of their own previous or 
future decision making, thus do not incorporate any notion of 
self-correction when estimates deviate from the expected trend. 
Therefore, as these conventional approaches are susceptible to 
occasionally generating inaccurate BP estimates due to data- 
and model-dependent error [7]–[9], a single or series of 
erroneous measurements could potentially lead to misdiagnosis 
by healthcare providers. In this study, we propose a novel 
alternative for achieving beat-to-beat BP estimation that derives 
the absolute value trend from a series of estimated changes. By 
tracking our own estimated instances over time, we generate 
multiple BP hypotheses for the current cardiac cycle and 
probabilistically identify the true state through our novel 
confidence-awareness mechanism.  

Traditional non-invasive BP estimation with physiological 
waveforms obtained from wearable modalities such as Bio-Z, 
PPG, and ECG involves the theoretical modeling of blood flow. 
Popular blood flow measurements include pulse transit time 
(PTT), pulse arrival time (PAT), and pulse wave velocity 
(PWV), which measure the time and force by which blood 
travels from the heart through the arteries [10]. The complete 
theoretical model which enables derivation of absolute BP 
requires consideration of additional arterial characteristics [11] 
– such as elasticity, diameter, and length, which may only be 
precisely obtained invasively or with additional sensors. There 
are also patient- and population-specific parameters which must 
be manually calibrated for by domain experts. 

Data-driven solutions are ideal alternatives to theoretical 
modeling that removes the burden associated with any manual 
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calibration or obtaining arterial characteristics. Such 
approaches leverage artificial intelligence and machine learning 
– such as with decision trees, support vector machines, or neural 
network models – to automatedly identify the relationship 
between captured waveforms’ discriminative features and their 
corresponding target label through an iterative analysis of 
sample data [12]. However, their precision is dependent on 
obtaining abundant training instances that adequately represent 
all possible variations of the input-to-output parings that may 
exist. Otherwise, challenges associated with imbalanced 
representation of target labels in training distributions [8], [9], 
the potential presence of noisy waveform instances input to the 
regression models (in both training and testing) [13], and data 
shift due to contextual variation over time [14] could lead to 
estimation error. Moreover, existing beat-to-beat BP estimation 
approaches are time-invariant by only considering waveform 
morphology for the current cardiac cycle (or time-window) and 
do not leverage any prior information from previous decision-
making instances. Therefore, erroneous measurements for a 
single or for a series of cardiac cycles without any ability to 
self-correct will lead to inaccurate trends.  

The straightforward solution to model self-correction is 
frequent retraining (or recalibration) with new instances of the 
physiological waveform that have evolved either over time due 
to fluctuating health states or upon new contexts (i.e., various 
activities of daily living) [15]. Yet, aggregating additional 
training data manually by domain experts is burdensome and 
will occur infrequently such that a misdiagnosis may have 
already occurred with the incorrectly reported BP 
measurements. Other approaches that attempt to ensure stable 
BP estimation incorporate Kalman filters [16] and particle 
filters [17], which can achieve unsupervised state-space 
modeling. Typically, such approaches track blood flow 
characteristics (e.g., PAT, morphological characteristics, etc.) 
over time and attempt to leverage signal quality indices to 
determine the amount of trend correction that should be applied.  
However, non-linear modeling of stochastic processes with 
Kalman filters depend on local linear projections approximated 
by Taylor series expansion, therefore previous work has shown 
more precise state-space modeling by particle filters which 
leverage sequential Monte Carlo sampling [18]. Furthermore, 
particle filters are better equipped to handle non-Gaussian noise 
and may more seamlessly handle dynamic sets of hypotheses.   

We propose our Confidence-Aware Particle Filter (CAPF) as 
a novel alternative BP estimation approach that incorporates 
comparisons between collected physiological waveform 
morphologies associated with a current cardiac cycle to several 
of those preceding it in an effort to estimate changes in BP – 
providing several BP hypotheses. Furthermore, we introduce a 
novel particle weight update mechanism that establishes 
confidence to each candidate absolute BP value derived from 
the estimated changes to mitigate potentially erroneous 
estimates – namely Agreement Scoring and Multi-Tasked 
Scoring. Through this, we can extract the most likely true state 
hypotheses to yield high-quality absolute pulse pressure (PP), 
diastolic blood pressure (DBP), and systolic blood pressure 
(SBP) measurements – where PP is defined as the difference 

between SBP and DBP. This trend information constructed 
from the series of changes can be fused with the aforementioned 
time-invariant estimates to produce a more robust ultimate BP 
measurement. We demonstrate CAPF improved continuous BP 
estimation performance for an emerging Bio-Z wearable 
modality, although the proposed framework may be applied to 
all types of physiological modalities. The contributions of this 
work are as follows: 
 We propose a novel approach for constructing beat-to-beat 

BP trends through frequently estimated BP changes when 
comparing the waveform morphological features between 
two independent cardiac cycles 

 We propose our Confidence-Aware Particle Filter 
framework that probabilistically manages multiple BP 
hypotheses through the novel Agreement Scoring and 
Multi-Tasked Scoring particle weight update mechanisms   

 We demonstrate improved continuous BP estimation by 
CAPF when compared to ten baseline approaches, while 
analyzing an emerging wearable modality such as Bio-Z 

II. RELATED WORK 

In this research, we pursue beat-to-beat analysis where 
conventional data-driven approaches typically rely on first 
extracting waveform morphology features that would reflect 
physiological responses. Such features include PAT, PTT, 
PWV, and a number of time-, amplitude-, and area-based 
features [10]. They are then input to a variety of machine 
learning models to directly estimate absolute BP values for the 
cardiac cycle waveform (or time window of waveforms) being 
analyzed. The most popular shallow models for cuffless BP 
estimation – leveraging modalities such as ECG, PPG, and Bio-
Z – include Lasso regression [19], support vector machines 
(SVM) [20], k-nearest neighbors (KNN) [21], and XGBoost 
[22]. Even amidst limited training datasets, they provide 
interpretable decision making based on feature similarity. Yet, 
they tend to struggle in the presence of data shift. Alternatively, 
deep learning models – such as multilayer perceptrons (MLP) 
[23], convolutional neural networks (CNN) [24], and recurrent 
neural networks (RNN) [25] – provide more complex, non-
linear modeling. However, their performance is dependent on 
abundant training data with sufficient instance variation.  

State-space modeling of a series of observations to ensure 
stable trend generation have proven successful with methods 
such as Kalman and particle filtering [26]. Kalman filters 
attempt to model the underlying processes of state transitions 
and therefore have been proposed in previous work to track both 
waveform features, signal quality indices (SQIs), and target BP 
behavior over time [27]. However, Kalman filters assume the 
state-transitioning to be linear and that noise will be Gaussian. 
Alternatively, particle filtering is a probabilistic, Monte Carlo 
algorithm that is capable of simultaneously managing multiple 
partial observations to model a time-series [28]. Appealing 
characteristics of this solution include the tracking of a posterior 
distribution, the ability to model short-term sequences, and the 
robustness to instances of noisy observations. Particle filters 
have been proposed for physiological sensing tasks such as 
waveform denoising [29] or physiological parameter estimation 
[17], [30]. However, the particle filter formulations for previous 
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work generally rely on an implicit linear relationship between 
observations’ characteristics and the task which is being 
pursued. Unfortunately, BP possesses a complex non-linear 
relationship with existing cuffless wearable sensor modalities.  

III. Methodology 

The proposed CAPF framework – shown in Fig. 1 – achieves 
robust, real-time BP estimation. Provided only the initial 
ground truth PP, DBP, and SBP absolute values obtained in the 
calibration phase before any testing, we construct BP trends 
with a following series of estimated beat-to-beat changes. 
Therefore, for the desired BP estimate associated with any 
given cardiac cycle, we are granted several hypotheses for our 
final measurement provided by each of the comparisons to all 
of the preceding cardiac cycles, in addition to the time-invariant 
estimates. To extract a notion of high-quality consensus from 
them, CAPF mitigates erroneous measurements by assigning a 
confidence score to each hypothesis driven by our novel 
Agreement Scoring and Multi-Tasked Scoring particle weight 
update mechanisms. In this study, we focus our analysis on the 
emerging Bio-Z wearable modality and evaluate BP estimation 
performance of CAPF when compared to ten baseline 
approaches – although our framework may be applied to all 
types of physiological modalities. In the following subsections, 
we first discuss estimating changes in BP, then we present the 
formulation for particle filtering, and finally we discuss how 
final BP estimates are produced while quantified confidence 
scores help to mitigate erroneous measurements.   

A. Estimating Changes in BP with Bio-Z 

Bio-Z has demonstrated potential in previous work as a 
desirable alternative wearable modality to existing cuff-based 
ABPM devices as it may be captured at the wrist with a more 
comfortable-to-wear configuration and extracts higher 
resolution beat-to-beat information [4]. This non-invasive 
electrical signal is obtained by injecting a current into the wrist 
and capturing the voltage difference between two electrodes 
placed along the radial artery. The 2-channel waveform 
morphology corresponds to the changes in blood volume during 
the systolic and diastolic phases (along with the reflection 
pressure), which are represented by the characteristic peak, 

notch, and max slope characteristic fiducial points as shown in 
Fig. 2. Particularly, the diastolic peaks (DIA1, DIA2) indicate 
the start/end of a cardiac cycle and the minimum pressure when 
the heart is expanding to be re-filled with blood. The systolic 
notch (SYS) represents the maximum pressure when the heart 
contracts to pump blood throughout the body, where the 
inflection point (IP) is the reflection pressure. Thus, the max 
slope (MS) point grants insight into the rate of change between 
the two prominent cardiac phases. These fiducial points may be 
identified with the physiological waveforms’ first and second 
derivative morphological characteristics such as peak, valley, 
and zero-crossing points. From the identified fiducial points for 
each cardiac cycle, we can derive PTT, inter-beat interval (IBI), 
time-, amplitude-, and area-based features that reflect the 
vascular properties of the radial artery and may be mapped to 
each BP type – PP, DBP, and SBP. PTT is the time distance 
between the MS point locations from each Bio-Z channel. The 
IBI feature is extracted for each channel as the time distance 
between the MS points for a current and the immediately 
following cardiac cycle. The time-, amplitude-, and area-based 
features are extracted by comparing the DIA1 point to the MS, 
SYS, and IP point locations for each channel. This yields 23 
features extracted for a given cardiac cycle.  

When applying existing time-invariant estimation solutions 

Fig. 2.  Sample Bio-Z waveform morphology for a single cardiac 
cycle with labeled fiducial points. Here, timesteps represents each 
sample of the waveform kept arbitrary in the interest of visualization.

 
Fig. 1.  Overview of the proposed Confidence-Aware Particle Filter (CAPF) framework that achieves beat-to-beat BP estimation by leveraging
both information from trends constructed by a series of estimated BP changes and time-invariant information.   
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to beat-to-beat BP estimation, the derived physiological 
waveform features for a single cardiac cycle are directly input 
to the estimation model. Alternatively, with our proposed 
approach, when estimating changes in BP between two 
independent cardiac cycles we will concatenate the extracted 
features for each into one set, and jointly input them into the 
model to estimate the change between the absolute BP values 
that would be associated with each. Particularly, in testing, the 
estimation operation may be formulated as 

 
 ∆𝐵𝑃෪௧ିௗ,௧ ൌ 𝑓ሺ𝑋௧ିௗ ,𝑋௧ሻ (1) 
   

where 𝑋௧ is the feature vector associated with the current 
cardiac cycle, while 𝑋௧ିௗ is the feature vector associated with 
an independent cardiac cycle that existed 𝑑 seconds in the past, 
and ∆𝐵𝑃෪௧ିௗ,௧ is the estimated change in BP between the two 
cardiac cycles. Furthermore, for any given ∆𝐵𝑃෪௧ିௗ,௧, a change 
is always defined as the absolute BP value corresponding to the 
cardiac cycle at time 𝑡 minus that associated with the cardiac 
cycle from time 𝑡 െ 𝑑, where the estimated change could be 
either an increase or decrease. In this way, the corresponding 
absolute BP value measurement may be derived from the 
estimated change as 
 

 𝐵𝑃෪௧ିௗ,௧
௢ ൌ  𝐵𝑃෪௧ିௗ ൅  ∆𝐵𝑃෪௧ିௗ,௧ (2) 

   
where we add ∆𝐵𝑃෪௧ିௗ,௧ to the previously estimated absolute BP 
value (generated by the end-to-end CAPF framework) 
associated with a cardiac cycle from the past,  𝐵𝑃෪௧ିௗ, to obtain 
a hypothesis BP measurement for the current cardiac cycle 
(treated as observations in particle filter formulation), 𝐵𝑃෪௧ିௗ,௧

௢  – 
where the subscript pairing of “𝑡 െ 𝑑, 𝑡” indicates an 
approximated absolute BP value derived from an estimated 
change. This proposed approach allows direct comparison 
between each of the physiological waveform morphologies. In 
this study for our CAPF framework, we use XGBoost [22] 
regression models for both time-invariant and change 
estimation as its efficacy has been demonstrated in previous 
work that have pursued the standard absolute BP estimation 
problem setup – although, our proposed framework is 
formulated as model-agnostic. Furthermore, separate XGBoost 
models will be trained to estimate changes for each BP type 
(i.e., PP, DBP, and SBP independently).  

When training the change in BP estimation model, we create 
sample instances by concatenating all possible cardiac cycle 
feature pairs for the available training data. However, the 
primary challenge is managing physiological waveform 
morphological variance with respect to context [14], [31]. That 
is, since patient health state and activity is dynamic over time, 
the waveform morphology’s relationship to BP may also 
evolve. Therefore, when constructing training sample pairs, we 
constrain the maximum time distances between two 
independent cardiac cycles that are being compared to be 60 
seconds in an effort to increase the likelihood that each pair 
exists in the same context. However, since intuitively we 
understand that there will always exist an exponentially higher 
number of training instance pairs with shorter time distances, in 
testing we reduce the constraint to 30 seconds. This is since a 
majority of training sample pairs will have time distances under 

30 seconds, yet, our testing estimation performance may still 
benefit from the exposure in training to potentially larger 
changes in BP – which are typically associated with sample 
pairs with time distances greater than 30 seconds but less than 
60 seconds. In Section IV Experiments and Results we will 
present an ablation study that demonstrates the impact of 
increasing this maximum time distance threshold.            

B. Particle Filter Formulation 

As we obtain a series of estimated BP changes, while jointly 
considering them with the time-invariant information, CAPF 
will probabilistically translate them into continuous, beat-to-
beat absolute BP value measurements. Given only the initial 
ground truth PP, DBP, and SBP measurements acquired 
through the calibration phase, we incrementally construct the 
following trend as future cardiac cycles occur. Furthermore, for 
any given estimated instance, a variable number of BP 
hypotheses will be considered from the preceding cardiac 
cycles (within the 30 seconds). Straightforward approaches 
would typically apply a variation of averaging for finding 
consensus amongst multiple hypotheses [32]. However, when a 
given (or multiple) erroneous hypothesis is present, these 
straightforward approaches will yield inaccurate measurements 
as they do not incorporate any notion of uncertainty to mitigate 
such error. On the contrary, particle filtering treats these 
hypotheses as observations and incorporates a scoring 
mechanism that could be used to describe the reliability of each 
candidate absolute BP value estimate [17]. This is achieved by 
tracking a set of sampled particles (or set of candidate BP 
values). Initially, particles are randomly sampled to represent 
the whole range of plausible BP values, and, as new information 
is obtained from each cardiac cycle, particle likelihoods are 
updated to represent the posterior distribution that models the 
state-space of BP trends. Furthermore, by resampling from the 
whole posterior distribution after every update, the particle 
filter is able to retain prior information obtained from the 
preceding BP trend and leverage it to provide a more robust BP 
estimate. In this subsection, we will first introduce our general 
formulation for how particle filtering manages the observations 
and their corresponding confidence scores as shown in Fig. 3 
(consistent with previous work also pursuing physiological 
parameter estimation [33]); then, in the following subsection 
(Section III-C) we will further discuss how the confidence 
scores are generated.  

First, before any estimation, the particle filter is initialized 
with a prior distribution representing the range of plausible BP 
values that may be observed in the near future,   

 
 𝐵𝑃௧~𝜋௑ ൌ 𝑈ሺ𝐵𝑃௠௜௡,𝐵𝑃௠௔௫ሻ (3) 
   

where 𝜋௑ represents a uniform prior distribution such that all 
values between the physiologically plausible 𝐵𝑃௠௜௡ and 𝐵𝑃௠௔௫ 
range have an equal likelihood of being the next true state – 
before any observations are provided. From this, a pre-defined 
number of particles, 𝑁௣, are sampled from 𝜋௑ to represent the 
dynamic posterior distribution that will be updated over time 
with each new set of observations. When particles are initially 
sampled, each particle value is assigned a uniform weight that 
represent the likelihood of being the subsequent true BP value 
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 𝑊஻௉೟
೛ ൌ

1
𝑁௣

 (4) 

 ∀𝑝 ∈ ൫1,𝑁௣൯  
   

where 𝐵𝑃௧
௣ is the 𝑝௧௛ particle value at any given time 𝑡, and 

𝑊஻௉೟
ು is the associated likelihood for the 𝑝௧௛ particle at time 𝑡.  

As observations are provided, particle weights will be 
augmented to reflect the appropriate likelihood of each 
candidate absolute BP value being the true state according to 
the new evidence. For now, we will denote this probability for 
an observation as 𝑝൫𝐵𝑃௧ିௗ,௧

௢  | 𝑋൯ in an effort to more clearly 
move forward with presenting the particle filter formulation – 
where 𝑋 is a vector of the input waveform morphological 
features. To be explained in the following subsection, these 
likelihoods are effectively defined as the confidence scores. 
Nevertheless, these observation probabilities will augment the 
likelihood of each particle whose BP value corresponds to it 

 

 𝑊′஻௉೟
೛ ൌ  𝑊஻௉೟

೛ ൅ 𝑝൫𝐵𝑃௧ିௗ,௧
௢  | 𝑋൯   (5) 

 ∀𝑝 ∈ ൫1,𝑁௣൯  
   

where 𝑊′஻௉೟
೛ is now the updated particle weight. Thus, 

executing an update to the posterior distribution from which we 
can now resample particles from it according to the new 
likelihoods. However, when hypotheses are provided with high 
confidence scores, it is likely that particle weights may become 
severely skewed. Therefore, we employ the commonly used 
sequential importance resampling (SIR) to alleviate any particle 
degeneracy for those representing BP hypotheses from previous 
estimated instances [34] 

 𝑀௧
௣ ൌ෍ 𝑊෡஻௉೟

ೝ

௣

௥ୀଵ
,∀𝑝 ∈ ൫1,𝑁௣൯ (6) 

 𝑢 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎

ቚ𝑅௨~𝑈ሺ0,1ሻ ൑ 𝑀௧
௔  (7) 

 𝐵𝑃′௧
௣ ൌ 𝐵𝑃௧

௨,∀𝑝 ∈ ൫1,𝑁௣൯ (8) 
   

where 𝑀௧
௣ is an element of the cumulative sum vector calculated 

over the particle weights, 𝑅௨ is a randomly sampled number 
between 0 and 1, and 𝐵𝑃′௧

௣ is a resampled particle state.   
 To yield the final estimate, we first cluster particles centered 
on all candidate BP values within a range, 𝐶𝑆, of 3 mmHg,  

 𝐶ே ≜ 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝐵𝑃ᇱ௧
௣ ቚห𝐵𝑃ᇱ௧

௠ െ  𝐵𝑃ᇱ௧
௡ห  ൏ 𝐶𝑆  

 ∀𝑚 ∈ ൫1,𝑁௣൯,∀𝑛 ∈ ൫1,𝑁௣൯  

 𝐸௧஻௉ ൌ෍
𝐶௠௔௫௜

|𝐶௠௔௫|௜
 (9) 

   
where 𝐶ே is a cluster of particles centered on a candidate BP 
value, 𝐶௠௔௫௜  is an element of the largest cluster, and 𝐸௧஻௉ is the 
absolute BP value by which the largest cluster was centered – 
regarded as the final estimation for this instance.  

Last, in preparation for subsequent estimates, each particle 
value is randomly shifted to reflect plausible changes in BP 
which are expected to be relatively small for consecutive beats 
and possibly larger for beats that are farther apart in time. This 
shift function is defined as  
   

 
𝐵𝑃௧ାଵ

௣ ~𝑓൫𝐵𝑃௧
௣൯~𝑁൫𝐵𝑃ᇱ௜

௣,𝜎஻௉൯
ൌ 𝐵𝑃ᇱ௜

௣ ൅ ሺ𝜎஻௉ ൈ 𝑅ே~𝑁ሺ0,1ሻሻ 
 

 ∀𝑝 ∈ ൫1,𝑁௣൯ (10) 
   

where 𝑅ே is a randomly sampled number from a normal 
distribution to be applied as a shift factor, and 𝜎஻௉ is the 
expected change in BP between estimated instances. 
 Then, we will move on to the next cardiac cycle and repeat 
this process from equation (5) until the end of the captured 
physiological waveform stream. Through this series of updates 
to the posterior distribution over time, the particle filter will 
inherently track the temporal characteristics of the constructed 
BP trends.  
 The above formulation of the particle filter is designed for 
estimation of one type of BP trend at a time – in other words, 
the PP, DBP, and SBP trends constructed from the series of 

 
Fig. 3.  Particles are sampled from a prior distribution to represent the dynamic posterior distribution of a state-space by tracking the likelihoods of
candidate true state values – which are updated according to observations and our confidence-awareness mechanism. Then, particles are
resampled and propagated, where the final estimate is identified as the candidate BP value with the largest number of surrounding particles. 



Jonathan Martinez et al.: Hypothesis Scoring for Confidence-Aware Blood Pressure Estimation with Particle Filters 6 

changes will be independently tracked by separate particle 
filters. In the following subsection, we will explain how we 
obtain 𝑝൫𝐵𝑃௧ିௗ,௧

௢  | 𝑋൯ for each estimated change.  

C. Confidence-Aware Particle Filter for BP Estimation 

Determining the appropriate confidence level that should be 
assigned to each observation is the most critical mechanism of 
the particle filter formulation and is the defining characteristic 
of our proposed CAPF framework, as this operation is 
responsible for ultimately extracting consensus among the 
multiple hypotheses and ensuring the final BP estimate is high-
quality. We robustly assign probabilities to each observation 
through two scoring types:  1) Agreement Scoring and 2) Multi-
Tasked Scoring. Ultimately, a likelihood score will be 
generated for each and combined to provide 𝑝൫𝐵𝑃௧ିௗ,௧

௢  | 𝑋൯ – 
moreover, an effective particle weight augmentation.   

Agreement Scoring mechanism checks for agreement 
amongst a series of estimated changes in BP. Using the example 
in Fig. 4, for any given set of three consecutive cardiac cycles 
(e.g., existing in time at 𝑡ଵ, 𝑡ଶ, and 𝑡ଷ) there are 3 changes in BP 
that take place: ∆𝐵𝑃෪௧భ,௧మ, ∆𝐵𝑃෪௧మ,௧య, and ∆𝐵𝑃෪௧భ,௧య. These 
estimates can be further categorized as those between cardiac 
cycles that are consecutive (∆𝐵𝑃෪௧భ,௧మ, ∆𝐵𝑃෪௧మ,௧య) and non-
consecutive (∆𝐵𝑃෪௧భ,௧య).  In the ideal case where we assume each 
of these are accurate, we expect a non-consecutive estimate to 
be the sum of all the consecutive estimates that exist between 
its independent cardiac cycles that are being compared 

 
 ∆𝐵𝑃෪௧భ,௧య ൌ ∆𝐵𝑃෪௧భ,௧మ ൅ ∆𝐵𝑃෪௧మ,௧య (11) 
   

On the contrary, if any of the three estimated changes is 
inaccurate, the above property will not hold. Therefore, we can 
leverage this phenomenon to achieve Agreement Scoring by 
measuring the absolute difference between the non-consecutive 
estimate and the sum of the consecutive estimates   
 

 𝐴௧భ,௧య ൌ ห∆𝐵𝑃෪௧భ,௧య െ ሺ∆𝐵𝑃෪௧భ,௧మ ൅ ∆𝐵𝑃෪௧మ,௧యሻห (12) 
   
To relate this concept back to probability assignment for 

particle filters, while referring back to Fig. 4 we can see that the 
comparisons executed for a given estimated instance may all be 
categorized as non-consecutive except when estimating change 
in BP from the immediately preceding cardiac cycle. Therefore, 
we may compute an 𝐴௧ିௗ,௧ agreement score/difference for each 
of them and SoftMax normalize them into 𝑊௧ିௗ,௧

஺  scores such 
that the observation that yields the smallest difference will 

receive a maximum score of 
ଵ

ே೛
 (which is the unit weight for a 

sampled particle) and that the largest difference will receive the 

minimum score of 
଴.଴ହ

ே೛
 (5% of the unit weight), while all others 

will be scaled to this range. Last, the single consecutive change 

in BP estimate will receive a score of  
଴.ହ

ே೛
 to reflect random 

chance since it could not be evaluated with this property.  
On the other hand, Multi-Tasked Scoring ensures 

physiological plausibility of reported PP, DBP, and SBP values. 
As aforementioned, PP is measured as SBP minus DBP where 
it is conceptually defined as the force by which blood is flowing 

due to pressure exerted by the heart’s contractions and inherent 
arterial compliance [35]. Recall that estimated PP, DBP, and 
SBP trends constructed by the series of estimated changes are 
tracked independently by distinct particle filters (i.e., 𝑃𝐹௉௉

஼ , 
𝑃𝐹஽஻௉

஼ , 𝑃𝐹ௌ஻௉
஼ ). Therefore, we can use the estimated PP value 

produced by 𝑃𝐹௉௉
஼  to check for plausibility between SBP and 

DBP observations to further enhance the confidence assignment 
mechanism. This may be formulated as 

 

 𝜔௜
ெ்൅ൌ ൜     

1, 𝑆𝐵𝑃௜
௢ ൎ 𝐷𝐵𝑃௝

௢ ൅ 𝑃𝑃തതതത௧ | ∀𝐷𝐵𝑃௝
௢ ∈ ሺ1, 𝐽ሻ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 𝜔௝
ெ்൅ൌ ൜     

1, 𝐷𝐵𝑃௝
௢ ൎ 𝑆𝐵𝑃௜

௢ െ 𝑃𝑃തതതത௧ | ∀𝑆𝐵𝑃௜
௢ ∈ ሺ1, 𝐼ሻ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

   

Where 𝑆𝐵𝑃௜
௢ represents an SBP observation while there are 𝐼 

of them in total, and 𝐷𝐵𝑃௝
௢ represents a DBP observation while 

there are 𝐽 of them in total. Therefore, 𝜔௜
ெ் is a counter for each 

𝑆𝐵𝑃௜
௢ observation where we iterate through the whole set of 

𝐷𝐵𝑃௝
௢ observations to identify the number of plausible 

counterparts according to the final 𝐸௧௉௉ provided by 𝑃𝐹௉௉
஼  

(within an empirically determined tolerance of 0.5 mmHg to 
account for inherent noise) – as visualized in Fig. 5. We can 
repeat this same process in vice versa for each 𝐷𝐵𝑃௝

௢ 
observation and its 𝜔௝

ெ் counter.  
 Last, to update the particle weight augmentation step from 
Section III-B, 𝑝൫𝐵𝑃௧ିௗ,௧

௢  | 𝑋൯ is redefined as the multiplication 
between the likelihoods obtained with Agreement Scoring and 
Multi-Tasked Scoring 

 𝑊′஻௉೟
೛ ൌ  𝑊஻௉೟

೛ ൅ 𝑝൫𝐵𝑃௧ିௗ,௧
௢  | 𝑋൯  (15) 

Fig. 4.  Example series of cardiac cycles to visualize non-
consecutive and consecutive changes used in Agreement Scoring.  

Fig. 5.  Conceptual model for the Multi-Tasked Scoring mechanism 
where each set of SBP and DBP observation pairings will be evaluated
for physiological plausibility based on the estimated PP value. 
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 𝑝൫𝐵𝑃௧ିௗ,௧
௢ ห𝑋ሻ ൌ 𝑊௧ିௗ,௧

஺ ∗ 𝜔௧ିௗ,௧
ெ்   (16) 

   
 where 𝑊௧ିௗ,௧

஺  is the likelihood obtained by Agreement Scoring 
and 𝜔௧ିௗ,௧

ெ்  is a likelihood obtained by Multi-Tasked Scoring for 
an observation (whether SBP or DBP). Through this 
formulation, 𝜔௧ିௗ,௧

ெ்  may remove any contribution for an 
observation that has no physiologically plausible counterparts, 
thus discarding the risk for erroneous measurements. 

  Now that we have constructed the estimated BP trend using 
the series of changes, we will re-incorporate the time-invariant 
estimation. Using only the waveform morphology features for 
the current cardiac cycle, 𝑋௧, the time-invariant model will 
directly estimate an absolute BP value. However, as mentioned 
earlier in this paper, with the constrained amount of information 
available during this approach, it is more likely that we may 
encounter erroneous measurements. To alleviate this, we 
leverage our presented particle filter formulation to inherently 
model the temporal characteristics of each BP types’ trend 
estimated by the time-invariant model – where each particle 
filter can be referred to as 𝑃𝐹௉௉

்ூ , 𝑃𝐹஽஻௉
்ூ , and 𝑃𝐹ௌ஻௉

்ூ . Although, 
since for this setting there will only be one absolute BP 
hypothesis associated with each cardiac cycle, particle weight 

updates will be incremented with a unit value (
ଵ

ே೛
). This will 

provide us with a smoothed BP trend constructed with the time-
invariant information. Finally, we produce the ultimate absolute 
BP value for each type as the average between the 𝐸௧஻௉ values 
provided by 𝑃𝐹஻௉

஼  and 𝑃𝐹஻௉
்ூ . Fusing the information from each 

enables self-correction for each particle filter. The time-
invariant information will stabilize the BP trend constructed 
with the series of changes from error propagation, and similarly 
the several hypotheses provided by comparisons to preceding 
cardiac cycles will highlight the true beat-to-beat variation.    

IV. EXPERIMENTS AND RESULTS 

A. Bio-Z for Physiological Sensing and Data Collection 

The Bio-Z dataset analyzed for this study was collected under 
the IRB approval by IRB2020-0090F at Texas A&M University 
where informed consent was obtained for each subject. 
Throughout each data collection trial, Bio-Z was captured by a 
prototype wrist-worn device introduced in previous work [4] 
and simultaneously reference BP waveforms were continuously 
measured from the Finapres NOVA System as each subject 
underwent a hand-gripper exercise, a cold pressor test, and a 
recovery state to simulate the contextual variability that typical 
wearable devices may encounter with activities of daily living. 
The Finapres NOVA System (https://www.finapres.com/) 
leverages a finger cuff to generate arterial waveforms that are 
calibrated with a single brachial cuff-based measurement. Each 
8-minute trial was captured and stored into independent 4-
minute data streams, and repeated four times in the same day to 
encompass a collection session (32 minutes in total). Bio-Z 
wrist-worn prototype electrode sensors are aligned with the 
radial arteries to monitor blood flow. Therefore, in addition to 
human physiological variation, waveform morphology is also 
impacted by electrode sensor alignment quality with the 
arteries, contact with the skin, and motion. To ensure a fair 
evaluation, we discarded any cardiac cycle waveforms 

corrupted by noise – identified with a heuristic-based denoising 
filter that discarded instances that do not follow the expected 
pulse wave morphologies. In addition, we applied a 10-second 
rolling window to smooth both waveform features and 
reference BP values in an effort to alleviate the inherent 
abovementioned noise (which is consistent with the previous 
work that originally proposed the utility of Bio-Z [4]). We also 
ensured that each subject included for analysis obtained 
collection sessions whose trials were composed of at least 50% 
clean waveforms – thus providing eight subjects for analysis. 
The subjects in this cohort were between the ages of 18 to 40, 
consisting of four males and four females. Of this cohort, four 
subjects contained BMI values within the healthy range (21.6 
to 23.9), one subject is within the underweight range (14.8), one 
subject is within the overweight range (26.8), and two subjects 
are within the obese range (31.5 and 35.7). With respect to the 
BP values captured in this dataset, the distribution of DBP have 
a range from 50.3 to 116.7 mmHg with a mean value of 81.6 
mmHg and a standard deviation of 12.0 mmHg, while the SBP 
distribution has a range from 87.7 to 175.3 mmHg with a mean 
value of 130.3 mmHg and a standard deviation of 15.5 mmHg. 

B. Personalized BP Estimation Performance 

We evaluate CAPF’s performance for personalized PP, DBP, 
and SBP estimation compared to ten baseline approaches. The 
first set of baseline methods (five models) achieve conventional 
time-invariant beat-to-beat BP estimation, where only the 
extracted features from the waveform associated with the 
cardiac cycle are input to each regression model for direct 
estimation of the corresponding absolute BP value. We 
included the existing state-of-the-art regression models for this 
scenario: XGBoost [22], support vector machine (SVM) with 
radial basis function kernel [20], k-nearest neighbors (KNN) 
[21], Lasso [19], and multi-layer perceptron (MLP) [23] 
consisting of three fully connected layers with rectified linear 
unit (ReLU) activation with 100, 50, and 1 hidden units 
respectively. The second baseline method type (one model) 
extracts a series features from cardiac cycles within a 5-second 
time window to be analyzed by a recurrent neural network 
(Window-RNN) [25] consisting of a bi-directional gated 
recurrent units (GRU) layer with 128 hidden units, followed by 
a fully connected layer of 100 hidden units, and concluded with 
a final output fully connected layer. This approach takes a step 
towards expanding input information through the notion of 
sequential modeling, yet still conducts time-invariant decision-
making. The third set of baseline methods (two models) uses 
XGBoost to estimated changes in BP over time to construct the 
absolute value trend – again taking another step towards 
leveraging prior information but this time also considering 
previous estimates to introduce the notion of generating 
multiple hypotheses for the true state of the current instance. 
The first model consists of averaging all hypotheses to identify 
the final estimate, solely relying on consensus. The second 
model uses a vanilla particle filter without our proposed 
confidence-awareness mechanism to introduce the impact of 
state-space tracking in addition to finding consensus. Finally, 
the last set of baseline methods (two models) serve as an 
ablation study for the scoring the approaches presented in 
Section III-C. First, we evaluate CAPF if we were to only 
leverage Agreement Scoring (CAPF-AS); then, we evaluate 
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CAPF if we were to only leverage Multi-Task Scoring (CAPF-
MT). This study will analyze the impact of each mechanism.  

For personalized BP estimation, each model was evaluated 
with a given subjects’ data for training and testing. To ensure a 
fair evaluation, for each subject, the trial (composed of both 
independent 4-minute streams) with the largest number of 
cardiac cycles available was designated as the test set to be 
completely excluded from any training. Therefore, we executed 
a k-fold cross validation process with grid search only using the 
remaining trials designated for training to identify all model 
hyperparameters. XGBoost hyperparameters set for CAPF 
were optimized for the max tree depth and number of estimators 
– where the range of values were [2, 3, 4, 5, 6, 7, 8, 9, 10] and 
[25, 50, 75, 100] respectively. The hyperparameter set to be 
retrained with all training data only was determined as the one 
which achieved estimation performance closest to the mean 
across all folds – with respect to the root mean square error 
(RMSE) and correlation. Across all subjects, the most reported 
hyperparameter set was a max depth of 3 with 100 estimators. 
SVM was optimized for the degree of its polynomial function 
and its regularization parameter – where the range values were 
[2,3,4,5] and [0.1,1,10] respectively. KNN was optimized for 
the number of nearest neighbors parameter – where the range 
values were from 1 to 30. Lasso was optimized for its shrinkage 
factor – where the range values were [0.1,1,10]. Both MLP and 
Window-RNN were optimized with a learning rate of 0.001, 
batch size of 32, and were trained for a maximum of 1000 
epochs where 10% of the training set was tracked as validation 

to determine early stopping. Last, for fairness, all parameters 
for the vanilla particle filter and CAPF were consistently fixed 
across all subjects (as formulated in Section III) with the 
number of particles sampled (𝑁௣) set to 1000.  

In Table I, we compare the performance for personalized 
absolute PP, DBP, and SBP estimation with each model using 
RMSE, Mean Error (ME) plus and minus the standard deviation 
of errors (±SD), and the Pearson correlation coefficient between 
reference and estimated BP trends (r), calculated with the test 
data for all subjects. Our proposed CAPF framework achieves 
superior performance compared to each of the baselines for all 
three BP types with respect to all metrics, while MLP was 
consistently the poorest performer (due to its sensitivity to 
imbalanced training datasets). For SBP, in general, constructing 
absolute value trends from estimated changes showed 
improvements to all of the time-invariant methods as they 
leverage the least amount of information for analysis. For PP 
and DBP, we observed the reverse outcome. Moreover, for each 
BP type, we observe a marginal improvement when applying 
Vanilla PF to multiple hypotheses compared to the 
straightforward averaging approach – reflecting the need for 
probabilistic state-space modeling. On the other hand, the 
ablation study analyzing the impact of each scoring mechanism 
independently (CAPF-AS and CAPF-MT) reflects their 
codependence. Particularly, both variants’ estimation 
performance is amongst the poorest performers for PP and SBP 
while they are among the average performers for DBP. 

TABLE I 
PERSONALIZED BP ESTIMATION PERFORMANCE 

Model 

Pulse Pressure Diastolic Blood Pressure Systolic Blood Pressure 

𝑹𝑴𝑺𝑬 
ሺ𝒎𝒎𝑯𝒈ሻ  

𝑴𝑬 േ 𝑺𝑫 
ሺ𝒎𝒎𝑯𝒈ሻ 

𝒓 
𝑹𝑴𝑺𝑬 
ሺ𝒎𝒎𝑯𝒈ሻ 

𝑴𝑬 േ 𝑺𝑫 
ሺ𝒎𝒎𝑯𝒈ሻ 

𝒓 
𝑹𝑴𝑺𝑬 
ሺ𝒎𝒎𝑯𝒈ሻ 

𝑴𝑬 േ 𝑺𝑫 
ሺ𝒎𝒎𝑯𝒈ሻ 

𝒓 

XGBoost 4.25  -0.68 ± 4.19 0.760 6.91 -2.04 ± 6.60 0.824 9.52 -2.80 ± 9.10 0.834 
SVM 4.13 0.82 ± 4.04 0.778 7.11 -2.15 ± 6.79 0.810 8.91 -1.22 ± 8.22 0.847 
KNN 4.08 0.39 ± 4.06 0.789 7.55 -2.03 ± 7.27 0.777 9.73 -1.46 ± 9.62 0.810 
Lasso 5.27 1.74 ± 4.98 0.656 7.02 -2.34 ± 6.62 0.821 9.39 -1.13 ± 9.32 0.826 
MLP 6.43 -0.33 ± 6.42 0.607 10.91 1.16 ± 10.8 0.603 12.24 0.27 ± 12.2 0.732 

Window-RNN 4.31 0.45 ± 4.28 0.770 8.39 -2.53 ± 8.00 0.731 10.08 -1.95 ± 9.88 0.799 
Ensemble Average  5.21 0.16 ± 5.20 0.713 7.85 2.68 ± 7.37 0.848 8.69 2.16 ± 8.41 0.877 

Vanilla PF 4.89 0.34 ± 4.58 0.735 7.58 2.51 ± 7.45 0.860 8.33 1.78 ± 8.42 0.880 
CAPF-AS 5.66 0.49 ± 5.64 0.653 6.91 -1.24 ± 6.80 0.820 11.03 -0.70 ± 11.0 0.768 
CAPF-MT 5.63 0.56 ± 5.61 0.657 7.16 -1.11 ± 7.07 0.800 10.52 -0.14 ± 10.5 0.796 

CAPF (Our Method) 3.75 -0.16 ± 3.75 0.813 4.41 0.42 ± 4.39 0.925 6.51 -0.09 ± 6.51 0.918 

TABLE II 
COMPARISON OF METHODS TO BHS STANDARDS 

Model 
Diastolic Blood Pressure Systolic Blood Pressure 

% ൑ 
𝟓 𝒎𝒎𝑯𝒈 

% ൑ 
𝟏𝟎 𝒎𝒎𝑯𝒈 

% ൑ 
𝟏𝟓 𝒎𝒎𝑯𝒈 

𝑮𝒓𝒂𝒅𝒆 
% ൑ 

𝟓 𝒎𝒎𝑯𝒈 
% ൑ 

𝟏𝟎 𝒎𝒎𝑯𝒈 
% ൑ 

𝟏𝟓 𝒎𝒎𝑯𝒈 
𝑮𝒓𝒂𝒅𝒆 

XGBoost 59 86 95 B 43 73 87 C 
SVM 58 84 95 B 49 76 90 C 
KNN 57 83 93 B 46 74 87 C 
Lasso 55 86 95 B 46 74 90 C 
MLP 45 71 85 C 40 65 80 C 

Window-RNN 55 80 90 B 48 73 85 C 
Ensemble Average  50 82 96 B 48 78 93 C 

Vanilla PF 51 81 96 B 50 78 93 B 
CAPF-AS 55 84 98 B 44 68 80 C 
CAPF-MT 56 84 96 B 42 68 83 C 

CAPF (Our Method) 78 97 99 A 61 89 97 A 
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Therefore, without the integration of the two scoring 
mechanisms to compensate for each other, each variant will 
bias its decision making to introspection and physiological 
plausibility respectively. Last, the largest performance 
improvement achieved by our CAPF framework for each BP 
type demonstrates the robustness provided when introducing 
the multiple hypotheses (from both change and time-invariant 
estimation) and our novel confidence-awareness mechanism for 
the formulated particle filter.   

We also compare BP performance for all methods to the 
Association for the Advancement of Medical Instrumentation 
(AAMI) and the British Hypertension Society (BHS) standards 
[36]. The AAMI standards require a ME ≤ 5 mmHg and a SD ≤ 
8 mmHg, where shown in Table I all evaluated methods achieve 
this for DBP except for MLP, yet only our proposed CAPF 
framework achieves this for SBP. The BHS standards require 
that of the reported absolute differences, at least 60% should be 
≤ 5 mmHg, 85% should be ≤ 10 mmHg, and 95% should be ≤ 
15 mmHg to achieve a Grade A classification. However, it 
should be noted that these standards typically require a 
minimum of 85 subjects for evaluation with at most 3 individual 
BP measurements for each, which yields 255 test data points in 
total. Yet, since our analysis targeted continuous BP 
monitoring, we captured several more cardiac cycles for each 
subject to yield over 3500 test data points for our evaluation. 
Therefore, we choose to compare model performance to these 
standards to remain consistent with previous work and since the 
sample size of our evaluation is significantly larger than their 
minimum requirement. As indicated in Table II, our proposed 
CAPF framework is the only evaluated method which is on 
track to achieve a Grade A classification for more than 3500 
test data points – for both DBP and SBP. For DBP, all baseline 
methods are on track to achieve a Grade B except for MLP 
which achieves Grade C. For SBP, all baseline methods are on 
track to achieve a Grade C except for Vanilla PF which achieves 
Grade B. 

In Fig. 6, we visualize the improved PP, DBP, and SBP 
estimation performance with our proposed CAPF framework 
compared to only its time-invariant estimation component 

(XGBoost without particle filtering) through Bland-Altman 
Difference plots – it should be noted that all estimated BP 
values were reported as integers. For DBP and SBP, we observe 
a reduced margin of error by approximately 31%. For PP, we 
observe a reduced margin of error by approximately 10%. 
Particularly, from all plots we identify the main sources of error 
in the upper and lowermost ranges of BP which are typically 
underrepresented in training; however, our proposed CAPF 
framework shows better performance for these regions.    

C. Analysis of CAPF Estimation Confidence 

An additional benefit of the proposed CAPF framework is 
our ability to extract a notion of estimation confidence derived 
from our novel observation weighting mechanism. This 
characteristic is especially critical when estimating 
physiological parameters since healthcare providers depend on 
the reported measurements to diagnose patient health. 
Otherwise, unnoticed erroneous measurements could prevent 
the early detection of life-threatening illnesses. Fortunately, our 
proposed Agreement Scoring and Multi-Tasked Scoring 
schemes achieve a robust quality check for every hypothesis. 

 
Fig. 7.  Analysis on the distribution of estimated BP change errors for
DBP and SBP, with respect to the confidence scores assigned by CAPF.

Fig. 6.  Bland-Altman difference plots used to compare the time-invariant model (a,b,c) to CAPF (d,e,f) for PP, DBP, and SBP value estimation,
where difference is defined as the ground truth minus the estimate. It should be noted that all estimated BP values were reported as integers. 
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While we have already observed the improvement to final BP 
estimation performance upon considering such information in 
real-time (i.e., Table I), in Fig. 7 we take a more detailed look 
at how well the assigned observation likelihoods, 
𝑝൫𝐵𝑃௧ିௗ,௧

௢ ห𝑋ሻ ,  predict the quality of estimated changes in SBP 
and DBP. We plotted the distribution of errors (measured as the 
reference value minus the estimate) for estimated changes in BP 
when observations were assigned low confidence scores (where 
the minimum likelihood is normalized to 0%) through when 
observations were assigned high confidence scores (where the 
maximum likelihood is normalized to 100%). From the 
boxplots for both SBP and DBP, we observe the distribution of 
errors linearly tighten close to 0 mmHg as the confidence scores 
approach the maximum score of 100%.   

D. Analysis of Maximum Time Distance Between 
Cardiac Cycles 

Although CAPF’s particle filtering formulation is agnostic to 
the type of model used for estimation, a limitation is that we 
must assume that the estimation models perform reasonably 
well. One key observation from the framework design phase 
was that the precision for estimating changes in BP 
incrementally deteriorates as the time distance between two 
distinct cardiac cycles becomes farther – as aforementioned, 
due to contextual variation and that the larger BP changes are 
more likely to exist for pairs more separated in time. For our 
core experimental results, we constrained the maximum time 
distance between cardiac cycles for which we are estimating 
change to be 30 seconds in testing. However, in Fig. 8, we show 
the results for an ablation analysis where we incrementally 
increased the maximum time distance constraint from 15 
seconds to 240 seconds (the full length of each independent 4-
minute stream). Here, we show that the best performance was 
achieved when the constraint was set to 30 seconds. As the 
maximum time distance was increased past this setting, we 
observe a decline in performance up until 75 seconds where the 
error stabilizes onward. This reflects how our proposed 
confidence-awareness framework is capable of identifying the 
most high-quality BP hypotheses even amongst dramatically 
increasing the number of hypotheses to be considered by CAPF.   

E. Time Complexity Analysis of CAPF 

For the vanilla particle filter, time complexity may be 

expressed as 𝑂ሺ𝑁௣𝜔௢ሻ where we iterate through each of the 
sampled particles to execute posterior distribution updates 
while also searching for the corresponding observation that will 
be applying the update – such that 𝜔௢ is the maximum number 
of observations that may be available at any given estimated 
instance. This is since each observation will be increasing 

particle likelihood with a fixed unit weight (
ଵ

ே೛
). For our 

proposed CAPF framework, recall that we replace this fixed 
weight with an adaptive likelihood score through Agreement 
Scoring and Multi-Tasked Scoring. Therefore, the time 
complexity of only the Agreement Scoring mechanism is 
𝑂ሺ𝜔௢ሻ where we iterate through each of the observations to 
check for agreement (through a series of mathematical 
operations in constant time). On the other hand, Multi-Tasked 
Scoring is expressed as 𝑂ሺ𝜔௢ଶሻ where we must jointly iterate 
through the set of observations for both 𝑃𝐹ௌ஻௉ and 𝑃𝐹஽஻௉. Thus, 
considering the time complexity of Agreement Scoring and 
Multi-Tasked Scoring together can be expressed as 𝑂ሺ𝜔௢ ൅
𝜔௢ଶሻ. Finally, this extends the overall time complexity of CAPF 
to 𝑂ሺ𝑁௣ሺ𝜔௢ ൅ 𝜔௢ଶሻሻ. In Fig. 9, we show impact to CAPF 
performance as we increase 𝑁௣ from 100 to 1000 by increments 
of 100. With every incremental increase, the SBP, DBP, and PP 
performance gradually improves respectively and saturates to 
our reported RMSE and correlation scores. This accurately 
depicts that 𝑁௣ is effectively the resolution by which we can 
accurately track the posterior distribution.  

V. DISCUSSION 

Our above experiments demonstrate CAPF improvements to 
continuous PP, DBP, and SBP estimation compared to ten 
baseline methods. In Fig. 10 we plot DBP and SBP estimation 
performance over time for the subject which both the time-
invariant model and CAPF performed the best. Our proposed 
framework reduced RMSE for DBP from 5.70 mmHg to 3.09 
mmHg and for SBP from 5.06 mmHg to 3.16 mmHg. An 
interesting observation for the time-invariant performance is 
that in most cases if we consider the series of estimates, the 
short-term fluctuations often resemble that of the ground truth 
although there are discrepancies with respect to the magnitude 
of change per cardiac cycle and offsets from the absolute value 
of the BP type. This is generally a reflection of the sample 

Fig. 9.  Change in absolute DBP (blue) and SBP (red) estimation
performance with respect to RMSE and Pearson correlation
coefficient, as we increase the number of particles used by CAPF. 

Fig. 8.  Change in absolute DBP (blue) and SBP (red) estimation
performance with respect to RMSE and Pearson correlation
coefficient, as we increase the maximum time distance constraint. 
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distribution from training, such that values less than 140 mmHg 
for SBP and less than 85 mmHg for DBP were 
underrepresented in training. In addition, this could reflect 
waveform morphology feature shift over time. On the contrary, 
CAPF does capture these fluctuations more tightly and better 
follows the true absolute BP values. This indicates that 
incorporating change in BP estimates enhances generalizability 
by providing a set of hypotheses that are normalized.       

Recall, that CAPF’s final BP estimates are extracted from the 
particle distribution. That is, candidate true state values with the 
most neighboring particles are interpreted as having the greatest 
likelihood. Therefore, we demonstrate how the confidence-
awareness mechanism scores are translated into particle value 
distributions. In Fig. 11 we show these distributions for 
estimated DBP and SBP values for given cardiac cycle 
instances from the generated trend from Fig. 10. For high-
quality estimates when absolute error is 0 mmHg, we observe a 
unimodal distribution where particles are concentrated around 
a single peak reflecting strong consensus. Furthermore, the 
range of candidate BP values spans approximately 20 mmHg. 
On the contrary, for low-quality estimates, when absolute error 
is 8 mmHg and 6 mmHg, we observe a multimodal distribution 
where each peak indicates a candidate BP value with some level 
of plausibility reflecting poor consensus. Furthermore, the 
range of candidate BP values increases to approximately 100 
mmHg. Despite that CAPF is still able to provide a final 
estimate for these cases, this reflects a notion of uncertainty.  

A. Limitations 

The absolute BP trends constructed from the series of 
estimated changes require a single initial reference point 
obtained from calibration (for each independent data stream). 
In the real-world setting, this reference could be obtained with 
home cuff-based device or with a robust time-invariant cuffless 
BP estimator – moreover, healthcare providers may analyze the 
normalized variability trend [37].  Ideally, the smallest time 
distance possible between the calibration sample and the first 
subsequent estimated instance is preferred to increase the 
likelihood for high precision. Yet, we rely on the particle filter 
formulation with our incorporated confidence-awareness to 
prevent the constructed BP trend from wandering due to 
aggregate error over time. The intention is that this calibration 
point is effective for the entire length of the collection trial, and 
this claim was supported by our analysis. In Fig. 10, we also 
show that CAPF achieves higher-quality beat-to-beat BP 
estimation and is able to capture all detailed trend fluctuations 
as BP rises/falls throughout the duration of the tested trial. This 
indicates that our CAPF framework should not require any 
additional calibration points for any following estimation. 
However, a limitation of this study is that the evaluated test 
trials for each subject is maximum 8-minutes in length. Longer-
term round-the-clock collection, such as for the duration of 
several months, would enable further investigation into the 
frequency by which recalibration would be required.  

VI. CONCLUSION 

In this work, we proposed CAPF for estimating BP trends by 
leveraging information obtained through frequently estimated 
beat-to-beat changes and also time-invariant waveform 
morphology features. CAPF mitigated erroneous measurements 
with our proposed confidence-awareness mechanism achieved 
by novel Agreement Scoring and Multi-Tasked Scoring, and 
showed to be a strong indicator for estimation uncertainty. We 
evaluated CAPF alongside ten baseline approaches for 
continuous PP, DBP, and SBP estimation performance when 
analyzing an emerging wearable modality, Bio-Z. CAPF 
outperforms all baseline methods with respect to RMSE, ME, 
and Pearson’s correlation coefficient, on track to achieve a 
Grade A classification performance according to the 
AAMI/BHS BP estimation standards for more than 3500 test 
data points. Future opportunities for this work include 
evaluating over a longer-term round-the-clock collection for 
durations such as several months. This would enable 

 

Fig. 10.  Estimated beat-to-beat a) DBP and b) SBP values plotted over time, comparing CAPF (red) to the time-invariant model (orange) with 
respect to ground truth (black) – for both 4-minute data streams tested for one subject (distinguished by the dotted vertical line).  

Fig. 11.  Particle value distributions for high- and low-quality BP
estimates (with respect to absolute error) yielded by CAPF. 



Jonathan Martinez et al.: Hypothesis Scoring for Confidence-Aware Blood Pressure Estimation with Particle Filters 12 

investigation into the frequency by which recalibration or 
model retraining should occur. Moreover, extending the 
solution to remove the need for obtaining a reference calibration 
point would strengthen the real-world applicability of the 
framework. Last, conducting experimentation on framework 
generalizability would also strengthen its utility.  
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