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Abstract—Inter-beat-interval (IBI) and heartrate variability 

(HRV) is important for numerous health monitoring 

applications. Although photoplethysmogram (PPG) sensors in 

wearables enable measurement of IBI, motion artifacts 

significantly impact the ability to accurately measure IBI. In this 

paper, we design a graph-based method to estimate IBI from 

motion-corrupted multi-channel PPG. We extract candidate 

heartbeats from noisy signals and leverage continuity in 

heartbeats to model them as a directed acyclic graph. IBI 

estimation is then modeled as a shortest-path problem in this 

graph. Our algorithm achieves percentage error of 4.33% and 

correlation of 0.94 for IBI estimation in motion-contaminated 

segments of PPG signals. 

Keywords— Multi-channel Signal; Convex Function; Heart 

Rate Variability; Interbeat Interval; Motion Artifacts  

I. INTRODUCTION 

Continuous measurement of heartrate variability (HRV) 
through non-invasive wearables provides vital information 
regarding health status [1]. HRV is the measurement of 
variation in time intervals between consecutive heart beats 
(i.e., interbeat intervals, IBIs) and serves as a crucial indicator 
in healthcare research as well as in clinical practice. For 
example, HRV is applied to evaluate the cognitive load in 
surgeons and drivers [2, 3]. In clinical practice, HRV 
represents the activity of the autonomic nervous system, and 
low HRV has been shown to be associated with a higher risk 
of all-cause death and cardiovascular events [4, 5]. 

Photoplethysmogram (PPG) signal measured by wearable 
sensors is a convenient tool for continuous IBI and HRV 
monitoring in daily life, as an alternative to the standard 
electrocardiography (ECG) [1]. PPG could be used to estimate 
a variety of important physiological information, such as 
blood oxygen saturation (SpO2), average heart rate (HR), 
respiratory rate (RR) [6], and blood pressure (BP) [8]. PPG-
based techniques have shown great performance for HRV 
monitoring in stationary conditions. High level of agreement 
was reported between IBI/HRV parameters derived from 
wearable-based PPG sensors and ECG signals as ground truth 
[1].  PPG signals, however, are susceptible to motion artifacts. 
The performance of PPG-based IBI estimation techniques 
significantly deteriorates as the level of physical activity 
increases, which is a more challenging problem than attaining 
average HR. Average HR exhibits more consistency over time 
compare to noise and HRV. Therefore, it is easier to separate 
average HR out from noisy PPG, while estimating HRV is 

extremely challenging during intensive physical activity. 
Hence, there is an unmet need to improve this performance for 
health monitoring applications. 

In this study, IBI and HRV parameters are obtained from 
noisy multi-channel PPG signals in the presence of motion 
artifacts. A characteristic weighted graph with convex weight 
assignment function is proposed to model multi-channel PPG 
signals. Since the end of one heartbeat is the beginning of the 
next heartbeat, a directed acyclic graph is constructed where 
nodes represent the feature candidates (i.e., heartbeats) and 
edges represent candidate IBIs. Shortest path algorithm is then 
used to remove noisy feature candidates and calculate accurate 
IBIs and HRV.  

This article makes the following contributions:   

• Development of a characteristic weighted graph to model 
multi-channel PPG signals.  

• Formulation of a convex penalty function leveraging 
power function and distance function to optimize weight 
assignment in the shortest path algorithm to attain high 
accuracy IBI estimation. 

II. RELATED WORK 

In past decades, research about HR estimation for 
wearable PPG signals have quite matured. Some studies have 
shown highly accurate estimation of average HR during 
intensive physical activity using single-channel PPG, such as 
TROIKA [10], WFPV [11] and particle filtering [12]. Other 
studies have attempted to leverage multi-channel PPG for 
accurate average HR estimation [13, 14]. Although, above 
techniques attain accurate HR using single-channel and multi-
channel PPG signals, they haven’t provided techniques for 
HRV and IBI estimation that are more challenging to estimate 
from PPG. There were studies providing IBI and HRV 
parameters estimation from wrist-worn PPG sensors in post-
anesthesia patients [7, 15]. Although they have shown small 
absolute errors of IBI and HRV parameters, their PPG signals 
did not suffer from motion artifacts distortion. One study has 
shown medium-high (0.74 - 0.88) correlation between wrist-
worn PPG sensors and ECG in HRV parameters at rest 
condition, but the correlation was lower (0.42 - 0.67) while 
subjects were talking [16]. However, these studies eliminated 
all PPG signals that were corrupted with motion artifacts from 
their analysis. The IBI estimation in a recent study, which 
utilized single-channel PPG, presented a medium-high (0. 819 
to 0.886) correlation between the PPG sensors and ECG 
during intense physical activity but no percentage error was 
reported [9].  
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III. METHOD 

A. Dataset and Feature Extraction  

We use the dataset from the 2015 IEEE Signal Processing 
Cup in which two-channel PPG signals (PPG1 and PPG2) and 
one-channel ECG signal were recorded synchronously from 
12 subjects aged 18 to 35 at a sampling rate of 125 Hz [10]. 
Every subject ran on a treadmill with changing speeds while 
wearing a wrist-worn dual PPG sensor with green LEDs and 
wet ECG electrodes over the chest. Both ECG and PPG 
signals are up-sampled from 125 Hz to 500 Hz. Then PPG 
signals are preprocessed with a band-pass Butterworth filter 
with a cutoff frequency of 0.7 Hz and 15Hz. ECG signals are 
filtered with a high-pass Butterworth filter with a 0.5 Hz cutoff 
frequency. To make the R-peaks more prominent and robust 
for peak detection in ECG, a continuous wavelet transform is 
applied to ECG signals, which are regarded as the ground truth 
for the performance evaluation [17].  

Systolic peaks, maximum slopes, and onset points are 
important morphological features in PPG signals that could be 
used for IBI estimation [8]. Figure 1 shows the process of 
extracting these features, which are regarded as candidate 
fiducial points in our study. First, a 5th order smoothing spline 
is applied on both filtered PPG signals to have smoother 
curves. Then, a peak detection algorithm detects the local 
maxima of PPG and ECG signals to obtain the systolic peak 
candidates of PPG and R-peak candidates of ECG, 
respectively. Afterwards, we use the same peak detection 
method to obtain maximum slope candidates from the first 
derivative of the PPG signal as well as onset candidates from 
the second derivative of the PPG as shown in Fig. 1A. For a 
specific feature, the time difference between two candidate 
fiducial points is considered as a candidate IBI. The presence 
of motion artifacts, however, produce many false fiducial 
points which impact the accuracy of IBI estimation greatly. 

B. Graph Modeling and Shortest Path Calculation 

After extracting aforementioned features, we generate a 
weighted graph to represent the candidate heartbeats and IBIs. 
The graph is then used to find the real IBIs and filter out the 
ones induced by motion artifact. 

 a) Multi-Channel Graph Construction 

 We construct a directed acyclic graph, where the vertices 
represent the candidate fiducial points and edges represent 
candidate IBIs. Since the end of each heartbeat is the 
beginning of its next heartbeat and they are continuous in time 

domain, the shortest path is used to select the fiducial points 
that correspond to true heartbeats. We observe that the 
corresponding fiducial points of true heartbeats between 
PPG1 and PPG2 have smaller time intervals than those false 
fiducial points induced by noisy signals as shown in Fig. 1B. 
Therefore, integrating the two PPG channels improves the 
capability of our technique in selecting true heartbeats through 
the shortest path algorithm. The multi-channel graph model is 
constructed by the following steps, as shown in Fig. 2. We first 
label vertices from different channels with colors. The color 
indicates which PPG channel the candidate fiducial point 
belonged to and it helps determine the contribution of each 
channel in the final IBI path. Then, we concatenate vertices 
from two channels and sort them by timestamps. Vertices are 
denoted as ��, � � 1,2, … , 	 and their values are equal to their 
timestamp. This step is applied on systolic peak, maximum 
slope and onset, respectively. As for the edges, we consider a 
time interval prior to each vertex �� with the range of 1.5 folds 
of its average IBI, 
���
���� � 6000  
��
����  ����⁄ where 

the 
��
��� �  of each vertex ��  is equal to the average 

heartrate of the closest 8-second PPG window estimated by 
WFPV algorithm [11]. Vertices that fall within this interval 
are regarded as neighbors of the vertex �� and they are linked 
with edges.  

b) Weight Assignment by Convex Penalty Function 

We assign weights to each edge based on their deviation 
from the average IBI. An effective penalty function for 
assigning weights to the edges of the graph would be critical 
for the shortest path algorithm to obtain the correct IBI path. 
For example, the exponential penalty function shown in (1) 
was proposed in a previous study to generate a similar graph: 

��� � ��� !"#$%$&'()*+,+-*.","#$%$&'()*/,+-*."0 
1� 
where ��� is the time difference between i’th and j’th vertex. 

However, if ���  for an edge is within the range of 

#���
��)�  1/3 4444444 5, the weight is assigned as zero. The concept 

 

Figure 1. (A) Feature extraction process (B) Observation of time 
difference comparing fiducial points from true peaks and noise.   

 

Figure 2. Overview of multi-channel PPG graph model 
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is that the distance between any pair of true fiducial points 
should be equal to the average IBI with a tolerance of 5 [9]. 
However, there is no discrepancy for those vertices inside the 
interval and for those vertices out of the interval, the 
exponential growth weight of edges induces an over-penalty 
with enormous scale. To address these issues, we design a 
convex penalty function for the shortest path algorithm which 
is calculated through (2)-(4) and shown in Fig. 3.       

��6 � �� 3 #���
��)� , � � 1,2. . , 	 
2� 

8�� � 9�� 3 ��69, : � � 3 1, … , � 3 �� 
3� 

��� � < 8�� =, > ∈ ℕ 
4� 
Firstly, we obtain ��6 , which represents the expected 

timestamp of �� ’s previous vervex, by subtracting ��  by its 
average IBI; 	 is the total number of vertices in the graph. 
Secondly, for each �� that is a neighbor of �� (�� is the total 

number of neighbors of vertex ��), we calculate the distance 8��  between ��  and ��6 . The power function raises the 8��  to 

the power of > with a constant parameter <, where the power > can be any natural number. We, finally, have the ���  from 

the convex penalty function as the weight of the edge that 
connects ��  to neighbor �� . Our weights of edges grow 

smoothly compared to the exponential penalty function. This 
convex property helps the shortest path algorithm reach the 
optimal solution and avoids potential overflow error in 
numerical computation. 

c) Shortest Path Calculation 

After constructing the weighted graph as explained above, 
we run the shortest path algorithm on this graph to select the 
path with the least total weight [9]. This path has the minimum 
total deviation, measured by our proposed convex penalty 
function, from the average IBI. Selected vertices on this path 
are regarded as fiducial points of true heartbeats and the time 
differences of the successive selected vertices are regarded as 
the estimated IBIs. 

IV. RESULTS AND DISCUSSIONS 

A. Interbeat Intervals Results 

We evaluate the accuracy of estimated IBIs from PPG 
using Pearson Correlation Coefficient (Corr) and Mean 
Absolute Percentage Errors (MAPE) as compared to true IBIs 
from ECG. We compute the MAPE using (5), where n is the 
number of total IBIs. 

BCDE � 1
F G H|JKL����� 3 ��J��MJ�8����|

JKL�����
N 100O

P

�QR

5� 

Table 1 shows the performance comparison between our 
method and the state-of-the-art [9]. We achieve correlation of 
0.902, 0.931 and 0.939, and MAPE of 5.76%, 4.67% and 

4.33% when systolic peak (SP), maximum slope (MS) and 
onset are used to estimate IBIs, respectively. Our multi-
channel model shows better results for all three morphological 
features. 

TABLE I.   IBI ESTIMATION PERFORMANCE 
 

SP MS Onset 

 Corr MAPE Corr MAPE Corr MAPE 

Single-channel (PPG1)       

Our Convex Penalty Function 0.832 8.43% 0.838 8.06% 0.859 7.66% 

Exp Penalty Function [9]* 0.826 8.73% 0.825 8.61% 0.829 8.83% 

Single-channel (PPG2)       

Our Convex Penalty Function 0.782 10.5% 0.825 9.3% 0.844 8.48% 

Exp Penalty Function [9] 0.778 10.7% 0.805 10.2% 0.812 10.1% 

Two-channel (PPG1&2)       

Our Convex Penalty Function 0.902 5.76% 0.931 4.67% 0.939 4.33% 

Exp Penalty Function [9] 0.879 6.94% 0.906 6.02% 0.912 5.83% 

Our Best Result (PPG1&2) 0.902 5.76% 0.931 4.67% 0.939 4.33% 

Aygun et al. [9] (PPG1) 0.819 n/a** 0.845 n/a 0.855 n/a 

This table shows average metric over the first 12 subjects in 2015 IEEE Signaling Processing Cup. 

* Our implementation in python using the exponential penalty function [9] 

** n/a : not available 

We also implement the single-channel model as 
described in [9] and compare with our two-channel model in 
Table 1. The table also compares our convex penalty function 
with that proposed in [9]. Our two-channel model outperforms 
both the single-channel model PPG1 and the single-channel 
model PPG2. The multichannel approach achieves 31.7%, 
42.1% and 43.5% improvement in MAPE for systolic peak, 
maximum slope and onset, respectively. We also analyze the 
percentage of channel usage, and the results show the usage of 
two channels are 53.3% v.s. 46.7%, respectively, which 
suggests the importance of multi-channel models. Our convex 
penalty function has better performance than the Exp Penalty 
Function [9] both in the single-channel model and two-
channel model. We use the 2nd power for the convex penalty 
function in our algorithm. 

B. Heart Rate Variability 

The estimated IBIs are used to calculate four time-domain 
HRV parameters, including Mean RR (ms), SDNN (ms), 
Mean HR(1/min) and STD HR (1/min), using pyHRV [18]. 
The estimated/true HRV parameters are highly correlated with 
range from 0.919 to 0.999 with low percentage errors. 

TABLE II.  HRV PARAMETERS PERFORMANCE 

HRV 

Parameters 

Our Method Aygun et al.[9]* 

Corr % error Corr % error 

Mean RR (ms) 0.999 0.38% 0.986 n/a 

SDNN (ms) 0.995 5.92% 0.956 n/a 

Mean HR (1/min) 0.998 0.65% 0.987 n/a 

STD HR (1/min) 0.919 10% 0.860 n/a 
* HRV analysis of our method is based on only the Onset feature (our best result), while HRV 

analysis of Aygun et al. [9] is based on fusion of three features, SP, MS and Onset.   
 

V. CONCLUSION 

We proposed a graph model for IBI estimation on multi-
channel PPG signals collected during intensive exercise. A 
penalty function, the convex penalty function, was introduced 
to assign edge weights in the shortest path calculation. Our 
method, using two-channel PPGs and the convex penalty 
function, achieved low average percentage error of 5.76%, 
4.67% and 4.33% and high average correlation of 0.902, 0.931 
and 0.939 for IBI estimation through systolic peak, maximum 
slope and onset, respectively. The estimated/true HRV 
parameters were also highly correlated with low percentage 
errors. We also demonstrate that the two-channel PPG has 
better performance than the single-channel methods.  

 

Figure 3. Weight assignment by convex penalty function 
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