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Monitoring blood flow is among the most basic practices 
of modern medicine. Blood carries essential fluids and 
passes through all organs, supplying them with oxygen 

and nutrients, removing waste and regulating temperature. The 
blood circulatory system can be considered a whole-body intercon-
necting organ; hence, malfunctions of other organs will be reflected 
in the blood flow, making it a vital health biomarker1–4 for a variety 
of diseases, especially cardiovascular diseases that remain a lead-
ing cause of mortality worldwide5. Nevertheless, it is known that 
proactive and continuous monitoring of blood pressure (BP) can 
prevent fatalities associated with cardiovascular diseases6–9. In cases 
of sleep apnoea, stroke or hypertension, it is essential to monitor 
the patient’s BP routinely and continuously to investigate disease 
development and treatment response10–12. Medical practitioners 
rely at present on traditional cuff sphygmomanometers, measur-
ing static values of systolic (SBP), diastolic (DBP) and mean arte-
rial (MAP) BP13–15. However, uninterrupted continuous monitoring 
of patients’ haemodynamics16–18 in daily, ambulatory and nocturnal 
settings cannot be achieved with the modern cuff sphygmoma-
nometers14,19 owing to their bulkiness and the discomfort caused by  
cuff inflation3,20.

Directly capturing an individual’s BP in a continuous manner is 
a non-trivial technological challenge. A few cuffless BP monitor-
ing methods exist, relying on acoustic21,22, pressure23,24 or optical25,26 
modalities (Supplementary Table 1). The common drawbacks of 
the first two systems are their bulkiness and incompatibility with 
skin’s elastic properties. The acoustic modalities utilizing ultra-
sound transducers can be miniaturized and packaged into smaller 
wearable patches22, yet they are ~1,000 times thicker than graphene 
tattoos (Supplementary Table 1) and slide during movement, caus-
ing sensor displacement and thus requiring frequent recalibration. 
Although the ultrasound transducers can be made wearable, the 
ultrasound generators are bulky and hence cannot easily be incor-
porated into untethered ambulatory sensors22. For optical modali-

ties, the principal drawback is the limited penetration of light into 
the tissue and their inability to capture haemodynamic parameters 
from arterial locations27. It has been proven that optical sensors can 
estimate heart rate from the skin surface and capillaries25,26; how-
ever, the BP pulse wave does not reach capillaries effectively28, so 
BP cannot be captured from the capillaries (Supplementary Fig. 1).

Bioimpedance measurements (Bio-Z)29–31, on the other hand, have 
the capability of buried tissue sensing through the deep penetration 
of electrical currents, facilitating robust sensing of haemodynamic 
parameters directly from arteries. Self-adhesive, low-impedance 
graphene electronic tattoos (GETs)32–34 settle on the skin and sense 
from the same location over time; the BP estimation model for the 
tattoo placement is therefore determined at the outset, without the 
need to recalibrate the model for each electrode placement in con-
trast to other wearable electrode types35. Unlike previous works, the 
graphene-enabled BP (Z-BP) technology presented here does not 
suffer from electrode misplacement or sensor movement, and does 
not require the presence of bone. The self-adhesive, low-impedance 
GETs afford continuous BP measurement (>5 h, significantly lon-
ger than previous reports; Supplementary Table 2)21,22,24 involving 
various activities, achieving accuracies of 0.2 ± 4.5 mm Hg (DBP), 
0.2 ± 5.8 mm Hg (SBP) and 0.1 ± 5.3 mm Hg (MAP). The pre-
sented Z-BP technology (Fig. 1a) provides a unique and innovative  
solution that can advance wearable BP monitoring.

Graphene bioimpedance tattoos
To enable reliable Z-BP measurements, we placed a set of three GET 
pairs onto the wrist over the radial and ulnar arteries, both branch-
ing out of the brachial artery (Fig. 1b); the outer GETs were used to 
inject an alternating current (a.c. 0.2–1 mA) at 10 kHz into the tis-
sue, and the inner pairs were used to record corresponding changes 
in the biopotentials. Frequency-dependent Bio-Z spectroscopy was 
performed (Supplementary Fig. 2) utilizing the custom-built circuit 
board (XL-board; see Methods and Supplementary Note 3) and the 
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current injection frequency and amplitudes were chosen deliber-
ately to mitigate the effect of 1/f noise, where f is the frequency, and 
to adhere to the safety standards of current injection into a human 
body (Supplementary Fig. 3)36. The non-invasive signal at high fre-
quencies (as high as 1 mA at 10 kHz according to safety standards36; 
Supplementary Note 8) penetrated deep into the tissue along the 
path of least impedance on its course37. The rich ionic solution in 
the blood vessels acts as a better conductor than the surrounding fat 
and muscle cells, hence the artery is the prevailing lowest-resistance 
path for the injected a.c. signal (Fig. 1a–c). The electrode placement 
configuration and the corresponding electrode–skin–artery simpli-
fied electrical diagram are shown in Fig. 1d,e. The Bio-Z method38 
is similar to the conventional four-probe resistance measurement 
(that is, the Kelvin probe) of electronic materials39. It affords sepa-
ration of the contact (skin–electrode, ZS-E ≈ 1–10 kΩ) and tissue 
(Ztissue ≈ 10–50 Ω) impedances from the desired arterial bioimped-
ance (Zartery ≈ 1 Ω, Fig. 1e), and only the latter two were detected by 
the sensing electrodes. The acquired signal was bandpass-filtered 
and demodulated (Supplementary Fig. 4 and Methods). The variable 
part of the bioimpedance (ΔZartery(t) < 50 mΩ) represents the blood 
volume undulations in the artery due to pulse pressure waves. Our 
low-noise multichannel sensing hardware (Methods) allowed us to 
detect bioimpedance with an accuracy down to 1 mΩ. Furthermore, 
specific emphasis on the fast pulsatile changes in bioimpedance 
enabled us to disregard the slow variations in the tissue and blood 
composition as a result of participants’ daily consumption of food or 
water (Supplementary Fig. 5). The high-frequency sensing (10 kHz) 
allowed us to bypass the undesirable influence of surface potentials 
such as electromyography (EMG, Supplementary Fig. 4).

The actual blood pulse waveform is directly associated with the 
blood flow, its dynamics and arterial volume (Fig. 2a)40. The lowest  
pressure (~70 ± 10 mm Hg at rest for healthy individuals) is the 

so-called DBP. The highest built-up pressure is recognized as the 
SBP (~120 ± 10 mm Hg at rest for healthy individuals). The arte-
rial volume is then inversely proportional to ΔZartery(t). The gen-
eral trend is that higher BP results in higher arterial volume, and 
accordingly lower bioimpedance. Therefore, the Bio-Z waveform 
(shown in Fig. 2b) is reciprocal to the BP. Moreover, BP is also cor-
related with the blood pressure wave velocity (PWV, VPW) passing 
through the arteries. The relationship between VPW and BP theo-
retically builds upon models that include the artery’s elastic proper-
ties (Supplementary Note 5)41. VPW was obtained by measuring the 
pulse transit time (PTT, tpt) between two arterials sites (that is, VPW 
is proportional to 1/tpt); Bio-Z must therefore be measured from at 
least two locations, which was accomplished by placing two pairs 
of signal-sensing GETs per artery. Moreover, multiple PTTs were 
extracted using the time difference between the arrival of pulses 
to the radial and ulnar arteries. The ΔZartery values were used to 
identify the four characteristic points (systolic foot, diastolic peak, 
mean slope and inflection point, as shown in Fig. 2c) and used to 
build the machine learning regression algorithm for BP estimation 
(Methods and Supplementary Note 5). Here, the machine learn-
ing model created the mapping between characteristic features 
extracted from Bio-Z waveforms and BP, involving a multi-variable 
nonlinear mathematical framework. To keep the dimensions of the 
wearable sensor suitable for measurement, the spacing between the 
two outer injection electrodes was set to 40 mm, while all other elec-
trodes were placed as close as possible, typically about 8 mm apart 
(Supplementary Fig. 6).

The GETs were fabricated according to our published protocol 
(Methods)34, and were based on chemical-vapour-deposited (CVD) 
graphene with large-area uniformity, optical transparency and reliable 
electrical properties. In this work, we used few-layer GET struc-
tures that provided superior electrical properties while conforming  
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closely to the skin and fault-free long-term operation34. All sensing 
pairs of tattoos were made of bilayer GETs (2L-GETs), and injec-
tion electrodes were made of trilayer GETs (3L-GETs) with supe-
rior impedance properties (Supplementary Fig. 7). The 3L-GETs 
were chosen for the current injection electrodes as they provided 
(1) lower interface impedance, as required to inject the highest pos-
sible a.c. signal, and (2) lower variability compared with previously 
reported monolayer GETs32,33. The latter is essential mainly for the 
current injection electrodes, and the 3L-GETs featured superior 
consistency (Supplementary Fig. 7a). The tattoo transfer process is 
rapid and can be scaled up (Supplementary Video 2). The mechani-
cal properties of multilayer GETs are not much different from those 
of monolayer GETs32,42. To verify their longevity and durability, the 
2L-GETs were subjected to continuous stress when worn directly on 
a person throughout their routine daily activities, and the imped-
ance was monitored constantly (Supplementary Fig. 7e). It could 
be seen that the performance of the 2L-GET did not degrade over 
hours of desktop work and light walking. Even when performing 
activities demanding substantial wrist bending, the tattoo–skin 
interface impedance changed by only ~20%. Upon strenuous exer-
cise (for example, push-ups), the impedance rose by ~45%, indi-
cating that GETs can endure normal stretching of the skin and are 
advantageous for long-term Bio-Z experiments. The GETs survived 
even a challenging water immersion test (Supplementary Video 1).

Graphene blood pressure measurement results
The BP data were gathered from N = 7 healthy individuals (more 
participants than previous works on emerging BP sensors21,22,24) in 

their mid-twenties with institutional review board approval. No 
individuals with hypertension were specifically selected for this 
proof-of-concept study. Thirteen GETs were placed onto each of the 
participant’s wrists: six on each artery (two injecting and four sens-
ing), and one reference GET. Over 100 pairs of identical GETs were 
used for testing and calibration, ensuring rigorous BP monitoring 
within this work. No skin irritation, damage, allergic reaction or 
redness were observed in GET–skin observations.

To capture the graphene Z-BP, the Bio-Z signals must be 
cross-correlated with the participant’s BP across a wide range. 
The participants thus performed various exercise manoeuvres to 
intentionally elevate their BP; namely, hand grip and cold pressor 
(HGCP), cycling on a stationary bicycle, and Valsalva manoeuvre 
(Supplementary Fig. 8). The first two routines elevate BP due to 
physical exercise, and the Valsalva manoeuvre is a classic clinical 
procedure to induce a rapid rise in BP due to the build-up of inter-
nal lung pressure43. The majority of the participants (N = 6) per-
formed a series of HGCP manoeuvres to elevate their BP gradually. 
After the initial baseline recording at rest, the participants exercised 
with a hand grip for 3 min, slowly raising their BP. To ensure an 
equally slow BP drop after finishing the exercise, the participants 
immersed their right hands into a bucket of ice-cold water for 1 min 
(Fig. 3a), a procedure known as the cold pressor test44. Following a 
resting period of ~3–4 min, the HGCP routine (Supplementary Fig. 
8) was repeated. A medical-grade BP monitoring device, Finapres 
NOVA, was used to measure the participant’s control BP during 
the experiments. On average, each participant underwent 4 ± 1 h 
of continuous BP monitoring. In total, we performed on average 
~2,500 ± 600 BP measurements per participant, which resulted 
in a total of 18,667 data points (Supplementary Tables 2–9). It is 
worth noting that to obtain clean reference BP recordings with the 
Finapres NOVA and acquire high-fidelity bioimpedance signals, our 
experimental routine was designed cautiously to minimize motion 
artefacts (Supplementary Videos 3 and 4).

Blood pressure model training and performance evaluation
The HGCP manoeuvre-induced patterns of DBP, SBP and MAP 
as measured via the GETs for one participant are shown in Fig. 3c.  
The same time traces of HGCP routines for all other partici-
pants can be seen in Supplementary Fig. 9. It is apparent that BP 
manoeuvres allow us to raise the DBP and SBP over broad ranges 
of 50–120 mm Hg and 100–180 mm Hg, respectively. Figure 3b 
shows the scatter plot of the Z-BP yielded from all six partici-
pants via HGCP-enabled training, covering DBP in the range of 
50–120 mm Hg and SBP in the range of 100–180 mm Hg, which is 
normal for healthy individuals during exercise. For one participant, 
the DBP and SBP values reached ~130 mm Hg and ~200 mm Hg, 
respectively. Such high BP might otherwise be considered hyper-
tensive; however, they were only reached for a short time during 
exhaustive exercise by a non-athlete; as such, it is considered nor-
mal45. The histogram plots of the DBP and SBP distributions for all 
participants can be found in Supplementary Figs. 10 and 11. Similar 
experiments were performed with a wristband of conductive dry 
metal Ag electrodes on the same participant (Fig. 3d). As can be 
seen, the graphene-enabled Z-BP features much better accuracy 
than the Ag wristband. According to the IEEE standard for wear-
able BP measuring devices46, the absolute mean error (m.e.) and 
standard deviation of the error (s.d.) are used here as the major fig-
ures of merit (m.e. ± s.d.), with additional standard deviations and 
95% confidence intervals provided in Supplementary Tables 4–9 for 
a better view of the data. The overall m.e. and s.d. of BP monitor-
ing via GETs are 0.2 ± 4.5 mm Hg (DBP) and 0.2 ± 5.8 mm Hg (SBP), 
compared with the values for the Ag wristband of 0.5 ± 5.0 mm Hg 
(DBP) and 0.5 ± 7.4 mm Hg (SBP). As per the IEEE standard46, the 
performance can be categorized as comparable to Grade A, the high-
est level of accuracy (Fig. 3e and Supplementary Fig. 12). Although 

Systole Diastole

Mean pressure

Systolic pressure

Diastolic pressure

B
lo

od
 in

flo
w

Time (a.u.)

Time (a.u.)

tpt

Δ
Z

ar
te

ry
Δ
Z

ar
te

ry

Interbeat interval

Peripheral artery pulse waveform

Recorded Bio-Z

Bio-Z1

Bio-Z2

70

80

90

100

110
B

P
 (

m
m

 H
g)

a

c

b

A
rt

er
y 

vo
lu

m
e

Minimum

Maximum

A
m

pl
itu

de

Fig. 2 | Correlation between arterial BP and bioimpedance. a, Illustration 
of the peripheral arterial BP pulse waveform (red) and correlated arterial 
volume40. The systole and diastole BP regions are highlighted in blue and 
yellow, respectively. b, The Bio-Z signal (violet) is reciprocal to the BP pulse 
waveform. c, Two Bio-Z signals recorded by two pairs of gETs are essential 
for calculating tpt and the interbeat interval, which are used for the machine 
learning algorithm. The complete machine learning regression analysis is 
based on four main features: the systolic and diastolic phases (upward and 
downward triangles), the maximum slope (rhombus) and the inflection 
point (circle).

NAtuRe NANoteChNoloGy | VOL 17 | AUgUST 2022 | 864–870 | www.nature.com/naturenanotechnology866

http://www.nature.com/naturenanotechnology


ArticlesNature NaNotechNology

the time trace (Fig. 3c) shows a slight deviation in Z-BP from the 
control BP, this represents long-term visualization of an emergent 
technology capable of high-speed and long-term (>45 min) con-
tinuous sampling of an individual’s BP with the highest accuracy. 
The Ag electrode wristband is also a bulky and intrusive device 
(Supplementary Fig. 13), imposing extensive forces on the skin to 
gain reliable recordings, and is therefore unsuitable for long-term 
monitoring.

It is worth noting that the six participants of different ages per-
forming the HGCP exercises had different body mass index (BMI) 
values, and we found no dependency between the Z-BP estimation 
accuracy and BMI (t-test: P < 0.05, Supplementary Fig. 14), indicat-
ing that Z-BP modality provides Grade A accuracy regardless of the 
experimental BMI range. In alternative exercises for BP elevation, 
five participants performed the Valsalva manoeuvre, and another 

participant performed treadmill cycling (Supplementary Fig. 15). It 
is evident that (Fig. 4a), in contrast to HGCP, cycling provides a 
shallow and less valuable data range for DBP and SBP: 55–75 mm Hg 
and 100–140 mm Hg, respectively. The Valsalva manoeuvre, on the 
other hand, with a much lower number of data points (the routine 
itself is quick), covers a reasonably wide range of the DBP and SBP: 
60–120 mm Hg and 110–180 mm H (ref. 43).

Besides the aforementioned experimental routines for elevating 
BP, we used different machine learning models of data regression47 
with adaptive boosting (AdaBoost, see Methods) as the basic tech-
nique35. AdaBoost handles ~50 features extracted from four Bio-Z 
signals (Fig. 2c, Methods and Supplementary Note 5) to train the 
machine learning algorithm. During training, these features were 
correlated with the control BP (measured via Finapres NOVA, see 
Supplementary Note 9) and the hidden network of decision trees 
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selected the best correlation features to follow. The training is typically 
done on shuffled HGCP data (Supplementary Fig. 16 and Methods); 
the original time trace is shuffle and split into ten equal parts. One 
part is then used for training and nine for testing, repeated ten times 
(that is, tenfold cross-validation analysis). The implementation of ten-
fold cross-validation allows the machine learning model to leverage 
a significant portion of the training data and avoid overfitting. After 
the training, the data were rearranged in the original time order. The 
shuffled machine learning algorithm for GET-enabled Z-BP results 
in accuracies of 0.2 ± 4.5 mm Hg (DBP), 0.2 ± 5.8 mm Hg (SBP) and 

0.1 ± 5.3 mm Hg (MAP), categorizing it as comparable to Grade A46. 
The same machine learning technique was used on the same data 
but without shuffling (Fig. 4b), meaning that the algorithm can be 
used online, during the data collection process, thereby accelerating 
the learning process. This algorithm results in lower accuracies of 
0.07 ± 7.15 mm Hg (DBP, Grade A) and 0.01 ± 8.9 mm Hg (SBP, Grade 
B), but still outperforms the Ag wristband (Fig. 4b).

Figure 4c shows the time trace of three Valsalva manoeuvre 
patterns performed consecutively, as measured via GETs and cor-
roborated with the Finapres NOVA. Surprisingly, the rapid Valsalva 
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training exercise with a low number of training data points yields 
noteworthy accuracies of 0.8 ± 6.1 mm Hg (DBP), 0.5 ± 6.9 mm Hg 
(SBP) and 0.3 ± 5.3 mm Hg (MAP), indicating that such a rapid rou-
tine could be used for reliable and accurate (Grade A) model train-
ing in the future. The time-consuming cycling training routine also 
resulted in superior BP estimation accuracies of 0.06 ± 2.5 mm Hg 
(DBP), 0.2 ± 3.6 mm Hg (SBP) and 0.0 ± 6.6 mm Hg (MAP) of the 
graphene Z-BP (Grade A), outperforming even medical-grade gel 
electrodes (Supplementary Table 1)35. The superb accuracy of BP 
estimation via cycling-enabled training can be explained by the 
shallow range of elevated BP during such exercise (not capturing 
elevated BP). The shallow BP range coupled with excessive motion 
during exercise makes cycling less suitable for actual model training 
in ambulatory conditions.

The main innovation of this work is the discovery that GETs in 
combination with bioimpedance can be used for continuous moni-
toring of BP in wearable and ambulatory conditions. This implies 
that participants can move freely and perform daily activities. In 
this context, after the HGCP training routines were complete, 
all participants were assigned to perform a set of activities (for 
example, walking, eating and strenuous workouts). Some selected 
participants went through an extensive sweat-inducing walk out-
side at 38 °C and others performed push-ups. It is worth noting 
that the GETs did not degrade electrically after exposure to light 
and heat or contact with water or sweat. After a workout, the par-
ticipants came back for post-exercise BP monitoring using the 
pre-built machine learning algorithm. The post-workout accuracy 
was slightly worse and the confidence interval was wider (Fig. 4b). 
Nonetheless, the overall accuracies achieved (3.6 ± 6.2 mm Hg for 
DBP and 1.65 ± 8.5 mm Hg for SBP) were comparable to Grade B 
of the IEEE standard46. Similar measurements were performed with 
the Ag wristband electrodes, yielding substantially inferior accura-
cies (Fig. 4b). The time traces of BP evolution for one participant 
going through a series of HGCP training events, then an hour-long 
break for eating and push-ups, followed by the repetition of a single 
HGCP pattern using the pre-trained model for BP validation can be 
found in Fig. 4d.

Furthermore, to highlight the advantages of our Z-BP modal-
ity, one participant’s BP model was built upon the training routine 
performed on day 1. The participant was then sent home and was 
free to perform daily activities for three days. On day 4, another 
set of identical GETs were transferred to the same participant and 
BP was estimated using the pre-built machine learning calibration 
data, while the control BP was recorded to corroborate the results. It 
was found that such a generic pre-built algorithm model for a par-
ticipant can be reused, providing sufficient (Grade C)46 accuracies 
of 4.6 ± 8.3 mm Hg (DBP) and 0.8 ± 11.8 mm Hg (SBP) (Fig. 3e and 
Supplementary Fig. 12). Such reuse is not possible with Ag/AgCl gel 
electrodes due to the large displacement of the electrodes over time, 
mechanical instability and drying35.

Besides extracting the essential BP features, the raw Bio-Z is 
rich with additional data that can be used to monitor other vital 
signs, such as breathing respiration rate30. Breathing is facilitated by 
lung volume increase, which in turn imposes undulating internal 
pressure onto surrounding objects, exerting a substantial influence 
on arterial BP30,37,48. Supplementary Fig. 17 summarizes the Bio-Z 
extracted respiration rate data, fast Fourier transformation analysis 
and time trace of the respiration rate changes measured continu-
ously with no additional signal recording. The same data used for 
BP estimation were used for respiration rate monitoring with a 
different post-processing algorithm (Methods and Supplementary 
Table 10).

Graphene Z-BP can be measured from any artery. Hence, 
we recorded the Bio-Z signals from the tibial and carotid arter-
ies and the jugular notch (Supplementary Fig. 18). Estimating BP 
from other arteries, especially those nearest to the heart, means 

that the central BP is recorded, which differs from the peripheral 
BP and bears additional useful information49. However, recording 
the central BP requires clinical studies and a catheter-based refer-
ence, which is highly invasive, but could be investigated in future 
clinical studies. Recording brachial BP from the wrist is technologi-
cally promising for next-generation soft wearable technologies. The 
dimensions of the designed tattoo array are thus within the size of 
modern wristwatches, making translation into a fully wearable tech-
nology possible in the future.

Conclusions
To conclude, we demonstrate an innovative proof-of-concept bio-
impedance platform to measure BP and blood flow by leveraging 
GETs that enable intimate location-stable contact with skin, yield-
ing an accuracy that exceeds previous reports. The accuracies of our 
Z-BP method were 0.06 ± 2.5 mm Hg (DBP) and 0.2 ± 3.6 mm Hg 
(SBP) for a cycling-trained machine learning regression model, and 
0.2 ± 4.5 mm Hg (DBP) and 0.2 ± 5.8 mm Hg (SBP) when an HGCP 
training routine was used. According to the IEEE standard, these 
values are equivalent to Grade A wearable BP measuring devices46. 
Hence, the accuracies of graphene Z-BP reported in this work, even 
post-workout, are suitable for accurate continuous BP monitoring. 
The reported graphene Z-BP outperforms contemporary Ag wrist-
band electrodes and wet Ag/AgCl gel electrodes (Supplementary 
Table 1). The significant advantage of leveraging GETs for the task is 
their intimate conformal contact with the skin (Supplementary Figs. 
19 and 20), requiring only a primary calibration and subsequent 
continuous usage. Furthermore, our system demonstrates a capac-
ity to run nocturnally with high fidelity without disturbing patients, 
which is not feasible with current obtrusive cuff-based monitors3,50,51 
or low-fidelity emerging cuffless BP monitoring solutions25,26 owing 
to motion-noise artefacts that decrease the machine learning model 
efficiency35. Deployment of the system with miniaturized integrated 
circuits, wireless operation and data storage capabilities in the context 
of a smart-watch solution are among the future steps for translational 
research to develop a fully integrated wearable system.
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Methods
GET fabrication. GET fabrication began with CVD growth of graphene on a 
copper foil or the purchase of CVD-grown graphene. To serve as a protective 
and permanent support layer, an ultrathin 200-nm-thick layer of polymethyl 
methacrylate (PMMA) was spin-coated on top of the graphene/Cu foil. Following 
a hard bake of the PMMA at 200 °C for 20 min, the stack was placed into a 0.1 M 
ammonium persulfate solution to etch the copper overnight. The PMMA/graphene 
stack was then transferred into fresh deionized water to clean the interface of the 
chemical residues. The process was repeated at least three times to ensure the 
complete removal of contaminants. Once ready, the PMMA/graphene stack was 
finally transferred onto the temporary tattoo paper32,34. The tattoo paper consisted 
of a specific resin-based coating that is slippery and anti-adhesive whenever wet, 
yet adhesive when dry. After the transfer and overnight drying, the graphene/
PMMA/tattoo paper stack was loaded into a mechanical plotter that cuts a  
specific shape for the future GET devices. After the cut was performed, the  
excess graphene/PMMA was removed, and the tattoo could then be transferred 
onto the skin.

Two graphene/copper pieces were required to fabricate a 2L-GET34. PMMA 
was spin-coated onto the first piece (A) and hard-baked at 200 °C for 20 min, while 
the second piece (B) was left pristine. Piece A was placed into copper etchant, 
then transferred into a deionized water cascade after the etch was complete (same 
procedure as before). This time, however, the bare piece (B) was used to ‘fish out’ 
piece A from the water, resulting in A–B turbostratic bilayer graphene on the 
copper foil. After overnight drying and an additional 200 °C, 10 min bake, the A–B 
bilayer graphene piece was placed into copper etchant again. After the second 
etching, it was transferred onto tattoo paper, as described above. It is important 
to note here that the resulting A–B stack of graphene is what we call the bilayer 
graphene; it is morphologically and electronically different from specifically 
CVD-grown A–B stacked bilayer graphene. 3L-GETs were fabricated in a similar 
manner, creating A–B–B stacked graphene layers.

The graphene transfer process was fast; it took less than 1 min to transfer an 
array of six (two injecting and four sensing) GETs (Supplementary Video 2). Two 
batches of six GETs were transferred onto each participant, one batch over the 
ulnar artery, one batch over the radial artery. The GETs were pre-designed and 
positioned with 8 mm pitch, allowing us to precisely control the spacing between 
GETs and reducing measurement variability.

Graphene–skin impedance measurements. Graphene–skin impedance was 
studied using the Hioki LCR meter IM3536, allowing a frequency sweep from 4 Hz 
up to 8 MHz. The frequency range used in this study, however, was narrowed down 
to 10 Hz–1 MHz. The measurements were performed in the constan-voltage mode 
and 50 mV a.c. amplitude with no d.c. bias. Each data point was measured four 
times and averaged. The frequency sweep was performed three consecutive times, 
each sweep taking approximately 90 s, with 10 s delay between sweeps.

Bio-Z measurement set-up. The variable part of the impedance, ΔZartery, typically 
minimal in amplitude (below or equal to 50 mΩ), represents the changes in 
blood volume in the artery, extracted by digital signal processing algorithms or 
high-quality detection of the arterial pulse signal. The low-noise multichannel 
Bio-Z sensing hardware, the so-called XL-board, was explicitly designed to capture 
the slight variations in Bio-Z with high resolution (Methods and Supplementary 
Figs. 21–23). A custom printed circuit board was designed to provide low-noise 
Bio-Z sensing for this study, as shown in Supplementary Fig. 21. The hardware 
was built around the ARM Cortex M4 microcontroller (MCU), which transfers 
the user-defined digital waveform to the a.c. current signal by passing a 16-bit 
digital-to-analogue converter (DAC, Texas Instruments). The MCU controls 
the frequency and amplitude of the current signal. In turn, the DAC generates 
an analogue signal used in a negative feedback loop on a low-noise operational 
amplifier (Texas Instruments) to generate an a.c. current signal with programmable 
amplitude and frequency (Supplementary Fig. 22). A series capacitor at the 
DAC output was used to circumvent the need for the injection of a d.c. current 
component into the human body. The signal from the impedance-sensing 
electrodes was filtered through a high-pass filter. To obtain the Bio-Z, we measured 
the voltage modulation associated with the injected current modulation. The signal 
was then amplified with a low-noise instrumentation amplifier. A high-precision 
analogue-to-digital converter facilitated the instrumentation amplifier output 
through an analogue anti-aliasing low-pass filter. The analogue-to-digital converter 
(Texas Instruments) sampled the voltage at a frequency of 93.75 kHz with 24-bit 
(0.3 μV) resolution to provide sufficient precision. The analogue front end and the 
MCU could simultaneously measure ten independent Bio-Z streams and various 
analogue readings. The analogue front end was powered up with a regulated ±5 V 
supply for digital and analogue operations. Injecting 1 mA with 5 V limit led to 
a suggested value of the maximum interface impedance of 5 kΩ, up to which no 
analogue front end saturation would occur. Above this impedance, we needed to 
decrease the injected a.c. current proportionally, decreasing the signal-to-noise 
ratio (SNR) proportionally of the measurements. Hence, current injecting 
electrodes of the lowest impedance are most suitable. In this study, the first four 
channels were selected for high-resolution Bio-Z sensing, and the fifth channel 
was reserved for simultaneous PPG readings used for syncing with the Finapres 

NOVA BP system. The sampled data were forwarded to a PC via the MCU and a 
high-speed USB bridge for signal post-processing. Supplementary Fig. 4a shows 
the block diagram of the multichannel Bio-Z measurement set-up. When recording 
Bio-Z signals, each participant wore additional sensors alongside the GETs: a BP 
brachial cuff and finger cuff (Finapres NOVA) and two PPG sensors. The two 
PPG sensors allowed us to precisely correlate the timing of the events between the 
XL-board and the Finapres device.

Experiments with human participants. The experiments with human participants 
were performed under the approval of the Institutional Review Board of the 
University of Texas A&M (IRB no. IRB2017-0335D). A total of N = 7 participants 
in their mid-twenties participated in this proof-of-principle study. One participant 
performed GET experiments with a cycling-enabled BP elevation routine. Six 
participants performed GET experiments with HGCP-based BP elevation. One 
participant performed both GET and Ag wristband experiments for direct 
comparison. Five participants performed the Valsalva manoeuvre for BP elevation, 
a series of mild exercises and post-workout HGCP model validation experiments. 
Each experimental routine lasted at least 4 ± 1 h on average. One individual HGCP 
pattern took ~450 s of continuous data collection, and an average of 5 ± 1 HGCP 
manoeuvre patterns were performed by each participant, comprising a total of 
~2,500 ± 600 samples (beats) used for algorithm training and ~250 ± 60 samples 
used for algorithm testing (see Supplementary Tables 3–9 for details of each 
participant). The Valsalva routines comprised an average of 300 ± 150 samples, and 
cycling routines consisted of ~615 samples that were considered for model training 
and testing.

Common mode rejection and signal cleansing with ground connection. Bio-Z 
sensing is a highly noise-susceptible operation. An additional common ground 
(GND) connection was established with the skin to reject the common mode 
noise elements and provide a stable reference for the instrumentational amplifiers. 
The location of the GND electrode was chosen arbitrarily, typically on the same 
forearm (Supplementary Fig. 6). This extra electrode placement resulted in 
amplification in the detected Bio-Z signal. Hence, the pulsatile activity became 
more prominent, as shown in Supplementary Fig. 23 (ref. 37).

Bio-Z signal processing. The signal acquired with the XL-board was bandpass 
filtered (second-order Butterworth) centred around the driving a.c. frequency to 
remove the residual d.c. offset, 60 Hz interference and high-frequency noise. Then, 
Bio-Z was extracted using simultaneous demodulation by multiplying the filtered 
signal by the injection signal generated by the MCU (Supplementary Fig. 4). The 
multiplier output was low-pass filtered (second-order Butterworth) with a cutoff 
frequency of 6 Hz to remove the carrier signal distortion and out-of-band noise 
while still allowing us to measure extreme maximum heart rates. The hardware 
was calibrated before the operation by measuring a known resistor’s impedance to 
convert the measured voltage to an accurate resistance value. The measurement 
system can measure impedance with a root mean squared error of less than 1 mΩ, 
which is much lower compared than the target Bio-Z variations.

Signal abstraction, feature extraction and BP regression model. Four 
characteristic points abstracted the recorded ΔZartery(t) signals for each heartbeat. 
The ΔZartery peak corresponded to the DBP, whereas the most pronounced minima 
corresponded to the SBP. The second smaller peak and minima in the middle 
of the cardiac cycle corresponded to the back reflection of the pressure pulse. In 
addition to SBP and DBP, we leveraged the aforementioned characteristic points 
to estimate the MAP. We extracted the reference MAP from the BP waveform by 
taking the area under the BP curve normalized by cycle duration. To effectively 
detect DBP, SBP and MAP, we used four characteristic points from all phases of 
the cardiac pulse of the ΔZartery(t) signal: (1) diastolic peak, (2) maximum slope, 
(3) systolic foot (SYS) and (4) inflection point. The diastolic peak and SYS were 
estimated using the intersection of the tangent to the slope with the horizontal line 
from the maximum and the minimum of the signal, respectively. The maximum 
slope was estimated as the point in the middle of the descending slope section. The 
inflection point was the maximum slope point between the second peak and the 
notch. The points were identified from the first and the second derivative of the 
ΔZartery(t) signal using the zero crossing, peak and foot points.

PTT, the time it takes for the pulse to travel between two sensing sites on one 
artery, was selected as one of our main features of the BP. BP has an inverse quadratic 
relation with PTT. The ratio between the amplitudes of SYS and the inflection point 
relative to the diastolic peak is a measure of the reflection wave’s intensity. The time 
interval between SYS and the inflection point measured the arterial stiffness, whereas 
the area under the curve represented the total peripheral resistance. All the features 
mentioned above were useful in modelling the arteries’ cardiovascular properties, 
and we used them to build our regression model for BP estimation. The characteristic 
points of the Zartery(t) signals mentioned above were used to generate as many as 
50 features for each heartbeat. The features were categorized into four sets, such as 
PTT, timepoint, amplitude and area. The PTT features were calculated from every 
possible pair of signals; other elements were computed from each signal individually. 
To smooth the data and filter out the beat-to-beat variations, we used window-based 
averaging (20 adjacent beats with a 50% overlap).
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For each model, the hyperparameters were selected by splitting the training 
data: 89% were used to estimate the model parameters, and the remaining 11% 
were used for performance evaluation. The hyperparameters of the AdaBoost 
model consist of the number of the decision trees and the tree depth, which were 
selected from 8 or 16 for the number of trees and 4 or 8 for the tree depth that 
achieved the lowest error in the validation dataset.

The DBP, SBP and MAP were finally estimated using an advanced regression 
model trained by the ΔZartery(t) features extracted and BP data measured 
simultaneously by a reference continuous BP monitoring device (Finapres, NOVA). 
Our method provided brachial BP values from the wrist pulse signals’ features as 
the regression training model used brachial BP data. To effectively estimate the BP, 
we needed to measure multiple values of both DBP and SBP during the training 
cycle. Therefore, such a training cycle usually consists of a series of exercises 
followed by a short relaxation state. Our participant-specific models (separate for 
SBP and DBP) were trained using a minimal number of training window samples 
for each participant, requiring careful model selection to avoid overfitting. We 
used the AdaBoost regression model based on ensemble learning that builds the 
prediction by combining several weak learners’ outputs through a weighted sum 
of different subsets of the training dataset. The BP estimation performance was 
evaluated through training and testing the BP models on different subsets of the 
data as follows. First, The HGCP data for each participant were shuffled and then 
divided into ten folds to apply cross-validation by training the model using 9 folds 
(90% of the data) and testing the model on the remaining fold (10% of the data) 
ten times by changing the testing fold each time to cover the whole data and avoid 
the bias for training the model with a certain part of the data (Supplementary 
Fig. 16). Once the training cycle and regression model were complete, we used 
the regression model to directly output the BP(t) from the measured ΔZartery(t). 
The performance of the models was evaluated using the average across all the 
ten folds of the BP’s root mean squared error. Second, the HGCP and Valsalva 
manoeuvre data for each participant were used for model training based on 
tenfold cross-validation, similar to the previous case but without shuffling to test 
capability of the the model to estimate BP for a continuous time segment. Third, 
each participant’s Valsalva data were the only data used for model training based 
on tenfold cross-validation without shuffling to measure the capability to train 
the model with a small amount of data. Fourth, the HGCP and Valsalva data only 
were used to train a single model for each participant, which was tested on the 
post-workout data to evaluate the BP estimation in the future and after a workout. 
Finally, for participant 1, a model was trained by the HGCP and Valsalva data that 
were collected on the first day, then the model was tested on HGCP data measured 
after 4 days to evaluate the repeatability of BP estimation after multiple days.

Respiration rate extraction. A digital sixth-order Butterworth bandpass filter was 
applied to the ΔZartery(t) signal with cutoffs at 0.05 to 0.5 Hz. The resultant signal 
contained the baseband information that is modulated by the respiration rate. To 
capture the continuous rate information from the baseband signal, the signal was 
segmented into 2 min windows. Fast Fourier transformation was applied for each 
segment, and the dominant frequency component was picked using peak detection 
in the plausible range of 0.1 to 0.5 Hz. This value was selected as the respiration rate 
in hertz and multiplied by 60 to obtain a respiration rate in breaths-per-minute. 
The algorithms used to acquire the respiration rate were implemented in MATLAB 
R2019b.

Ethics statement. The human participant BP measurements were performed  
under the approval of the Institutional Review Board of the Texas A&M University 

(IRB no. IRB2017-0335D). The tattoo characterization experiments were 
performed under the approval of the Institutional Review Board of the University 
of Texas at Austin (IRB no. 2018-06-0058).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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PhysioNet data repository at https://doi.org/10.13026/qcc8-n557. The associated 
preprocessed raw data are available and can be shared with interested parties upon 
reasonable request. Source data are provided with this paper.

Code availability
The machine learning algorithm is publicly available via GitHub at https://github.
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Sample size N=7 subjects have participated in the study. N=6 of the participants have performed HGCP experimental routine, which consists of at least 5, 
up to 7 repetitive sets of measurements. Each measurement set is split into 4-5 iterations, approximately 90 seconds each. The calibration 
Finapres Nova was running interchangeably, with measurements stopped every 15-20 minutes because of the pressure applied onto subject's 
finger, and time was given for subjects to ease up. N=5 subjects performed Valsalva maneuver and N=1 subject performed cycling exercise. 
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Each time the sweep was performed three times with 10 sec interval. 
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conditionally wrong collection of "training/true" data. When at rest conditions we saw the DBP values above 140 and SBP values above 160, 
those trials were excluded from the evaluation. 

Replication Each subject's BP and Bio-Z was measured at minimum 5 times, each with 4-5 iterations, approximately 90 seconds each. 
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Randomization Not applicable.

Blinding Not applicable.
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