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Abstract— Estimating physiological parameters - such 
as blood pressure (BP) - from raw sensor data captured by 
noninvasive, wearable devices rely on either burdensome 
manual feature extraction designed by domain experts to 
identify key waveform characteristics and phases, or deep 
learning (DL) models that require extensive data collection. 
We propose the Data-Driven Guided Attention (DDGA) 
framework to optimize DL models to learn features 
supported by the underlying physiology and physics of the 
captured waveforms, with minimal expert annotation. With 
only a single template waveform cardiac cycle and its 
labelled fiducial points, we leverage dynamic time warping 
(DTW) to annotate all other training samples. DL models are 
trained to first identify them before estimating BP to inform 
them which regions of the input represent key phases of the 
cardiac cycle, yet we still grant the flexibility for DL to 
determine the optimal feature set from them. In this study, 
we evaluate DDGA’s improvements to a BP estimation task 
for three prominent DL-based architectures with two 
datasets: 1) the MIMIC-III waveform dataset with ample 
training data and 2) a bio-impedance (Bio-Z) dataset with 
less than abundant training data.  Experiments show that 
DDGA improves personalized BP estimation models by an 
average 8.14% in root mean square error (RMSE) when 
there is an imbalanced distribution of target values in a 
training set and improves model generalizability by an 
average 4.92% in RMSE when testing estimation of BP value 
ranges not previously seen in training. 

Index Terms—Blood pressure, deep learning, dynamic time 
warping, guided attention 

I. Introduction 

ontinuous monitoring of physiological parameters 

throughout the varying contexts of patients’ daily lives 

enables the diagnosis of life-threatening illnesses in their early 

stages when they may not have been made through infrequent 

clinical measurements [1]–[5]. Noninvasive, wearable devices, 

such as smartwatches or smartrings, yield comfortable and 

continuous collection of physiological waveforms from which 

key health parameters are derived. Yet, estimation of some 

parameters – such as blood pressure (BP) - require non-linear 

modeling from the captured modalities due to evolving 
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morphological characteristics associated with personalization 

[6], aging [7], and overall health status [8]. Therefore, domain 

experts often develop task-specific estimation algorithms that 

depend on burdensome comprehensive feature selection from 

manually annotated waveform fiducial points – morphological 

characteristics that represent key physiological events [9]–[13]. 

Yet, gaining a deep understanding of  how novel wearable 

modalities describe human physiology requires laborious 

experimentation to ultimately determine the morphological 

characteristics from which feature sets should be extracted. 

Deep learning (DL) models alleviate these challenges with 

automatic feature extraction, although, optimization requires 

extensive data collection of a wide range of target values [14], 

which is impractical in the remote health-science domain. Thus, 

we propose a BP estimation framework leveraging minimal 

expert-knowledge (minimal expert annotation) to guide DL 

models’ training process ensuring domain-aware automatic 

feature extraction. Furthermore, our approach balances the 

fusion of task-specific and DL-based approaches to achieve 

personalized BP estimation, and enhance model accuracy and 

generalizability.  

Task-specific estimation models depend on expert 

understanding of the wearable waveforms to identify and derive 

the optimal set of features that can be mapped to the target 

physiological parameter. For example, with the BP estimation 

task, health-scientists have identified pulse transit time (PTT) 

or pulse arrival time (PAT) as a critical feature that captures the 

rate of blood flow throughout the body [15], [16]. In addition, a 

number of supplementary temporal and morphological features 

have been proposed and can be derived from fiducial points that 

represent key phases of the cardiac cycle (diastolic pressures, 

systolic pressures, and various reflections on arterial 

compliance) [17] – such as heart rate, interbeat interval, rise 

time, fall time, area under the curve, amplitude, etc. All of 

which, are input to various types of non-linear regression 

models for BP estimation [18]. Yet, the viability of specific 

feature sets does not necessarily generalize to all types of 

estimation models neither across patients. Such feature 

extraction may also lead to loss of information if the feature set 
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is not large enough to adequately describe the whole waveform.  

Alternatively, DL models have been proposed to achieve 

automatic feature extraction by iteratively analyzing a training 

dataset of sample waveforms without any required additional 

burden on domain experts to extract supplemental features. 

Particularly, architectures based on convolutional neural 

network (CNN) [19], recurrent neural network (RNN) [20], and 

transformer modules [21] have displayed a strong ability to 

capture spatial and temporal patterns of physiological 

waveforms that may not necessarily be inherently captured by 

the feature sets previously proposed and extracted by hand-

crafted algorithms [22]. In addition, attention mechanisms have 

shown significant improvements to this task by focusing model 

analysis only on the regions of the input which contribute the 

most to estimation of physiological parameters like BP [23]. 

However, if the size and variance of the training data set is not 

sufficient, deep learning-based architectures may learn 

secondary features that are overfit to target value samples that 

compose the majority of those seen in training, i.e. the mean of 

training samples (120/80 mmHg for BP). Thus, models may not 

generalize to predicting target values that exist in the minority 

region or were not previously seen in training. This 

phenomenon of the DL-domain is commonly referred to as bias 

in the training dataset toward the majority regions [24]. 

Guided attention is a proposed solution that  incorporates 

domain expertise into the DL training process to impose onto 

the models which features of the input should be used for 

prediction [25]. In the computer vision domain, this is often 

achieved by optimizing the learned attention maps that reflect 

which features of the input to the model has been identified to 

contribute the most to the output prediction [26]. In the context 

of an object classification task, this solution will encourage the 

DL model to focus most attention on the object to be classified 

as opposed to any background features present in the image. 

However, this type of solution does not directly translate to 

time-series data as model attention should not be focused onto 

one sample of an input waveform but rather will often need to 

consider the relationship across all points of the input. 

Furthermore, it has not yet been well established or studied how 

this knowledge is reflected into attention maps. Physics-guided 

neural networks are an alternative approach that introduces sub-

tasks for the DL associated with feature engineering. But, these 

approaches impose the models to learn specific feature sets that 

depend on domain-expertise as opposed to granting it total 

flexibility to discover optimal feature sets, thus limiting model 

capabilities [25], [27]. 

In this work, we propose a novel Data-Driven Guided 

Attention (DDGA) framework for optimally guiding DL 

models in training with minimal expert annotation – requiring 

the manual annotation of only a single (optimal) cardiac cycle’s 

associated waveform. We achieve a novel integration of proven 

signal processing techniques to enable researchers to 

communicate information to the DL-based estimation models 

to enhance performance through a novel Guided Attention 

solution that is best fit for time-series data. We train DL feature 

extraction and model attention components to be aware of key 

fiducial points in an input physiological waveform that are 

meaningful to BP estimation tasks as determined by domain 

expertise, however, we do not restrict them to learn specific 

feature sets from them. We grant the model enough flexibility 

to consider the whole input waveform to determine optimal 

features. Our method achieves a balance between domain-

specific feature extraction and automated learning while 

leveraging the corresponding benefits of each to yield enhanced 

personalized BP estimation and enhanced personalized model 

generalizability when testing over new ranges of BP out-of-

distribution from the training set target values. In testing, BP 

estimation is achieved with the optimized DL architecture that 

requires only the raw physiological waveforms collected by 

wearables. The contributions of this work are as follows: 

 

•  We propose a novel DDGA integration that incorporates 

minimal domain expertise into the DL model training 

process to improve the feature sets automatically 

extracted by them. 

 

• We introduce a Guided Attention solution that is best fit 

for time-series data types, where limited exploration has 

been conducted. 

 

•  We demonstrate the proposed DDGA framework’s 

ability to enhance personalized DL-based BP estimation 

models and their generalizability to out-of-distribution 

target values through experimentation with two datasets 

of distinct physiological modalities. 

II. RELATED WORK 

The most prevalent DL-based architectures proposed for 

analysis of physiological waveforms for BP estimation  - such 

as electrocardiogram (ECG), photoplethysmography (PPG), 

and ballistocardiogram (BCG) - include bi-directional long 

short-term (Bi-LSTM) neural networks [20], a combination of 

CNN and Bi-LSTM neural network layers with self-attention 

[23], and transformer (attention-based) layers [21], [28]. 

However, most previous work that specifically target BP 

estimation tasks incorporate supplementary pre-processing or 

feature selection based on domain-knowledge to guide model 

optimization. 

Previously proposed BP estimation frameworks have 

implemented hand-crafted algorithms to first segment ECG and 

PPG waveforms into cardiac cycles before extracting several 

waveform features that were ultimately analyzed by Bi-LSTM 

layers to capture their temporal information – referred to as 

multi-stage analysis [28]–[30]. Thus, heavily relying on 

domain-expertise and not leveraging the full benefit of DL-

based models. Similarly, a follow up work adapted a similar 

pre-processing step to segment PPG waveforms into cardiac 

cycles, however, leverage automatic feature extraction by CNN 

layers to the segmented waveforms as opposed to hand-crafted 

algorithms before analysis by Bi-LSTM layers [31]. Alternative 

BP estimation solutions do not require the pre-segmentation 

step for analysis and allow DL models to directly analyze time-

based windows of raw waveforms, yet jointly input 

supplementary features in an attempt to benefit from both types 

of approaches. Particularly, one type of approach inputs the 
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same morphological time- and frequency-domain features that 

earlier work have proposed in an attempt to guide DL of 

relevant regions of the raw ECG, PPG, and BCG waveforms 

[18]. Other approaches rather jointly input patient physical 

characteristics and other biometrics in an attempt to help 

estimation models generalize [19], [32]. However, all above 

approaches are still heavily dependent on expert knowledge to 

design robust feature extraction algorithms (which is not always 

feasible for novel wearable waveforms) and to identify the 

appropriate set of patient information to achieve high-quality 

BP estimation. More recent studies have leveraged multi-task 

driven approaches by training models to estimate both 

SBP/DBP simultaneously in an attempt to automatedly guide 

feature extractors to identify task-specific and task-agnostic 

embeddings without any hand-crafted pre-processing [22], 

[33]. However, they then fall short of leveraging any domain 

expert guidance thus still leaving them susceptible to the 

aforementioned challenges associated with learning-based 

models. In this study, we show that our proposed DDGA 

framework can leverage the benefits of DL’s automated feature 

extraction and guidance from minimal domain expertise, while 

analyzing only raw waveforms and without the need for 

additional hand-crafted pre-processing steps or the addition of 

supplementary features manually selected by domain experts. 

III. Methodology 

In Fig. 1, we show an end-to-end illustration of our proposed 

DDGA framework. First, only a single template waveform is 

manually selected by the researcher to represent the general 

case of the input physiological waveform morphology. Key 

fiducial points of the waveform that represent key phases of the 

cardiac cycle are annotated onto this template waveform only, 

where dynamic time warping (DTW) is then leveraged to 

compare the template to all other samples in the training dataset, 

identifying all fiducial points in each automatically without 

additional manual annotation. Then, Guided Attention is 

employed during estimation model optimization, where 

baseline DL architectures are taught to first identify where these 

key fiducial points exist in the input waveform before 

estimating BP – using the DTW annotations as labels. Finally, 

in testing the BP estimation model receives only the 

physiological waveforms collected by wearables as input, and 

is capable of identifying the key fiducial points without any 

annotated assistance before extracting the learned feature sets 

from training to map them to a strong BP estimation. In what 

follows, we describe the process of building this framework and 

achieving Guided Attention during the training process: 

annotating the signals (DTW) and training DL-based estimation 

models through Guided Attention. Our primary innovation of 

this work is the novel integration of strong independent signal 

processing techniques in such a way that enables researchers to 

communicate information into the DL architectures during 

training. We apply our model to two case studies (See Section 

IV): 1) on the MIMIC-III waveform dataset [34] to serve as a 

benchmark for performance under the standard BP estimation 

experimental settings with 5-sec windows of PPG as defined in 

previous work [18], [23]; and 2) on a bio-impedance (Bio-Z) 

dataset [17] under the beat-to-beat setting, which also contains 

less training data per patient to demonstrate DDGA’s improved 

optimization of DL models under this limitation.  

A. Data-Driven Annotation with DTW 

Annotating the key fiducial points for the Bio-Z and PPG 

waveforms analyzed was achieved with Dynamic Time 

Warping (DTW). This first involves the manual selection and 

annotation of a single template waveform that represents a 

single cardiac cycle and will be compared to all other samples 

for all other subjects/patients in the dataset. In Fig. 2 we show 

the two selected templates used in this study for a single PPG 

and a Bio-Z cardiac cycle with annotated onset, systolic, 

diastolic, max slope, and inflection fiducial points that reflect 

key phases of the cardiac cycle [17], [35]. For this study, 

template waveforms were selected manually by a domain 

expert as instances that adequately represent the general 

morphology of each modality with relatively minimal noise. 

This task requires only minimal understanding of how cardiac 

cycles are represented in the generated physiological modality, 

and only takes place once as the template may be reused for all 

subsequent patients’ data. Through this automated fiducial 

point annotation approach, our solution is able to leverage the 

benefits of domain expertise while almost removing all burden 

associated with hand-crafted design of feature extraction 

algorithms. In this work, the domain expert randomly 

 
 

Fig. 1.  End-to-end view of the Data-Driven Guided Attention Framework (DDGA) for personalized DBP/SBP estimation. 
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subsampled a manageable number of waveform instances to be 

reviewed for template selection. Alternatively, previous work 

leveraging DTW comparisons have generated template 

waveforms through ensemble averaging of multiple instances 

[36] present in a time window. However, since annotation is our 

primary goal and depends on precise sample-to-sample 

mappings, we chose the former approach to avoid any 

waveform corruption which could be associated with ensemble 

averaging. Furthermore, previous work that have evaluated 

DTW’s annotation strength have demonstrated this type of 

approach to be robust to evolving waveform morphologies due 

to both intra- and inter-subject variation [37]. The fiducial 

points to be annotated were determined based on those which 

are typically used for feature extraction in previous work that 

propose domain-specific BP estimation algorithms [17], [38], 

[39]. 

DTW yields the optimal sample-to-sample mappings 

between two waveform instances (Bio-Z or PPG). Given the 

designated template waveform, 𝑉 =  𝑣1, 𝑣2, … , 𝑣𝑀 where 𝑀 is 

its length, whose annotated fiducial point locations are tracked 

in 𝐹𝑉, and given an input waveform to be analyzed, 𝑋 =
 𝑥1, 𝑥2, … , 𝑥𝑇  where 𝑇 is its length, a distance matrix is 

constructed through a series of comparisons [40] 

 

𝑑(𝑥𝑡 , 𝑣𝑚) =  ‖𝑥𝑡 − 𝑣𝑚‖2
2 + 𝑚𝑖𝑛 {

𝑑(𝑡, 𝑚 − 1)
𝑑(𝑡 − 1, 𝑚)

𝑑(𝑡 − 1, 𝑚 − 1)
 (1) 

∀𝑡 ∈ (1, 𝑇), ∀𝑚 ∈ (1, 𝑀)  

  

Where 𝑑(𝑥𝑡 , 𝑣𝑚) describes the DTW comparison between 

the 𝑡𝑡ℎ sample of the input waveform and the 𝑚𝑡ℎ sample of the 

template. The distance is computed as the Euclidean distance, 

‖𝑥𝑡 −  𝑣𝑚‖2
2, added to the smallest adjacent comparison in the 

distance matrix. After all comparisons have been made, a 

warping path, 𝑊 =  𝑤1 , 𝑤2, … , 𝑤𝐾  where K is its length, is back 

traced to obtain the optimal alignment between the two 

waveforms where a given 𝑤𝑘 represents a sample-to-sample 

mapping. Starting from the last distance computation, we will 

define a shortest path towards the first by indexing the 

minimum adjacent values –  𝑑(𝑡, 𝑚 − 1), 𝑑(𝑡 − 1, 𝑚), and 

𝑑(𝑡 − 1, 𝑚 − 1). Last, annotation is ultimately achieved by 

identifying the points in 𝑋 that map to the fiducial points, 𝐹𝑉  ⊆
𝑋, according to the warping path. In Fig. 3 we visualize this – 

using Bio-Z as an example in this case although the approach is 

the same for the PPG waveforms. After the DTW distance 

matrix is constructed with all pairwise distances (grey), we can 

back trace it to obtain the warping path (red) which maps each 

waveform step to its optimal counterpart (such as visualized by 

the yellow point). Thus, by only requiring a single template 

 
 

Fig. 3.  a) Example DTW Distance Matrix with the mapped warping path (red) which yields the b) sample-to-sample 
optimal mappings between two waveforms. A given distance value (yellow) links the timesteps for each waveform as 
optimal counterparts. 

 
 

Fig. 2.  Cardiac cycle template waveforms with annotated fiducial points for a) PPG from MIMIC-III and b) Bio-Z. 
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cardiac cycle to be annotated by a domain expert, this approach 

completely automates the annotation of the remaining 

waveform instances. 

The Bio-Z  dataset was already segmented into its cardiac 

cycle waveforms when it was curated, therefore, the annotation 

implementation is straightforward as formulated above and we 

leverage the FastDTW [41] which optimizes standard DTW's 

runtime. However, for the PPG waveforms of the MIMIC-III 

dataset, since each instance is a 5-second window of waveform 

potentially representing multiple cardiac cycles, we leverage 

the Boosted-SpringDTW [37] framework which adapts DTW 

to first segment quasi-periodic physiological signals into 

cardiac cycles before then extracting the sample-to-sample 

comparisons. Particularly, this framework assigns a probability 

to each sample in the 5-second stream to describe the likelihood 

that each is a cardiac cycle endpoint (as formulated in the 

original work) 

𝑃(𝑒𝑡) = 𝑃(𝑐𝑡|𝑥𝑡) ∗ 𝑃(𝑑(𝑥𝑡 , 𝑣𝑚))                                 (2) 

𝑃(𝑐𝑡|𝑥𝑡) =  
𝑔𝑡 − min (𝑋′)

max(𝑋′) − min (𝑋′)
 (3) 

𝑃(𝑑(𝑥𝑡 , 𝑦𝑚)) =  𝑒−𝛾∗𝑑(𝑥𝑡,𝑦𝑚) (4) 

 

Where 𝑐𝑡 are candidate endpoints of 𝑋 if they are local minima 

points in the waveform, and they are scored according to the 

steepness of the immediately following max slope point 

detected in the first derivative of the physiological waveform, 

𝑔𝑡. Determining candidate endpoints is based on the basic 

understanding of how PPG is generated to reflect blood flow, 

therefore, 𝑃(𝑐𝑡|𝑥𝑡) can be considered the likelihood based on 

morphological characteristics of a given waveform. Then, 

𝑃(𝑑(𝑥𝑡 , 𝑦𝑚)) is the likelihood that leverages DTW. 

Particularly, 𝑑(𝑥𝑡 , 𝑦𝑚)  is the last distance computed at a given 

time step of the given waveform stream, and this reflects its 

current overall similarity to the template. This value should be 

minimized when a completed cardiac cycle has been 

encountered, therefore we progressively reward the distances 

with a monotonically increasing function such as the shown 

exponential function. Last, we identify the local maxima 

likelihood pairs that would define a detected cardiac cycle, 

𝑃(𝑒𝑡), while respecting the plausibility constraint that its 

expected length corresponds to the estimated local heart rate as 

obtained by the waveforms frequency components. Last, once 

segmentation is complete, annotation may be achieved as 

previously discussed using the distance matrix’s warping path.  

Further details regarding this method are found in the cited 

work which proposed Boosted-SpringDTW. This citation also 

includes sufficient experimentation which validates DTW’s 

viability for annotation tasks, and also demonstrates that high-

quality annotation may be achieved with single template 

initialization. For both Bio-Z and PPG, we used the first 

derivative of waveforms for comparison and normalized each 

instance to zero mean and unit variance.  

B. Guided Attention with Multi-Task Learning 

Guided Attention takes place only during the model training 

process to optimize its feature extraction and model attention 

components. In Fig. 4, we show a conceptual model of the 

proposed Guided Attention learning framework. We organized 

components of a DL architecture into that which is typically 

adapted by state-of-the-art BP estimation models a) Feature 

Extraction, b) Attention Mechanism, and c) Prediction, and 

later demonstrate improvement over several common 

architecture types (discussed more in the experiments and 

results section). The Feature Extraction component of the 

framework received only the waveforms as input to encode 

various waveform and time characteristics to a hidden state, and 

its output was then analyzed by the Attention Mechanism to 

identify critical regions and model dependencies across 

timesteps of the input. In traditional models, this output was 

then directly passed to the Prediction component of the model 

to map to the estimated BP values. However, for Guided 

Attention learning, the output of the Attention Mechanism was 

simultaneously fed to a separate output layer to predict the 

locations of fiducial points in the waveform inputs. That is, it 

was decoded to a binary vector of the same length as the 

waveform input, where a 1 indicates the location of a key 

fiducial point and a 0 indicates the location of a non-fiducial 

point. Here, the fiducial point annotations extracted with DTW 

are considered as the ground truth labels for this sub-task. Both 

tasks were optimized simultaneously in training with a joint 

 

 
Fig. 4.  Conceptual model showing the Feature Extraction, Attention Mechanism, and Prediction phases of a standard 
framework. DDGA is applied to the output of the Attention Mechanism to ensure that the modelled dependencies include 
those related to the key fiducial points. 

+ 
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objective function. This loss function was a combination of 

binary cross-entropy (BCE) for training the fiducial points, and 

mean squared error (MSE) for BP estimation. We chose MSE 

for regression optimization as opposed to other metrics since it 

is the most punitive loss function that would more rapidly 

encourage the model to balance all tasks. The joint objective 

function was then composed as 

 

 𝐿𝑗𝑜𝑖𝑛𝑡 =  𝜆1𝐿1 + 𝜆2𝐿2 +  𝜆3𝐿3 (5) 

   

where 𝜆1, 𝜆2, and 𝜆3 were multipliers assigned to each sub-task 

(1 for channel 1, 2 for channel 2 and 3 for BP estimation) in the 

joint loss function to convey to the DL model the notion of task 

importance.  

Guided Attention enables knowledge injection into the DL 

through the backpropagation process where model parameters 

are updated. First, each of the Prediction layers are updated as 

 𝜃1 = 𝜃1 +  𝛼 ∙ 𝜆1

𝜕𝐿1

𝜕𝜃1

 (6) 

 𝜃2 = 𝜃2 +  𝛼 ∙ 𝜆2

𝜕𝐿2

𝜕𝜃2

 (7) 

 𝜃3 = 𝜃3 +  𝛼 ∙ 𝜆3

𝜕𝐿3

𝜕𝜃3

 (8) 

   

where 𝜃1, 𝜃2, and 𝜃3 represent the Prediction layer parameters 

associated with each task, and 𝛼 is the learning rate. Then, the 

gradients of each are summed to each provide influence onto 

the Attention Mechanism as 

 

 𝜃𝐴 = 𝜃𝐴 +  𝛼 ∙ (−𝜆1

𝜕𝐿1

𝜕𝜃𝐴

+ 𝜆2

𝜕𝐿2

𝜕𝜃𝐴

+ 𝜆3

𝜕𝐿3

𝜕𝜃𝐴

) (9) 

   

where 𝜃𝐴 represents the Attention Mechanism parameters. 

Thus, all knowledge associated with each task is transferred 

through the computed gradients, and the Attention Mechanism 

will jointly consider all simultaneously while prioritizing tasks 

as imposed by the importance multipliers (𝜆1, 𝜆2, and 𝜆3). This 

formulation can support any additional or alternative loss 

functions that pursue optimization of classification and 

regression tasks. The addition or exchange for other sub-tasks 

would only require additional tuning of the associated 

multipliers to manage task importance.  

In this work, we estimate diastolic and systolic blood 

pressure (DBP and SBP) independently which is a common 

practice with traditional techniques due to distinct correlations 

amongst feature sets and DBP/SBP [42]. Furthermore, isolating 

DBP and SBP to separate estimation models further enhances 

the impact of Guided Attention during optimization since it 

alleviates the need to balance task importance for each sub-task 

by the model. The multipliers may be tuned to maximize model 

performance by ensuring that a balance is achieved to consider 

the key fiducial point identification sub-task as critical enough 

to necessitate high-quality predictions while still understanding 

that the main objective with greatest priority is the BP 

estimation task. Achieving this balance was especially 

important as the order of magnitude for 𝐿1, 𝐿2, and 𝐿3 for BCE 

and MSE are very different and are dynamic throughout 

training. This approach ensures that the set of features 

prioritized by the Attention Model will include those derived 

from the fiducial points.  

IV. EXPERIMENTS AND RESULTS 

We evaluated the impact of DDGA on three of the most 

prominent cuffless BP estimation and DL-based regression 

baseline architectures when analyzing two cuffless BP datasets: 

MIMIC-III waveform benchmark dataset and the Bio-Z dataset. 

We include MIMIC-III since it includes the standard conditions 

adapted in previous work and it is a benchmark dataset with 

ample training data. The input instances are 5-second windows 

of single-channel PPG data where each model aims to estimate 

the average BP value. In the contrary, the Bio-Z dataset contains 

novel physiological waveforms collected with an innovative 

wrist wearable technology, and it also possesses the conditions 

by which there is not necessarily an abundance of training data 

per subject. Each input instance contains two channels of Bio-

Z waveforms that represent a single cardiac cycle, where the 

aim is to estimate the corresponding BP value for it. We 

evaluate each baseline architecture before and after applying 

DDGA to estimate DBP/SBP independently for each dataset 

under two conditions: 1) traditional DL training using all ranges 

of BP available per subject, and 2) interpolation and 

extrapolation experiments where BP ranges were iteratively 

removed from each subjects’ training data to be used solely for 

testing. Thus, we are able to evaluate DDGA’s impact on the 

standard personalized BP estimation task and also on its ability 

to generalize to new BP ranges without calibration. 

Root mean squared error (RMSE) was used to evaluate the 

precision of each model since it is measured in the same units 

as BP – millimeters of mercury (mmHg). We also include the 

Pearson correlation coefficient to ensure that model predictions 

are increasing/decreasing accordingly with the various ranges 

of BP. This better reflects if a model is only learning to estimate 

the average values of the BP range observed in the training data, 

which is reflected with a lower correlation score. While these 

metrics were evaluated using all of the predictions and test data 

for each subject per each experimental setting, we also include 

the average change in RMSE and correlation per subject to 

measure the amount of impact DDGA yields per each 

personalized model.  

A. Cohort Selection for MIMIC-III 

The complete MIMIC-III waveform database consists of 

over 2.4k patients’ data while admitted into the intensive care 

unit (ICU) of varying demographics and varying degrees of 

health states. We defined 4 criteria to select a cohort of patients 

from this total set, based on 1) age, 2) health condition, 3) length 

of stay in the ICU, and 4) waveform quality. We selected 

patients between the ages of 18 to 65 in an effort to capture 

adults whose collected PPG waveforms maintain a strong 

reflection of cardiac activity. The age of 65 was determined as 

the upper bound since this is the age which chronic heart 

conditions begin to develop [43]. Next, we selected patients 

who were not suffering from a cardiovascular condition (such 

as myocardial infarction, hypertension, heart arrythmia, etc.), 

major internal hemorrhaging, or vital organ failure, to ensure 

that a strong relationship between the collected PPG waveforms 

and BP exist. Next, we selected patients whose ICU stay did not 
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exceed 3 days since it has been shown in previous research that 

mortality rates increase to 30% after a 3-day ICU stay and will 

continue to rise accordingly [44]. Last, we applied waveform 

quality constraints to these queried patients’ data [18]. They 

include a minimum stream length of 10 minutes to adequately 

capture some level of BP variation, flat line and flat peak 

removal, and waveform outlier removal based on a Hampel 

filter. 

Applying the above criteria yields 31 patients of this dataset 

to be included in the evaluation of these experiments. There 

were 13,636 valid cardiac cycles on average per patient where 

the maximum number of available instances for a patient was 

32,689, the minimum number of available instances for a 

patient was 3,068, and the standard deviation was 7,907. 

Therefore, this benchmark dataset provides a wide range of data 

availability conditions thus providing a thorough evaluation of 

each of the models to be compared in our experiments. 

B. Description of Bio-Z System 

The dataset used in this study is comprised of Bio-Z signals 

collected from 11 healthy participants under the IRB approval 

by IRB2017-0086D at Texas A&M University [17]. Bio-Z is an 

electrical signal which can be measured by injecting a current 

into the human body and capturing the voltage difference across 

the radial artery, thus yielding a two-channel waveform. The 

variation in Bio-Z corresponds to changes in blood pressure 

over time at the position where the sensor is placed. In order to 

capture a wider range of blood pressure during collection, 

subjects were asked to conduct physical activities during 

successive trials. After discarding regions of data collection that 

were corrupted due to noise or lack of sufficient contact of the 

sensor with the skin, there were 1,057 valid cardiac cycles on 

average per subject where the maximum number of available 

instances for a subject was 1,917, the minimum number of 

available instances for a subject was 440, and the standard 

deviation was 437. As observed, the amount of available 

training instances for this dataset is significantly less than that 

of the MIMIC-III benchmark dataset. Therefore, this dataset 

allows us to evaluate DDGA performance in the presence of 

two unique challenges: 1) when analyzing a novel physiological 

modality whose available domain expertise is relatively less 

than that of PPG, and 2) when the amount of training instances 

used for model optimization is very small. Both of which could 

potentially lead standard DL-based estimation models to 

underperform and fail to generalize.  

C. Baseline Architectures Tested 

We evaluated each model’s ability to estimate BP directly 

from input waveforms before and after applying our proposed 

DDGA on commonly-used deep learning architectures. We 

evaluate only neural network-based architectures that pursue 

automated feature extraction since they inherently do not 

consider domain knowledge. Applying DDGA to other types of 

machine learning solutions such as tree-based or SVM models 

would not be practical since feature extraction algorithms 

designed for these cases typically involve domain expert 

intervention for feature extraction, therefore DDGA 

optimization would not be necessary in these cases. Although, 

for comparison, we did include a multi-layer perceptron (EF-

MLP) baseline approach for each modality (PPG and Bio-Z) 

that uses feature sets obtained by extraction algorithms hand-

crafted by domain experts [10], [12], [17], [19], [28], [45]. The 

feature sets included time-, amplitude-, and area-based 

characteristics to describe the waveform morphologies (12 Bio-

Z and 11 MIMIC-III for each cardiac cycle). The MLP 

consisted of three dense layers with 2000, 1000, and 1 hidden 

units respectively. The automated feature extraction models for 

this experiment include: 1) Bi-directional Gated Recurrent Unit 

with Self-Attention (Bi-GRU+Attn) [23], 2) a hybrid 1-

Dimensional Convolutional Neural Network and Bi-directional 

Gated Recurrent Unit with Self-Attention (CNN+Bi-

GRU+Attn) [23], and 3) the Transformer [21] model. The first 

model inputs the raw waveforms into a single Bi-GRU layer 

with 64 hidden units, whose complete hidden matrix output 

corresponding to all time steps is received by a multiplicative 

self-attention layer and ultimately flattened and passed through 

a single output dense layer that maps the extracted features to a 

single estimated BP value. The second model includes the same 

architecture from the former but precedes it with three CNN 

modules composed of a single CNN layer (where the number 

of feature maps increases for each – 32, 64, and 128), a batch 

normalization layer whose output undergoes rectified linear 

unit activation, and a max pooling layer with a factor of 3. The 

third model first applies positional encoding of the raw 

waveforms before both are input into a 4-headed self-attention 

block consisting of the dot-product attention mechanism with 

head sizes of 64 units followed by layer normalization, where 

the output is flattened and passed through the single output 

dense layer which maps extracted features to the estimated BP 

value.  

Estimation performance was evaluated for each of the 

architectures before and after applying DDGA. The same 

networks were used for each BP estimation scenario (i.e., 

personalized, interpolation and extrapolation). Each model was 

trained for 50 epochs where validation error was tracked to store 

the weights of the epoch that yielded the lowest validation error 

– to then be used for testing. The standard implementation of 

the Adam optimizer was used with a fixed learning rate of 0.001 

for all architectures to ensure fair comparison, however, batch 

sizes were set as 128 for MIMIC-III and 16 for Bio-Z to adapt 

to the differing sizes in the number of training instances. The 

task importance multipliers (𝜆1, 𝜆2, and 𝜆3) were obtained 

through a grid search optimization where a pre-defined range of 

values, [0.05, 0.25, 0.5, 0.75, 1.0], were iteratively evaluated 

and the best performing combination was selected. However, 

the 𝜆1 and 𝜆2 multipliers which are applied to each channel of 

the same physiological modality (such as for Bio-Z) were set to 

the same value since fiducial point identification for each may 

be considered as one task together. 

D. Improved Personalized BP Estimation with DDGA 

The personalized models were individually evaluated using 

only a given subject’s data for training and testing, which is 

consistent with the formulation by previous work and has been 

shown to be the most effective approach for non-invasive BP 

estimation with wearables [17], [18], [22], [46]. For each, 80% 

of a subject’s data was set aside for training (10% of which was 

held out for validation), and the remaining 20% of data was 

used for testing. Therefore, there were no redundant samples 

present in both training and testing. These training and test 
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splits were used for both the implementation with and without 

DDGA for fair comparison. Furthermore, the Bio-Z data 

samples were shuffled before train/test splitting since all 

extracted input-output instances were standalone cardiac cycles 

– as there was no notion of time associated with each cardiac 

cycle. Therefore, we handle the MIMIC-III data samples in the 

same manner for consistency. It is only over the designated 

training data which waveform annotation and further Guided 

Attention were applied to optimize the DL architectures. In 

testing, only the optimized DL model is used to estimate BP – 

which receives only the physiological waveforms collected by 

wearables as input. 

In Table 1, we show DBP and SBP performance for each 

baseline architecture and for the improvement observed with 

DDGA for both datasets. First, we measure performance with 

respect to RMSE (and their 95% confidence intervals) and 

Pearson’s correlation coefficient (r), where we calculate by 

combining all test data together for all subjects. Then, we 

provide the average improvement to RMSE for each subject 

after applying DDGA to each baseline model. Thus, for the 

average improvement for RMSE, the more negative result is the 

superior performer. Although marginal, we observe 

improvements to each baseline architecture for the MIMIC-III 

dataset for both DBP and SBP up to 2.91%. For the Bio-Z 

dataset, we observe a much larger impact by DDGA compared 

to the MIMIC-III experiments. This is the case since the 

MIMIC-III dataset contains a much larger amount of training 

instances compared to the Bio-Z dataset. Furthermore, the 

ranges of BP values in the former are wider since the patient 

cohort may have contained ill health conditions. Therefore, 

DDGA observes further improvement with the Bio-Z dataset 

since the amount and variance of its training instances is more 

limited – which is the more practical scenario for future remote 

health monitoring tasks. Thus, DDGA helps the estimation 

models generalize. We observe improvements to all baseline 

architectures up to 12.5%, also achieving estimation 

performance competitive and in some cases better than those 

obtained with the benchmark dataset. Furthermore, we observe 

approximately twice the magnitude of BP estimation 

improvement for the average improvements per subject. 

Compared to the baseline approach that leverages extracted 

features, almost all DDGA architectures outperformed the 

baseline, thus confirming that leveraging both domain expertise 

and automated feature extraction yields higher precision. 

In Tables II and III we also show the fiducial point 

identification quality by each of the DL-based models 

TABLE I 
PERSONALIZED DBP/SBP ESTIMATION PERFORMANCE FOR BASELINE ARCHITECTURES WITH DDGA 

Dataset Model 

DBP SBP 

𝑹𝑴𝑺𝑬 

(𝒎𝒎𝑯𝒈) 

∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  
(𝒎𝒎𝑯𝒈) 

𝒓 
𝑹𝑴𝑺𝑬 

(𝒎𝒎𝑯𝒈) 

∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  
(𝒎𝒎𝑯𝒈) 

𝒓 

MIMIC-III 

EF-MLP 6.32 ± 9.18 - 0.79 11.33 ± 15.75 - 0.82 

Bi-GRU+Attn 5.82 ± 8.34 - 0.82 8.94 ± 12.74 - 0.89 

DDGA+Bi-GRU+Attn 5.73 ± 8.20 -0.13 0.83 8.68 ± 12.52 -0.27 0.90 

CNN+Bi-GRU+Attn 5.47 ± 8.07 - 0.85 8.69 ± 12.74 - 0.90 

DDGA+CNN+Bi-GRU+Attn 5.34 ± 7.89 -0.14 0.85 8.48 ± 12.14 -0.22 0.90 

Transformer 6.97 ± 9.73 - 0.73 12.14 ± 16.42 - 0.78 

DDGA+Transformer 6.89 ± 9.64 -0.05 0.74 12.07 ± 16.39 -0.08 0.79 

Bio-Z 

EF-MLP 5.21 ± 6.97 - 0.80 7.49 ± 9.93 - 0.78 

Bi-GRU+Attn 5.61 ± 7.42 - 0.72 7.80 ± 10.24 - 0.77 

DDGA+Bi-GRU+Attn 4.91 ± 6.19 -0.63 0.79 7.19 ± 9.06 -0.58 0.80 

CNN+Bi-GRU+Attn 4.93 ± 6.22 - 0.78 6.87 ± 8.73 - 0.82 

DDGA+CNN+Bi-GRU+Attn 4.32 ± 5.36 -0.54 0.84 6.63 ± 8.35 -0.24 0.84 

Transformer 5.19 ± 6.53 - 0.76 7.06 ± 8.97 - 0.81 

DDGA+Transformer 4.65 ± 5.79 -0.58 0.82 6.90 ± 8.67 -0.17 0.82 

 

TABLE III 
         ANALYSIS ON FIDUCIAL POINT IDENTIFICATION PERFORMANCE FOR BIO-Z 

Dataset Model 

DBP SBP 

𝑩𝑪𝑬𝟏
̅̅ ̅̅ ̅̅ ̅̅  𝑩𝑪𝑬𝟐

̅̅ ̅̅ ̅̅ ̅̅  𝑩𝑪𝑬𝟏
̅̅ ̅̅ ̅̅ ̅̅  𝑩𝑪𝑬𝟐

̅̅ ̅̅ ̅̅ ̅̅  

Bio-Z 

DDGA+Bi-GRU+Attn 0.706 0.707 0.706 0.707 

DDGA+CNN+Bi-GRU+Attn 0.707 0.708 0.707 0.708 

DDGA+Transformer 0.707 0.707 0.706 0.706 

 

TABLE II 
    ANALYSIS ON FIDUCIAL POINT IDENTIFICATION PERFORMANCE FOR MIMIC-III 

Dataset Model 

DBP SBP 

𝑩𝑪𝑬̅̅ ̅̅ ̅̅  𝑩𝑪𝑬̅̅ ̅̅ ̅̅  

MIMIC-III 

DDGA+Bi-GRU+Attn 0.706 0.706 
DDGA+CNN+Bi-GRU+Attn 0.706 0.706 

DDGA+Transformer 0.706 0.706 
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according to the annotations generated by DTW. This task was 

evaluated through BCE which is the same metric leveraged 

during joint optimization. Despite that we have imposed a lower 

task priority for fiducial point identification compared to the BP 

estimation task, each model maintains robust performance and 

generalizes in testing. However, it should further be noted that 

this does not reflect the annotation quality by DTW as this 

would require manual annotation of all dataset instances to 

create a ground truth. Furthermore, the aim of this work is to 

leverage “data-driven” approaches, thus we rely on the proven 

effectiveness of DTW in previous work to evaluate the overall 

contribution to Guided Attention which has been demonstrated 

through the improved BP estimation task – therefore we refer 

to the previous work for demonstration of annotation quality 

amidst evolving waveform morphologies [37]).  

E. Model Estimation in Various BP Regions 

Aside from general trends in BP estimation, we additionally 

evaluated performance in various ranges of BP. This analysis 

better captures DDGA’s ability to help DL models generalize 

to ranges of target values that existed in the minority regions of 

the training dataset (in other words, when moving away from 

the common 120/80 mmHg value). For the MIMIC-III dataset, 

the distribution of DBP values have a range from 50.1 to 119.9 

mmHg with a mean value of 65.9 mmHg and a standard 

deviation of 10.3, while the SBP value distribution has a range 

from 80.0 to 199.7 mmHg with a mean value of 124.8 mmHg 

and a standard deviation of 19.6. For the Bio-Z dataset, the 

distribution of DBP values have a range from 47.2 to 97.8 

mmHg with a mean value of 72.0 mmHg and a standard 

deviation of 7.96, while the SBP value distribution has a range 

from 81.9 to 159.9 mmHg with a mean value of 120.7 mmHg 

and a standard deviation of 12.1. Thus, the majority of 

DBP/SBP values per patient existed around the mean.  This can 

be harmful to DL-based models as it may cause them to overfit 

to this range of values by learning secondary features that do 

not necessarily allow its predictions to generalize.  

Each patient’s test data was sorted and split by distribution 

quartiles – 4 quarters. In Table IV, we provide the average 

improvement (per patient) in RMSE which DDGA provides to 

each baseline model for each bucket range of DBP/SBP, 

respectively. In general, we observe an overall improvement 

with DDGA for most cases, particularly to the lower and upper 

ranges (First Quarter and Fourth Quarter) that were 

underrepresented in training. 

F. Interpolation and Extrapolation 

To further evaluate the generalizability of such personalized 

models we conduct the interpolation and extrapolation 

experiments. Here, all data for each subject was sorted with 

respect to DBP/SBP value, then 10 mmHg bins for MIMIC-III 

and 5 mmHg bins for Bio-Z were segmented where each was 

iteratively held out as a testing set while the remaining bins 

were used for training. Bin sizes were set to 10 mmHg for 

MIMIC-III due to the range of BP values for each subject being 

approximately twice as large on average compared to those in 

the Bio-Z dataset. These experiments evaluate the quality by 

which each model can estimate BP values that were not 

TABLE IV 
ANALYSIS ON PERSONALIZED DBP ESTIMATION PERFORMANCE THROUGHOUT DISTRIBUTION QUARTILES 

Dataset Model 

DBP SBP 

Q1 Q2 Q3     Q4 Q1 Q2 Q3 Q4 

∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

MIMIC-III 

DDGA+Bi-GRU+Attn 0.02 -0.15 -0.48 -0.83 -0.44 -0.01 -0.61 -0.98 
DDGA+CNN+Bi-GRU+Attn -0.16 -0.07 -0.19 -0.48 -0.19 -0.20 -0.47 -0.20 

DDGA+Transformer 0.07 -0.04 -0.16 -0.32 -0.16 0.07 -0.10 -0.58 

Bio-Z 

DDGA+Transformer -1.14 -0.56 -0.31 -1.27 -0.43 0.21 -0.96 -1.50 

DDGA+CNN+Bi-GRU+Attn -0.55 0.20 -0.71 -1.15 0.01 -0.01 -0.24 -0.56 

DDGA+Transformer -0.83 -0.43 -0.42 -1.43 -0.36 -0.06 -0.15 -0.28 

 

TABLE V 
INTERPOLATION AND EXTRAPOLATION RESULTS FOR BIO-Z AND MIMIC-III DATASETS 

Dataset Model 

DBP SBP 

𝑹𝑴𝑺𝑬 

(𝒎𝒎𝑯𝒈) 

∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  
(𝒎𝒎𝑯𝒈) 

𝒓 
𝑹𝑴𝑺𝑬 

(𝒎𝒎𝑯𝒈) 

∆𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  
(𝒎𝒎𝑯𝒈) 

𝒓 

MIMIC-III 

EF-MLP 8.32 ± 10.38 - 0.64 12.80 ± 16.26 - 0.77 

Bi-GRU+Attn 10.15 ± 11.92 - 0.58 13.96 ± 6.76 - 0.72 

DDGA+Bi-GRU+Attn 9.33 ± 11.25 -0.75 0.65 13.45 ± 16.69 -0.44 0.74 

CNN+Bi-GRU+Attn 11.19 ± 12.76 - 0.56 17.28 ± 20.72 - 0.70 

DDGA+CNN+Bi-GRU+Attn 10.39 ± 12.19 -0.32 0.61 17.19 ± 19.84 -0.13 0.72 

Transformer 10.45 ± 11.94 - 0.22 14.72 ± 18.04 - 0.66 

DDGA+Transformer 10.26 ± 11.71 -0.15 0.26 14.59 ± 17.96 -0.09 0.67 

Bio-Z 

EF-MLP 8.34 ± 12.50 - 0.60 20.22 ± 35.87 - 0.41 

Bi-GRU+Attn 6.70 ± 12.20 - 0.63 9.17 ± 18.51 - 0.70 

DDGA+Bi-GRU+Attn 6.16 ± 12.28 -0.53 0.69 8.81 ± 18.50 -0.34 0.73 

CNN+Bi-GRU+Attn 6.18 ± 12.49 - 0.71 8.80 ± 18.76 - 0.74 

DDGA+CNN+Bi-GRU+Attn 5.90 ± 12.29 -0.34 0.72 8.23 ± 18.62 -0.62 0.77 

Transformer 5.80 ± 11.84 - 0.69 8.45 ± 17.70 - 0.71 

DDGA+Transformer 5.56 ± 11.71 -0.23 0.72 8.25 ± 17.71 -0.20 0.72 
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previously seen in training. For real-world scenarios, it is 

unlikely that the complete range of plausible BP values can be 

represented in training, especially for those that are solely 

associated with extreme health conditions. However, it is 

critical that these abnormal BP instances are captured to ensure 

the early detection of CVDs and life-threatening cardiac events.  

In Table V, we show DBP and SBP performance for the 

estimation model that leverages extracted features, each 

baseline architecture, and for the improvement observed with 

DDGA for both datasets. Prediction performance was evaluated 

holistically for all test bins for all subjects/patients and also with 

respect to the average improvement per each subject/patient 

after applying DDGA to each baseline model, similar to our 

previous experiments. The first baseline using extracted 

features achieved the best performance for the MIMIC-III 

dataset but underperformed for the Bio-Z dataset. This further 

highlights the impact of DDGA to improve model 

generalizability when the training dataset size and variance is 

not abundant. We observe overall improvements to all DL 

baseline architectures that analyze raw waveforms by up to 

8.1% for each dataset. Therefore, proving DDGA’s ability to 

generalize DL models to ranges of BP that were not previously 

seen in training. In Fig. 5 we show an example of the predicted 

bin of DBP values held out for various iterations of this 

interpolation and extrapolation experiment for the Bio-Z 

datasets overlaid over the predictions achieved by the 

traditional style of training conducted in Section 4.4 where all 

ranges observed in the test data were seen before in training. 

We observe strong agreement by the model under both sets of 

conditions. 

V. DISCUSSION 

Our experiments demonstrate DDGA improvements to 

personalized BP estimation for all three baseline architectures, 

and improve estimation precision for upper and lower quartile 

ranges of BP that were underrepresented in training. DDGA 

also provides improvements for interpolation and extrapolation 

experiments when select ranges of DBP/SBP values were 

removed from the training dataset and used solely for testing. 

Thus, DDGA proves its ability to prevent overfitting to dataset 

bias and enhances personalized model generalizability. 

Improved BP estimation despite the challenges associated with 

an imbalanced dataset is due to DDGA’s ability to ensure that 

the learned feature importance by the DL is meaningful to the 

underlying physiology and physics of the waveform – with 

minimal expert intervention. Moreover, for most scenarios, 

DDGA outperformed the EF-MLP estimation model which 

analyzes only extracted feature sets pre-defined by domain 

experts. As aforementioned, hand-crafted feature selection 

incurs burden to both time and effort while also limiting the 

scope of analysis by the estimation model. Therefore, the results 

reflect that granting the estimation model flexibility to analyze 

the whole physiological waveform while informing it of key 

physiological events to be more effective for BP estimation 

tasks.  In Fig. 6, we observe generated attention maps which 

reflect learned feature importance for the given input waveform 

samples by the model type before and after applying DDGA – 

each timestep in the waveform is scored where a score of 1 

signifies greatest importance and 0 signifies least importance 

for the instance. Attention maps are generated by taking the 

 
 

Fig. 5.  DBP estimation performance for a sample patient, comparing the test predictions by DDGA from the interpolation and extrapolation 
test in red and the predictions from the traditional training/testing approach by DDGA in the previous experiments from Section IV-D in blue. 

 
 

Fig. 6.  Comparison of attention maps for baseline models before and after DDGA. We observe high focus to few regions 
of the input waveform for the baseline models as opposed to after applying DDGA where we observe more distributed 
attention across the whole waveform and the key fiducial points. 
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gradient of each output prediction with respect to each timestep 

of the input as proposed in previous work [47]. For all cases 

where we observe a remarkable decrease in RMSE, we also 

observe learned feature importance scores that are more equally 

distributed to the regions of the waveforms that surround the 

fiducial points as opposed to the scenario before applying 

DDGA where model attention scores close to 1 surround only 

few regions of the input thus limiting the amount of information 

extracted from it. In future work, the efficacy of these generated 

attention maps may be evaluated for model interpretability. 

Comparing these to the identified fiducial points for an input 

physiological waveform may be used to provide a notion of 

estimation confidence or quality to the supervising healthcare 

provider. 

Limitations of this work include the lack of analysis on 

improved model generalizability with DDGA when testing over 

patients whose collected waveforms were not previously 

present in training. However, this scenario is distinct from that 

associated with developing personalized BP estimation models. 

Particularly, such generalizable models in the health-science 

domain depend on advanced calibration [48] or domain 

adaptation [22], [49] solutions which are beyond the scope of 

this work. Achieving a calibration-free estimation model that is 

robust to this scenario would be very desirable as it is not 

practical in the remote health monitoring scenario to collect 

samples from a newly encountered patient for retraining. In 

future work, we plan to explore DDGA’s generalizability to this 

setting. While the learned feature sets of DDGA might include 

some that are common or which were previously proposed for 

personalized modeling, we hypothesize that remaining features 

might better capture subject-independent characteristics due to 

the flexibility granted in the learning process. Furthermore, in 

future versions of DDGA, we plan to further enhance model 

generalizability by incorporating information from the learned 

attention maps into the training process – similar to how it has 

been done in previous work in the computer vision domain [26]. 

Particularly, they may be used to provide a notion of uncertainty 

as we may observe to which morphological characteristics the 

model chose to prioritize. This information may serve as 

additional feedback to the optimizer during training.  

VI. CONCLUSION 

In this work, we proposed a DDGA framework that 

incorporates minimal domain-knowledge into the automated 

feature extraction learned by DL models. Effectively, our 

solution consists of a novel integration that enables researchers 

to communicate information to the DL architectures through a 

Guided Attention approach best fit for time-series data types. 

With only a single template waveform cardiac cycle labelled with 

key fiducial points, our framework automatically annotates the 

remaining instances in a training dataset with DTW – which are 

ultimately used as labels for DL model optimization. Training a 

BP estimation model to first identify fiducial point locations in 

an input waveform encourages the model to learn to extract 

features that are supported by its underlying physiology and 

physics. Our experiments show DDGA’s improvements to 

personalized BP estimation models composed of three prominent 

DL architectures. Furthermore, our model increases personalized 

model generalizability to new ranges of BP not previously seen 

in training. DDGA enhances physiological parameter estimation 

with noninvasive, practical wearable devices that can provide 

longitudinal measurements throughout patients’ daily activities 

thus providing comprehensive diagnostic information to 

healthcare providers. 
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