
 

Hierarchical Signal Segmentation and 
Classification for Accurate Activity 
Recognition 

Abstract 

The objective of this work is to determine various 

modes of locomotion and in particular identify the 

transition time from one mode of locomotion to another 

as accurately as possible. Recognizing human daily 

activities, specifically modes of locomotion and 

transportation, with smartphones provides important 

contextual insight that can enhance the effectiveness of 

many mobile applications. In particular, determining 

any transition from one mode of operation to another 

empowers applications to react in a timely manner to 

this contextual insight. Previous studies on activity 

recognition have utilized various fixed window sizes for 

signal segmentation and feature extraction. While 

extracting features from larger window size provides 

richer information to classifiers, it increases 

misclassification rate when a transition occurs in the 

middle of windows as the classifier assigns only one 

label to all samples within a window. This paper 

proposes a hierarchical signal segmentation approach 

to deal with the problem of fixed-size windows. This 

process begins by extracting a rich set of features from 

large segments of signal and predicting the activity. 

Segments that are suspected to contain more than one 

activity are then detected and split into smaller sub-

windows in order to fine-tune the label assignment. The 

search space of the classifier is narrowed down based 

on the initial estimation of the activity, and labels are 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from 
Permissions@acm.org. 
 
UbiComp/ISWC'18 Adjunct, October 8–12, 2018, Singapore, Singapore  
© 2018 Association for Computing Machinery. 
ACM ISBN 978-1-4503-5966-5/18/10…$15.00  

https://doi.org/10.1145/3267305.3267528 

 

Ali Akbari 

Department of Biomedical 

Engineering 

Texas A&M University 

aliakbari@tamu.edu 

 

Jian Wu 

Department of Computer 

Science and Engineering 

Texas A&M University 

Jian.wu@tamu.edu 

 

Reese Grimsley 

Department of Electrical and 

Computer Engineering 

Texas A&M University 

reesul@tamu.edu 

 

Roozbeh Jafari 

Department of Biomedical 

Engineering, Computer Science 

and Engineering, and Electrical 

and Computer Engineering  

Texas A&M University 

rjafari@tamu.edu 

 

 

 

1596



 

assigned to each sub-window. Experimental results 

show that the proposed method improves the F1-score 

by 2% compared to using fixed windows for data 

segmentation. The paper presents the techniques 

employed in our team’s (The Drifters) submission to 

the SHL recognition challenge. 

Author Keywords 

Activity recognition; modes of locomotion; motion 

sensors; deep neural network; adaptive segmentation 

ACM Classification Keywords 

• Human-centered computing~Ubiquitous and mobile 

computing   • Computing methodologies~Supervised 

learning 

Introduction 

Recognizing daily human activities, specifically 

detecting modes of locomotion and transportation and 

identifying the transition time from one mode to 

another, with motion sensors is gaining a bold traction 

for mobile computing. Many critical applications, such 

as human-computer interaction, medical services, and 

context-aware services depend on accurate recognition 

of modes of locomotion and transportation. In addition, 

detecting transitions from one mode to another as 

accurately as possible can empower applications to 

react in a timely manner. For accurate detection of 

those human activities and identification of the 

transition between them, appropriate data 

segmentation and feature extraction is a crucial step. 

Activity recognition algorithms usually segment the 

sensor signals into fixed-size windows for the 

successive features extraction and classification, and 

they assign a single label to all samples within a 

window [1]. Various fixed window sizes have been 

utilized for signal segmentation targeting specific 

activities. An optimum window size depends on the 

characteristics of activity signals. Intuitively, splitting 

the whole data into large windows can potentially 

improve the performance of activity recognition 

compared to shorter ones as larger windows may 

include richer information about the activity signal. 

However, it increases misclassification when signals of 

two different activities fall into a single window because 

the classifier assigns only one label to the whole 

window; this happens at the moment of transition 

between the activities. Contrary to this, using small 

window size improves the ability to track the transitions 

quickly, but it might cause more misclassification, as 

some critical patterns may not be captured by short 

windows [2]. Considering this tradeoff, researchers 

usually determine the best window size by empirical 

methods and then keep it fixed through their analysis. 

To deal with the challenges above, we propose a 

hierarchical framework to incorporate multiple window 

sizes for recognizing modes of locomotion and 

transportation and detecting the transition time from 

one mode to another as accurately as possible by using 

a smartphone. We first propose a set of discriminative 

features to distinguish between modes of locomotion 

including walk, run, bike, car, bus, train, subway, and 

still. The feature set includes 1) orientation-

independent features, 2) generic time domain features 

suitable to detecting simple modes of locomotion, such 

as walking, that have a clear pattern of the signal, and 

3) specific frequency domain features to distinguish 

between challenging modes of motorized transportation 

that do not have a clear and distinct pattern of the 

signal in the time domain. A hierarchical approach is 

utilized to incorporate different window sizes for feature 

extraction and classification in order to benefit from 

their strengths. Large window sizes allow more 
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informative features to be extracted whereas small 

window sizes allow the transition between activities to 

be captured more precisely. The process begins by 

using a large segment of the data and recognizing the 

target class label using a primary classifier; then in the 

case that a transition is suspected, each segment is 

divided into smaller sub-windows, and the label is 

detected for each sub-window by another classifier. The 

classifier that runs on the sub-windows looks for a 

limited number of classes based on the decision made 

by the primary classifier. The experimental results show 

that this technique improves the performance of the 

system compared to using a single fixed window size 

for data segmentation. 

Background 

Detecting modes of locomotion and transportation can 

be considered as a particular case of activity 

recognition, which is a widely studied field within the 

wearable and ubiquitous computing communities [3]. 

Typical locomotion modes include different pedestrian 

modalities such as walking or running, non-motorized 

transportation, such as biking, and motorized 

transportation, such as bus, train or car [4]. 

Locomotion detection via smartphone sensors has been 

increasingly explored as they provide an excellent 

sensing platform for detecting motions ubiquitously and 

unobtrusively. Accelerometers are the most widely used 

sensor modality for detecting modes of locomotion.  

A number of researchers used accelerometers for 

detecting different pedestrian and non-motorized 

locomotion types, such as walking, running or biking 

[5, 6]. A novel accelerometer-based technique was 

presented for accurate and fine-grained detection of 

transportation modes using smartphones [4]. The 

authors improved the algorithm for estimating the 

gravity component of accelerometer measurements and 

presented a novel set of accelerometer features that 

can capture essential characteristics of vehicular 

movement patterns. To segment the sensors data, they 

used a sliding window with duration of 1.2 seconds. 

They stated that the length of the window was selected 

to ensure the system can rapidly detect changes in the 

transportation behavior of the user. However, using 

such a small window, they got low accuracy in 

distinguishing between bus, train, metro, and tram. 

To overcome the issue with fixed window size, 

researchers have proposed adaptive sliding window 

segmentation techniques [1].  This paper presented a 

novel approach to activity signal segmentation for 

recognizing human activities. In this study, the window 

size was adaptively adjusted to achieve the most 

effective segmentation based on the probability that 

the signal belongs to a particular activity class. In 

addition, an activity transition diagram was developed 

to validate the activity transition and improve 

recognition accuracy. They started with 3-second 

windows, and if they detected that a window contains a 

transitional activity, they expanded the window size 

until getting the most confident decision from the 

classifier. They measured the confidence of the 

classifier based on the likelihood that a signal belongs 

to a particular activity. In another study, an adaptive 

time window method was proposed to extract features 

from quasi-periodic signals for activity recognition [7]. 

They detect changes in activity and take the beginning 

and end time as segmentation boundaries. However, 

their technique worked only for signals that have 

periodic patterns, such as walking. 

SHL dataset and task description  

This paper presents the techniques employed in our 
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team’s (The Drifters) submission to the Sussex-Huawei 

Locomotion-Transportation (SHL) recognition challenge 

at the HASCA Workshop at Ubicomp 2018. The goal of 

this challenge is to recognize eight modes of locomotion 

and transportation activities from the inertial sensors’ 

data of a smartphone. The activities that must be 

recognized are still, walk, run, bike, car, bus, train, 

subway.  The SHL dataset used for this challenge 

comprises 271 hours of training data and 95 hours of 

test data [8]. The data is recorded by a Huawei Mate 9 

smartphone attached to the right front pocket of a 

single participant in 4 months. The orientation of the 

smartphone is not necessarily fixed. The participant 

performed the activities on a daily basis (approximately 

5-8 hours per day) with the phone logging the sensors 

data. The data include readings from 3D accelerometer, 

gyroscope, magnetometer, and ambient pressure 

sensor as well as linear acceleration, gravity, and 

orientation (represented in quaternion form). Data is 

collected from all sensors at the frequency of 100 Hz. 

All data samples are labeled. For both training and 

testing dataset, the whole data is segmented with a 

non-overlapped sliding window of 1-minute length. 

After segmentation, the order of the frames are 

randomly permuted, so there is no temporal 

dependency among the frames. The average F1-score 

over all the activities is used to evaluate models. 

Method 

Figure 1 shows our proposed framework for recognizing 

modes of locomotion and transportation and identifying 

the transition time between them in this study. We 

start by segmenting the sensors data into relatively 

large fixed windows, extracting features, and 

estimating one out of the eight labels for each window 

(i.e. coarse-grained classification). If a transition from 

one activity to another one is guessed within a window, 

we divide the initial window into smaller sub-windows 

and use a limited version of the classifier to fine-tune 

the labels for the samples inside that window. Finally, a 

label arbitrator module modifies the labels that are 

estimated by the classifiers by taking into account the 

logical order of the activities (i.e. fine-grained 

classification).  

Feature Extraction 

To recognize human activities, signal segmentation is a 

crucial stage because it has a direct impact on the 

quality of feature extraction and classification accuracy 

[9]. Windowing approaches are typically used for 

segmentation. In this approach, a classifier assigns one 

label to all the samples inside a single window. The 

optimal window size varies depending on the 

characteristics of activity signals. Generally, smaller 

window size allows for faster activity detection and 

reduces required resources and energy; however, using 

smaller window size may lead to missing vital 

information about an activity, especially in case of 

complex activities such as modes of transportation. 

Thus, large windows are normally considered for the 

recognition of complex activities. However, by using a 

large window size, within a single window, we may 

capture a signal that belongs to more than one activity. 

Since the classifier assigns only one label to all samples 

of the window, this leads to a drop in accuracy. 

To find the best window size to start recognizing modes 

of locomotion and transportation, we extract features 

from different window sizes and compare the accuracies 

of the classifiers trained on them as shown in Table 1. 

It can be seen in Table 1 that 30-second window gives 

the best performance. It is worthwhile to mention that 

reducing the window size did not affect the accuracy of 

Figure 1: Workflow of the 

proposed method 
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detecting activities such as walking, running, and biking 

that involve significant movement of human limbs. 

Reduction in the window size mainly decreased the 

performance of distinguishing between modes of 

transportation including bus, car, train, and subway. 

The process starts by extracting features from 30-

second windows as this window size gives the best 

performance. The data is segmented into 30-second 

windows with no overlap and features are extracted to 

train the primary classifier.  

Afterward, in case of detecting a probable transition in 

the activity within a 30-second window, the window is 

divided into 15-second and 5-second sub-windows and 

again the same features are extracted to further fine-

tune the labels (see “Fine-tuning the labels” section). 

Table 2 lists the features we used in this study, 

including the feature name and feature dimension. 

These are all well-known time-domain features for 

activity recognition [10]. The features are extracted 

from each axis of each sensor modality (i.e., 

accelerometer, gyroscope, magnetometer, pressure 

sensor, linear acceleration, gravity, and quaternion) 

separately. In addition, the same set of features are 

extracted from the magnitude of each signal to remove 

the effect of sensor orientation [11]. For every sample, 

the magnitude is calculated as L2-norm of 3D signal. 

One challenge is that the modes of transportation 

including bus, car, train, and subway may have similar 

patterns of time-domain signals, so they cannot be 

distinguished by aforementioned features. However, 

given the SHL dataset, we observed that the amount of 

vibration could vary among different vehicles, and this 

can be captured by the frequency components of the 

acceleration signal as shown in Figure 2. The figure 

illustrates an example of how the power spectrum of 

the magnitude of the acceleration for different modes of 

transportation varies from each other. Therefore, to 

distinguish between those activities, we added a 

complete set of frequency-domain features including 

the power of the signal lying in different frequency bins. 

As we observe some high-frequency components in 

activities such as train and bus, we did not filter the 

signal since it may cause losing valuable information. 

We take the power of the signal lying in the ranges 0-1 

Hz, 1-2 Hz and so on up to 25 Hz as features. 

Finally, all the features are normalized to have mean of 

zero and standard deviation of one. 

Classification with Deep Neural Network 

Different types of machine learning algorithms have 

been used for activity recognition, among which neural 

networks have several interesting properties that 

motivate us to choose it for the current task. First, the 

feature selection and classification can be embedded 

into a single multilayer neural network. Through the 

training process, the weights of the neurons in the first 

layers of the network learn to scale the important and 

informative features and ignore less informative ones. 

Second, they can estimate the probability of each 

activity to be true. In fact, to recognize n different 

activities, a neural network has n neurons in the very 

last layer, and each of them corresponds to one activity  

and outputs the probability of that activity to be true. 

This property can be leveraged to assess the confidence 

of the classifier. Third, it is fast and efficient even when 

working with high dimensional data. Feed-forward 

neural networks, typically with multiple hidden layers, 

have been widely used for classification and regression 

tasks [6, 12]. It has been shown that increasing the 

number of layers (known as the depth of the network) 

can significantly increase learnability and decrease the  

 

 

 

Window size F1-score 

1 minute 94.4 % 

30 seconds 95.56% 

20 seconds 94.82 % 

15 seconds 95.17 % 

Table 1: Comparing the effect of 

window size on performance 

Feature name 

D
im

e
n

s
io

n
 

Mean 1 

Variance 1 

Standard deviation 1 

Root mean square 1 

Mean crossing rate 1 

Zero crossing rate 1 

Skewness 1 

Kurtosis 1 

Entropy 1 

AR coefficients 

(order 10) 
10 

Integration 1 

Signal magnitude 

area 
1 

Band power  25 

Table 2: Features 
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Figure 2: Example shows how power spectrum of magnitude of acceleration varies among different modes of motorized transportation 

number of required neuron units (i.e., the number of 

trainable parameters) in each layer [13]. In the current 

study, we use a deep neural network (DNN) with three 

fully connected layers and feed the extracted features 

to this network. The detail of the neural network can be 

found in Table 3.  

The primary classifier (see Figure 1) is supposed to 

recognize one of 8 modes of locomotion and works with 

features that are extracted from 30-second windows. In 

addition to the primary classifier, we train multiple two-

class classifiers to distinguish between every pair of 

activities. For every possible pair of activities, two two-

class classifiers are trained; one with features that are 

extracted from 15-second windows and one with 

features that are extracted from 5-second windows. 

These classifiers operate when the primary classifier 

detects two different labels for two consecutive 

windows (next subsection). They are useful to capture 

the moment of transition between the activities more 

precisely. The intuition behind using two-class 

classifiers instead of eight-class is the fact that by 

extracting features from shorter windows, it would be 

very challenging to distinguish between 8 classes; so 

the decision made by the primary classifier is used to 

narrow down the search space for the classifier that 

works with 15-second and 5-second windows. Two-

class classifiers have the same architecture as the 

primary classifier (Table 2) but in the last layer they 

have 2 neurons corresponding to two activities. 

The well-known ReLU function is used as the activation 

function for the first two layers of the neural network in 

order to fuse the features and pick important

 

 

 

 

 

 

Layer # of 

neurons 

Activation 

function 

Fully-

connected_1 

200 ReLU 

Fully-

connected_2 

64 ReLU 

Fully-

connected_3 

8* Softmax 

* It is 2 for two-class classifiers 

Table 3: Detail of the neural 

network 
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Figure 3: Hierarchical segmentation to fine-tune the labels for windows in which the activity change. The two class-classifier only looks 

for the labels that are initially determined by the primary classifier. 

information out of them [14]. The Softmax activation 

function is used in the last layer of the neural network 

to perform classification (Equation 1).  

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐶
𝑗=1

 (1) 

Equation 1 shows the Softmax where xi is the ith input 

to the function and C is the total number of the inputs, 

which, in the case of classification, is equal to the total 

number of classes. The output of the Softmax function 

is a value between 0 and 1 and the total sum of the 

outputs is equal to 1. The output of this function is 

equivalent to a categorical probability distribution. In 

other words, it indicates the probability that any of the 

classes are true. Dropout technique is also utilized to 

reduce the chance of overfitting. The key idea of 

dropout is to randomly  deactivate some units (along 

with their connections) in the neural network during 

training [15]. This deactivation prevents the units from 

co-adapting too much and improves generalization 

because it forces the layers to learn the same concepts 

with different neurons. However, during the prediction 

phase, the dropout layer is deactivated. 

Fine-tuning the labels  

Although extracting features from larger windows (30-

second in this study) gives better accuracy in 

recognizing the activities, especially for modes of 

transportation, it may lead to a higher error for 

windows that contain more than one activity (i.e., 

transition from one activity to another). To alleviate 

this issue and to more accurately label samples near 

activity transitions, we propose a hierarchical signal 

segmentation and classification algorithm as shown in 

Figure 3 that enables a multi-windowing approach for 

data segmentation.  

We divide a one-minute segment of the data into two 

non-overlapping 30-second segments. It should be 

mentioned that in the given dataset for this challenge, 

the whole data is segmented into one-minute windows, 

and the windows are randomly permuted. As a result, 

there is no temporal dependency between windows, so 

one minute is the largest segment of the data we can 

1 2 Two consecutive 
30-second 
windows 

Primary 
classifier 

  

Two-class 
classifier 

If two consecutive windows 
have different labels or 

confidence of the classifier is 
less than the threshold 

Two-class 
classifier 

The search space is limited 

by the decision made by the 

primary classifier 
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work with. The features are extracted from two 

consecutive 30-second windows and a primary DNN 

classifier estimates the labels for each window. Based 

on the labels and the probabilities that are generated 

by this classifier, a window is suspected to contain a 

transition from one activity to another in two cases.  

1) When the labels of two consecutive segments are 

not the same. 

2) When the probability of the determined activity is 

less than a threshold. This threshold is determined 

based on the dataset in hand to get the best accuracy. 

In the first case when there is a change from label A to 

B for two consecutive windows, the activity might be 

changed within either of the windows. Thus, 30-second 

windows are split into two 15-second sub-windows and 

features are extracted. Each sub-window is then fed to 

a two-class classifier that is trained and optimized to 

merely distinguish between the two activities that are 

initially detected(i.e., A and B) by the primary classifier. 

If the detected labels for two consecutive 15-second 

sub-windows are also different, each of them is split 

into three 5-second sub-windows and features are 

extracted and fed to the corresponding two-class 

classifier to recognize the labels for each of them.  

In the second case, when the probability of the 

detected label is less than a threshold for a window of 

data, the window may contain signals of two distinct 

activities, so that the classifier is not confident about its 

decision. In such case, the 30-second window is again 

split into two 15-second sub-windows and all possible 

two-class classifiers, which distinguish between the 

determined activity (i.e., the output of the primary 

classifier) and any other activity, are used to find the 

label for each sub-window. The label that has the 

highest probability is assigned to the whole sub-

window. The threshold for confidence is determined 

based on the training data to get the best performance, 

and it was 0.6 in our study. 

Finally, if the labels that are estimated for two 

consecutive 30-second windows agree with each other, 

that label is assigned to all samples of those windows. 

Label arbitrator 

To further modify the detected labels, a label arbitrator 

module is proposed. This module acts when the label 

detected by a classifier (either of primary or two-class 

classifiers) changes from one window to the next one. 

In fact, based on two rules about possible transitions 

between different activities, this module can modify 

certain misclassifications. The first rule, which is a 

general rule, says that one mode of locomotion or 

transportation cannot happen in the middle of another 

one. Figure 4 shows an example of such 

misclassification that may happen due to detecting 

labels separately for each segment. In this example, 

the second segment is misclassified because it may 

have a signal similar to the train activity. In this case, 

the label arbitrator replaces the label of the middle 

segment with its neighbors’ label. The second rule is 

data-specific. Based on the training data we create a 

label transition matrix that shows the possible 

transitions between activities (Figure 5). In Figure 5, 

the element at row i and column j is green if a 

transition from activity of ith row to activity of jth column 

is possible and is red otherwise. As Figure 5 shows, a 

transition from activity train to the subway is 

impossible. Thus, if the classifier detects such a 

transition due to misclassification, the label arbitrator 

detects that as an invalid case. In this situation, the 

label with higher probability wins, and it is assigned to 

the whole window. 

Figure 4: An example of a 

misclassification that can be fixed 

by label arbitrator 
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Results 

The SHL training dataset published by the competition 

committee is used to train and evaluate the model. This 

is 271 hours of data collected by a Huawei Mate 9 

smartphone placed in the right front pocket of a single 

participant while he performed eight locomotion and 

transportation activities including still, walk, run, bike, 

car, bus, train, subway. To assess the performance of 

the proposed method, we randomly divide the SHL 

training dataset into 70% for training the model and 

30% for testing its performance. The training data is 

used to train the primary classifier as well as all two-

class classifiers and the transition matrix. Precision and 

average F1-score metrics are used to evaluate the 

performance of the classification.  

Table 4 shows the results of the cross-validation of the 

proposed method in comparison with using only fixed 

30-second windows for classification. In fact, the first 

row of the Table 4 shows the result of using a single 

window size for classification without modifying the 

labels with dividing approach and label arbitrator. As 

the table shows, our approach improves the 

performance by around 2% compared to the simple 

classifier that uses a single size window for data 

segmentation. This improvement is associated with two 

factors. First, by splitting large windows into smaller 

ones, we can capture the moment of transition between 

the activities more precisely. This helps to obtain more 

accurate labels for windows that contain more than one 

activity; and second, the label arbitrator fixes certain 

types of misclassifications. 

Table 5 shows the confusion matrix of the proposed 

method. In the table each column corresponds to the 

true label and each row corresponds to the estimated 

label. As can be seen in Table 5, most of the 
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Still 96.9 0.89 0 0.17 0.31 0.65 1.87 1.19 

Walk 0.74 98.3 0.24 0.19 0.18 0.22 0.23 0.29 

Run 0.11 0.03 98.9 0.18 0 0.42 0 0 

Bike 0.18 0.28 0.01 99.3 0.04 0.02 0.07 0 

Car 0.14 0.02 0.09 0.01 99.1 0.55 0.08 0 

Bus 0.25 0.18 0 0 0.45 97.4 0.03 0 

Train 0.5 0 0 0.09 0 0.34 94.9 0.74 

Sub
way 1.29 0.39 0 0 0 0.31 3.39 97.5 

Table 5: Confusion matrix of the proposed method (in 

percent) 

misclassifications occur between the train and subway 

classes because they have similar signals. 

Computational Resources 

A high-performance computing server with 8-core 

Broadwell processors running at 2.4 GHz and 30G RAM 

is used for extracting the features. The Keras library 

with TensorFlow backend running on an NVIDIA 

GeForce GTX 950M GPU is used to train the classifiers. 

The size of the trained classifiers including the primary 

classifier and all two-class classifiers is 83.9 MB if it is 

saved on a hard disc. It takes about an hour to train 

the whole model for around 190 hours of data.  

Conclusion 

We proposed a hierarchical framework to recognize 

modes of locomotion and transportation using data 

from smartphone sensors. The proposed method can 

 

 

 
F1-

score 

DNN with only 30-

second windows 
95.56 

DNN + Multi-

window 

segmentation  

96.71% 

DNN + Multi-

window 

segmentation + 

label arbitrator 

97.68 

% 

Table 4: Results of the proposed 

method and comparing with using 

fixed windows for feature 

extraction 
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benefit from using both large window size to increase 

the general performance and shorter window size to 

detect transitions between activities faster and more 

precisely. This approach outperforms base classifiers 

which use a single window-size for segmenting the 

whole data. This system can recognize 8 modes of 

locomotion and transportation accurately. Such system 

can provide important and useful contextual 

information about the users to mobile applications and 

can unlock many new mobile sensing and computing 

paradigms. The recognition result for the testing 

dataset will be presented in the summary paper of the 

challenge [16]. 
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