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Abstract—Goal: To achieve high-quality comprehensive
feature extraction from physiological signals that en-
ables precise physiological parameter estimation despite
evolving waveform morphologies. Methods: We propose
Boosted-SpringDTW, a probabilistic framework that lever-
ages dynamic time warping (DTW) and minimal domain-
specific heuristics to simultaneously segment physiologi-
cal signals and identify fiducial points that represent car-
diac events. An automated dynamic template adapts to
evolving waveform morphologies. We validate Boosted-
SpringDTW performance with a benchmark PPG dataset
whose morphologies include subject- and respiratory-
induced variation. Results: Boosted-SpringDTW achieves
precision, recall, and F1-scores over 0.96 for identify-
ing fiducial points and mean absolute error values less
than 11.41 milliseconds when estimating IBI. Conclusion:
Boosted-SpringDTW improves F1-Scores compared to two
baseline feature extraction algorithms by 35% on average
for fiducial point identification and mean percent differ-
ence by 16% on average for IBI estimation. Significance:
Precise hemodynamic parameter estimation with wearable
devices enables continuous health monitoring throughout
a patients’ daily life.

Index Terms—Dynamic time warping, fiducial point, pho-
toplethysmography, interbeat intervals, wearable sensors.

Impact Statement—Boosted-SpringDTW enables the si-
multaneous segmentation of physiological signals into car-
diac cycles and identification of all desired fiducial points
that will lead to high-quality health parameter estimation.

I. INTRODUCTION

H EMODYNAMIC parameter estimation with wearable de-
vices enables continuous health monitoring in outpatient
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settings, thus granting diagnostic insight throughout varying
contexts of a patient’s daily activities. Not commonly cap-
tured in clinical settings, this information contributes to the
early detection of life-threatening illnesses, advanced fitness
tracking, and emotional regulation [1]. Precise parameter es-
timation depends on comprehensive feature extraction from
a stream of physiological signals continuously captured by
conveniently worn wearable devices. Furthermore, features are
extracted from distinguishable peaks, valleys, and slopes within
the waveform that depict key physiological events. For example,
photoplethysmography (PPG) waveform morphology captures
blood flow, which may be mapped to heart rate (HR), interbeat
interval (IBI), blood pressure (BP), and respiration rate (RR)
[2]. However, physiological waveform morphology is highly
sensitive to inter-subject and contextual variations that present
challenges to the heuristics pre-defined by previously developed
feature extraction frameworks [3]. Despite that such variations
may still be considered valid representations of cardiac cycles,
this variability may lead to inaccurate parameter estimation,
ultimately leading to unreliable health diagnoses. In this study,
we introduce a comprehensive feature extraction framework that
adapts to such morphological variations, ensuring high-quality
hemodynamic parameter estimations.

All physiological waveforms that capture blood flow or rep-
resent heart beats – including photoplethysmography (PPG)
[4], electrocardiography (ECG) [5], and bio-impedance (Bio-Z)
[6] – possess a quasi-periodic property corresponding to the
contraction and relaxation of the heart. Typical approaches for
parameter estimation and analysis, beginning with segmenta-
tion, often revolve around hand-crafted fiducial point detection
algorithms that are constrained by domain-specific heuristics
such as average cycle length or plausible amplitude values
[7]–[9]. Unless adaptive thresholding is carefully implemented
to consider all possible sources for morphological variation,
over time as patients age, vascular health evolves, or as the
algorithms are applied to new patients, such methods will
fail when faced with a variation that is not considered in the
general case. Filtering and transformation of the signals to
the frequency domain, such as with Hilbert or wavelet trans-
forms [10]–[12], are more robust, however, they still depend on
effective adaptive thresholding for task-specific identification
algorithms. Alternatively, machine learning and deep learning
[13]–[15] models do not require adaptive thresholding and
are robust to waveform variations, but require an abundant
labelled training dataset with high waveform variance that is
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Fig. 1. Overview of the proposed Boosted-SpringDTW framework that achieves comprehensive feature extraction through cardiac cycle segmen-
tation and fiducial point identification, a) first we combine domain-specific heuristics with morphology-based comparisons from DTW to achieve
cardiac cycle segmentation where ct are candidate endpoints, gt are the max slope amplitudes used to rank candidate endpoints, and dt,m is the
DTW distance between the stream and template waveforms, and b) we use the DTW sample-to-sample mappings to identify fiducial points – Onset
is the cardiac cycle endpoint, MS is the max slope point, and Sys is the systolic peak. We also introduce of a dynamic template that may adapt to
evolving morphologies.

not practical to obtain for patients whose data was not seen in
training.

Dynamic time warping (DTW) shows potential for simulta-
neously identifying all target fiducial points. This established
technique compares the likeness between two signals to pro-
duce sample-to-sample mappings between them without any
prior knowledge on the their underlying physics [16]. Thus,
it has been used for subsequence matching, feature extraction,
clustering, optimization, and signal quality index (SQI) tasks
[17]–[19]. Although it is a good candidate for the objective of
this work, in its original form DTW faces two critical chal-
lenges when segmenting a stream of data. First, quasi-periodic
physiological waveforms contain multiple meta-subsequences
that resemble the morphology of a complete cardiac cycle [20],
which is detrimental to segmentation tasks since incomplete
cycles might be detected. Second, when DTW depends solely
on a single template, waveform comparison quality will decline
when encountering extreme morphological variations. Although
additional innovations have been proposed to encode signal
characteristics to a feature vector that may overcome morpho-
logical variations [21], these approaches become impractical
to determine the optimal feature sets to be used for DTW
comparisons.

In this work, we propose Boosted-SpringDTW as an auto-
mated approach towards comprehensive feature extraction of
physiological waveforms. Particularly, our proposed framework
overcomes the aforementioned challenges associated with the
two common sub-tasks required for analyzing a stream of quasi-
periodic physiological signals: 1) segmentation into cardiac
cycles and 2) identification of all fiducial points. Given a single
template of a typical cardiac cycle, our framework conducts a
probabilistic decision-making process to precisely identify the
true start and endpoints within a waveform stream by leveraging
both minimum domain-specific characteristics of the physio-
logical signal and the generalizable intuitions of DTW. We also
propose a dynamic template that will automatically adapt to new
variations without domain expert intervention. Such automated

comprehensive feature extraction can contribute to the waveform
preprocessing steps required for prediction problems related to
remote health monitoring by extracting actionable information
from physiological signals collected by wearables.

Our contributions in this paper are summarized as follows:
� We introduce Boosted-SpringDTW which simultaneously

identifies all fiducial points of a given waveform stream.
� We propose a probabilistic decision-making process that

enhances DTW with minimal domain-specific heuristics,
thus enabling the analysis of quasi-periodic signals.

� We incorporate an automated dynamic template to adapt
to evolving morphologies.

II. MATERIALS AND METHODS

Boosted-SpringDTW – shown in Fig. 1 – achieves com-
prehensive feature extraction through two sub-tasks solved si-
multaneously: 1) cardiac cycle detection (segmentation) and 2)
fiducial point identification. The segmentation task leverages
minimal prior domain-knowledge of the target signal to first
identify all realistic candidate endpoints for each cardiac cycle.
Then, the true endpoints are distinguished by tracking DTW
distance scores within a reasonable search space constrained by
HR. Fiducial points are simultaneously identified based on the
sample-to-sample mappings. New templates are automatically
generated over time as the waveform morphology evolves. In
this study, we apply Boosted-SpringDTW to streams of PPG
waveforms, however, this approach is applicable to all types
of physiological waveforms. We validate the effectiveness of
our proposed framework when identifying fiducial points for
a physiological parameter estimation task with a benchmark
PPG dataset whose waveforms are impacted by subject- and
respiration-induced variation. The scope of this work includes
analysis of valid cardiac cycles’ waveform morphologies; there-
fore, we exclude those severely corrupted by artifact noise such
as those caused by motion.
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A. Cardiac Cycle Detection & Fiducial Point
Identification

Segmenting physiological signals into cardiac cycles involves
assigning a probability, P (et) to each sample, xt, in the given
stream of PPG waveform, X . This represents the likelihood in
which each sample is either a start or endpoint, et, of a cardiac
cycle (segment) computed as

P (et) = P (ct|xt) ∗ P (d (xt, ym)) (1)

where P (ct) is the likelihood based on the minimal domain-
specific heuristics which consider the underlying physics of the
waveform where ct represents a candidate endpoint in X , and
P (d(xt, ym)) is the likelihood based on morphology similar-
ity evaluated by DTW where d(xt, ym) is the DTW distance
between a given sample of X, xt, and a given sample of the
template waveform Y , ym. Furthermore, the DTW distances
that are typically monitored for subsequence matching in the
standard SpringDTW approach are “boosted” with the domain-
specific heuristic likelihood score to bring forward a probabilis-
tic decision-making process. We describe the computation of
each in the following paragraphs.

We detect the local maxima of a series of likelihood scores to
identify the time steps that are the true cardiac cycle endpoints.
Local maxima are defined by the dominant frequency, f ∗, of the
pulsatile signals, which corresponds to HR. Using a standard
Fast Fourier Transform (FFT) [22] to obtain , f ∗, we estimate
the average cardiac cycle length, lX , for windows of the input
batch with:

lX =
fs
f ∗ (2)

where fs is the sampling rate of X . In this study we used
1-minute batches to compute the average cycle length. The
batch length impacts the precision of the estimated lx, where a
smaller length yields precise estimations robust to fast changes
in HR. However, this requires frequent executions of FFT thus
increasing the overall runtime of the framework. On the other
hand, there should be at least two complete cardiac cycles
present in the batch to prevent detecting dominant frequencies
of incomplete meta-subsequences.
P (ct|xt) is the likelihood that the sample, xt, is a realistic,

candidate endpoint for the type of waveform being analyzed
based on understanding of the physiological processes that com-
pose it. For our experiments we use PPG, where we understand
that start and endpoints for all cardiac cycles can be characterized
by the onset point that immediately precedes the systolic fiducial
point. Therefore, the set of candidate endpoints, C, within a
given batch X includes all local minima and will be scored
based on the steepness of the immediately following peak.
(Discussion of cardiac behavior represented by PPG included
in Supplementary I.A.) This is formulated accordingly:

P (ct|xt) =
gt − min (X ′)

max (X ′)− min (X ′)
(3)

where gt is the value of the max slope point represented in the
first derivative as a peak point, as shown in Fig. 2. All values
in the first derivative of PPG are scaled to where the maximum

Fig. 2. Candidate endpoints are identified in the raw PPG signal and
are assigned a likelihood score based on the gradient of the following
peak.

value is 1 and the minimum value is 0 where the greater the
max slope of the onset following a candidate endpoint, the more
likely that it is a true endpoint. Understanding of cardiac cycle
endpoint features is the only prior domain-knowledge required
for this framework, and this concept is generalizable to all types
of physiological waveforms that measure blood flow.
P (d(xt, ym)) is the morphology-based likelihood – derived

from DTW – that each sample xt in X is a candidate endpoint
based on the comparison of each sample in the input stream
to all points in the template ym in Y , to compose a running
DTW distance matrix, D(X,Y ). Background material on DTW
included in Supplementary I.B. Since the Euclidean distance
of each sample-to-sample comparison is augmented with the
minimum distance most adjacent (or most recently computed)
in the distance matrix, we can consider the distance function
as causal, making the most recent comparison at any given t,
d(xt, ym), to be the most representative metric for similarity
between X and Y at that time. Furthermore, the smaller this
distance value becomes, the more likely the region we are
analyzing is a subsequence (or cardiac cycle). The likelihood
score is computed as follows:

P (d (xt, ym)) = e−γ∗ d(xt,ym) (4)

We leverage the exponential function as it is a monotonically
increasing function that will penalize large d(xt, ym) distance
values appropriately. We also use γ as a scaling factor to normal-
ize the distribution of likelihood scores to be easily comparable
with P (ct|xt), this scaling factor should be determined empir-
ically while considering the scale of DTW distance values and
the amount of influence which the resultingP (d(xt, ym)) should
carry on the final prediction task.

The search for true cardiac cycle endpoints occurs as DTW
distances are computed. The process begins at the first potential
ct, where we expect a corresponding et to exist around the next
lX time steps of the stream with the greatest P (et). By defining
two generalizable parametersα and β, we can define the amount
of tolerance surrounding lX that we will allow to detect an
optimal et. Here, α ∗ lX will be the minimum distance in time
steps after a potential ct, therefore if another candidate endpoint
occurs between the first candidate and lα = ct + α ∗ lX , then
the segmentation process will reset and this new point will
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Fig. 3. True cardiac cycle endpoints are identified as local maxima in
P (et) values within the search space constrained by an average cycle
length, lX , which is derived from local HR.

become the new potential cardiac cycle starting point. Then,
β ∗ lX will be the maximum distance after ct which a valid et
may exist, lβ = ct + β ∗ lX , where we will accept the candidate
endpoint with the greatest P (et) between lα and lβ as the true
et. If no candidate endpoint is detected in this region, then the
algorithm will reset to the next candidate endpoint after lβ . Here,
α and β may be tuned to impact sensitivity of the framework
but ideally the minimum distance should be large enough to
avoid the possibility of false positives (such as detecting a
dicrotic notch of the current cardiac cycle as et in PPG), and
the maximum distance should be greater than lX yet less than
the potential location of non-endpoint fiducial points (such as
the dicrotic notch in PPG) in the subsequent cardiac cycle. This
approach may be visualized in Fig. 3.

B. Automated Dynamic Template

We define the maximum number of templates allowed in the
ensemble, k, and initialize it with a prime template, Y ∗. Then,
analysis of an input waveform batch begins with the prime
template only. After feature extraction concludes for a region
of the batch with a predefined length of u, if there are less
than k templates in the ensemble then a new template will be
generated and added to it. This is accomplished by generating
a consensus sequence based on the cardiac cycles detected in
this region - using DTW barycenter averaging [23] – and its
fiducial points will be annotated by the prime template. Further
explanation of the composition of the consensus sequence is
provided in Supplementary I.C. While multiple templates exist
in the ensemble, each will conduct analysis over the region
independently and the average warping path distance, |wX,Y |,
between each detected cardiac cycle and each template will
be tracked. When all templates have completed their analysis,
the template which yielded the lowest average |wX,Y | will be
predicted as the optimal template, Yopt, which has achieved the
most accurate feature extraction for the set of detected cardiac
cycles. Last, for the case that there are k templates in the
ensemble and Y ∗ �= Yopt, then an update will be triggered and
the least frequently used template will be discarded from the
ensemble. Otherwise, if Y ∗ = Yopt, then an update will not be

Fig. 4. Non-exhaustive set of PPG cardiac cycle morphology varia-
tions that appear in the benchmark dataset.

triggered. This template update protocol is possible due to the
robustness of our cardiac cycle detection phase to at the least
be capable of identifying the true start and endpoints despite
that the fiducial point mapping could potentially be low-quality,
where an additional pass over the most recent segment may be
conducted with the newly generated template to achieve fiducial
point identification with greater precision at the small cost of the
additional time required to re-analyze the input batch.

III. RESULTS

We validate the effectiveness of Boosted-SpringDTW (single
and dynamic template) to achieve comprehensive feature extrac-
tion from PPG waveforms that are impacted by respiration- and
subject-induced morphological variations in the IEEE TBME
Respiratory Rate Benchmark Data Set [24]. Particularly, in the
previous work which introduced this dataset explains how PPG
is impacted by respiration-induced variation with respect to
amplitude (reflected pulse strength), intensity (changes in per-
fusion baseline), and frequency (effective HR) both within and
across subject data – all of which require frequent adapting of
algorithm thresholds to properly identify all waveform fiducial
points. Furthermore, each subject’s PPG data possesses a distinct
waveform morphology that may also evolve over time. Such
variations are best distinguished by the relationship amongst
each fiducial point within a cardiac cycle. In Fig. 4 we visualize
some prominent PPG morphological variations present in the
IEEE TBME Respiratory Rate Benchmark Data Set. The scope
of this study includes the proposed framework’s ability to ana-
lyze variation in valid cardiac cycles’ waveform morphologies;
therefore, we exclude instances severely corrupted by artifact
noise such as those caused by motion. The dataset includes 42
participants – 29 children and 14 adults. Signals are sampled at
300 Hz, and the PPG signals were preprocessed with a 4th order
Butterworth Bandpass Filter with cutoff frequencies of [0.5, 5].
We empirically determined Boosted-SpringDTW parameters α,
β, and γ to be set to 0.7, 1.3, and 5000. We compare performance
to two baselines – the original SpringDTW algorithm [25] and
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Fig. 5. Fiducial points to be identified and used for IBI estimation. The
onset points represent the start and end for each cardiac cycle, the max
slope point gives insight into the rate of change in blood pressure as
the heart contracts, and the systolic peak is directly correlated to the
maximum pressure of the blood flow through this region of the body after
it is pumped from the heart. Each of these fiducial points are commonly
used in the estimation of several physiological parameters, including IBI,
HR, HRV, BP, RR, and others.

adaptive thresholding. SpringDTW detects subsequence end-
points by tracking minimum d(xt, ym) distances over a stream.
Adaptive thresholding leverages amplitude and distance-based
heuristics to detect peak, slope, and valley features with PPG and
its derivative signals. [26], [27]. We then evaluate IBI estimation
with each of the identified fiducial points. To maintain a consis-
tent problem setting in this study, we analyze only solutions that
operate in the time-domain and that do not require training data
to tune model parameters.

A. Fiducial Point Identification

Fig. 5 shows the fiducial points identified for this experiment
that represent key events in the cardiac cycle [4]. We formulate
both a classification and a regression task where each sample in
a PPG stream is labelled as either a systolic peak (SYS), max
slope point (MS), cardiac cycle endpoint (EP), or a non-fiducial
point (NF); and precision is based on the reported timestamp.
All fiducial points were manually labeled with the assistance
of a python-based graphical user interface [28], yielding 27850
SYS points, 27843 MS points, 27926 EP points, 5964423 NF
points. Since there exists a significant class imbalance between
the number of NF points versus the number of SYS, MS, and
EP points, we include evaluation metrics that balance positive
predictions versus the types of negative predictions made by
each model to reflect when a method is overpredicting for the
majority class (NF points) [29]. The evaluation metrics include
precision, recall, F1-score, and root mean squared error (RMSE)
which are computed as follows

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2 · Precision ·Recall

Precision+Recall
(7)

RMSE =

√√√√ 1

F

F∑
i=1

(
T̂i − Ti

)2

(8)

where TP is a correctly labelled fiducial point, TN is a correctly
labelled non-fiducial point, FP is an incorrectly labelled non-
fiducial point, FN is an incorrectly labelled fiducial point, F is
the number of fiducial point observations,Ti refers to the ground
truth timestamp of a fiducial point, and T̂i refers to the predicted
timestamp of a fiducial point. These metrics were computed
for each class of fiducial points independently. When a given
method is overpredicting for the NF class, the recall score will
be low while a high recall score reflects the method’s ability
to distinguish between classes with high precision. RMSE only
compares time distances for positive predictions. Therefore, the
number of samples may vary for each algorithm. Table I shows
the scores for fiducial point identification performance for each
algorithm included in the study where Boosted-SpringDTW-ST
refers to using a single template and Boosted-SpringDTW-DT
refers to using the dynamic template.

B. Physiological Parameter Estimation

We evaluate the estimation of a well-studied physiological
parameter from the detected fiducial points, IBI, which is highly
regarded for health monitoring [30]. IBI is defined as the
time difference between consecutive heart beats and is com-
puted as IBIt = Syst − Syst−1 = MSt −MSt−1 = te − ts.
Therefore, since IBI is the beat-by-beat reflection of HR (where
HR is typically measured as an average of consecutive cardiac
cycles in a time window), analyzing IBI estimation quality
grants a fine-tuned insight into how HR impacts key fiducial
point identification. Ground truth IBI was extracted from the
dataset’s ECG waveform R peaks – also manually annotated. We
evaluate the estimation performance using mean absolute error
(MAE) in milliseconds (ms) and also using Pearson’s correlation
between the closest predicted IBI value in time and the ground
truth measurements with a maximum difference in reported
time of 1 second. We also included a plausibility filter for the
estimated IBI values where estimates that implied HRs below 18
beats per minute (IBI of 300 ms) or above 90 beats per minute
(IBI of 1500 ms) were discarded. This yields 25,874, 65,629,
79,451, and 79,464 valid IBI estimates for SpringDTW, adap-
tive thresholding, and the two proposed Boosted-SpringDTW
frameworks. Results shown in Table II indicate that fiducial point
identification performance is directly linked to the quality of the
resulting estimates for physiological parameters. In addition, in
Supplementary Tables I.E-I and I.E-II we analyze the IBI esti-
mation performance by Boosted-SpringDTW-DT per subject to
grant insight into the notion of inter- and intra-subject variability.

IV. DISCUSSION

Both versions of the proposed Boosted-SpringDTW frame-
work show strong performance for identifying each class of
fiducial points achieving scores over 0.949 for precision, re-
call, and F1. The improved F1 compared to the two baseline
algorithms are the best reflection of overall performance since
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TABLE I
FIDUCIAL POINT IDENTIFICATION PERFORMANCE

TABLE II
IBI ESTIMATION PERFORMANCE

Fig. 6. Generated dynamic templates for six subjects where the single template case achieved F1-scores below 0.95 for identifying MS yet the
dynamic template is able to achieve scores greater than 0.98. The dynamic template update protocol precisely captures intricacies of evolving
waveform morphology.

they represent the balance in TP, FP, and FN predictions. The
dynamic template also yields an additional 1-2% improvement
labelling SYS and MS points. Although the lowest RMSE values
were by SpringDTW, it should be noted that RMSE reflects an
average error of all predictions where this approach yielded far
fewer positive predictions compared to each evaluated method

for each fiducial point thus it was less susceptible to inherently
noisy predictions.

In Fig. 6 we show dynamic templates generated for six sub-
jects where the single template framework previously achieved
F1-scores less than 0.95 for identifying MS points yet we observe
scores over 0.98 with the dynamic template. This is due to the
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Fig. 7. Difference plots evaluating IBI predictions computing using all fiducial points detected by (a) SpringDTW, (b) adaptive thresholding, (c)
Boosted-SpringDTW-ST, and (d) Boosted-SpringDTW-DT.

Fig. 8. Challenges associated with d(xt, ym) trend saturation are
overcome with the P (et) endpoint likelihood score based on boosting.

dynamic template update protocol that adapts to new variations
in waveform morphology.

The top performers for IBI estimation with each fiducial
point are the two versions of Boosted-SpringDTW yielding
MAE scores less than 12 ms and correlation coefficients greater
than 0.98. We observe improved IBI estimation with SYS and
MS points when Boosted-SpringDTW leverages the dynamic
template, yielding a 28.5% improvement in MAE and a 2.0% im-
provement in the correlation coefficient values. In the difference
plots shown in Fig. 7c and Fig. 7d, for all approaches we observe
that error increases as IBI values become larger (indicating a
decrease in HR), thus reflecting that as the HR drops it becomes
more difficult to distinguish cardiac cycles. However, we observe
a smaller margin of error for Boosted-SpringDTW compared to
the two baseline approaches – observed in Fig. 7a and 7b –
and noticeably less outlier predictions when using the dynamic
template. Discussion on runtime analysis is in Supplementary
I.D.

Fig. 8 shows the trend of d(xt, ym) as it is computed over
a PPG stream for each time step and the associated endpoint

likelihood scores. The d(xt, ym) distances are greatest at the
very beginning of a waveform but will reach the local min-
ima when the first possible subsequence is encountered. How-
ever, despite the existence of more optimal subsequences, the
d(xt, ym) values will saturate and gradually continue to increase
since the distance at each subsequent step will accumulate over
time. Since SpringDTW targets sequence matching by detect-
ing local minima for d(xt, ym) it may be prematurely detect
incomplete cardiac cycles. Therefore, we show that Boosted-
SpringDTW’s likelihood scores better distinguish between a
sub-optimal subsequence and an optimal cardiac cycle.

An immediate follow up work for this study would be to
conduct rigorous stress testing to definitively evaluate the max-
imum levels of noise (such as motion noise) which Boosted-
SpringDTW is able to handle. Also, extending the analysis to
different modalities that may present new challenges would lead
to further development of Boosted-SpringDTW capabilities.
Furthermore, exploration into the value of this work to serve
as a preprocessing tool contributing to end-to-end prediction
frameworks. Particularly, Boosted-SpringDTW has the ability
to segment and annotate physiological waveform segments that
represent cardiac cycles which have been fed as input to pre-
diction models pursuing tasks such as physiological parameter
estimation [32]. Last, our framework is capable of providing a
notion of waveform quality for each segmented cardiac cycle
through its comparison to a template waveform – typically
leveraged to measure prediction confidence or uncertainty and
to be explored in future work.

V. CONCLUSION

In this work, we proposed Boosted-SpringDTW to perform
comprehensive feature extraction for remote health monitoring.
We enable the use of DTW for segmentation of quasi-periodic
signals and without the need for pre-defined thresholds by
combining the strengths of simple, minimal domain-specific
heuristics and the generalizable DTW signal analysis method.
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We overcame the challenges associated with morphological
variations in PPG with the notion of a dynamic template. We
validated performance by evaluating precision, recall, F1-score,
and RMSE performance when attempting to identify SYS,
MS, and EP points of a collected PPG signal induced with
variation in signal morphology due to inter-subject variability
and respiratory behaviors. The proposed framework achieved
superior performance for the fiducial point identification task
compared to the original SpringDTW implementation and to
the standard adaptive thresholding approach. This led to superior
IBI estimation by Boosted-SpringDTW frameworks.
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