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Abstract—Recognizing human daily activities with motion
sensors data, specifically, modes of locomotion and trans-
portation provides important contextual information that
enhances the effectiveness of mobile applications. For
instance, in assisted living or sports monitoring it is essen-
tial to log driving or running episodes. Previous studies in
this field have utilized a fixed-size windowing technique for
segmenting the sequential data of sensors. While segmenting
signals into larger windows provides more information about
the signal for classifiers, it increases misclassification rate
when a transition occurs between the activities (i.e., multi-
class windows). This will lead to inaccurate detection and
logging of the activities of interest. To identify the exact time
of transition from one to another activity as precisely as
possible, this article proposes a fast and efficient hierarchical
search algorithm that finds the exact sample at which tran-
sition occurs. This search algorithm can be applied to any
activity recognition model with various lengths of segmentation window. To further improve the performance, we propose
a new structure of 2D signal inputs to be used with 2D convolutional neural networks (CNN), which improves the ability
of the CNN in capturing patterns underlying in inter-axes correlations. Experimental results show that the proposed
transition detection method improves the F1-score by 28% compared to using fixed-size windowing approach for multi-
class windows. In addition, the proposed method is 20 times faster than the naïve search.

Index Terms— Activity recognition, deep learning, modes of locomotion and transportation, signal segmentation,
transition-aware.

I. INTRODUCTION

RECOGNIZING activities of daily living (ADL) with
wearable motion sensors is a convenient way to provide

contextual information to many types of tasks. Particularly,
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detecting modes of locomotion and transportation provides
important insight for context-aware services as well as health
monitoring applications [1]. For instance, when the user gets
off the bus and starts walking, the navigation system needs
to switch right away. Equally important, in health monitoring,
it is critical to precisely determine the moment of transition
from running to walking to determine the amount of calories
burned.

The ever increasing advancement in sensing and processing
capabilities of wearables along with their pervasiveness and
ubiquity makes them an effective and unobtrusive tool for
detecting activities including modes of locomotion and trans-
portation [2]. Since the output of the wearable motion sensors,
e.g., the ones embedded in smartphones, are continuous time-
series, the current approach for recognizing activities is to
segment the sequential data into fixed-size windows. Features
are then extracted from each segment via domain specific
methods to be fed into traditional classification models [3], [4].
Alternatively, segments of raw data may be directly analyzed
by deep learning models for automated feature extraction and
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Fig. 1. An example of a multi-class segment that shows the failure of
fixed-length windowing approach in class labeling in windows W2 and
W3 while transition-aware labeling can address this issue.

classification [5], [6]. Using fixed-size signal segmentation
(i.e., windowing), however, faces the multi-class problem
where the classifier mistakenly labels samples of different
classes within the same segment as a single class as shown in
Fig. 1, which mainly happens at moments of transition from
one to another activity [7].

Given the sequential nature of sensors’ data and the inability
of a single sample to capture enough information about an
activity, sensor data are usually partitioned into relatively
large fixed size segments, called windows, for further analysis
within machine learning algorithms. Accordingly, the machine
learning algorithms will detect and assign an activity label
to each individual segment/window [8]. As the window size
increases, more information is provided to the classifier.
Therefore, intuitively, splitting the dataset into larger segments
should achieve greater decision accuracy; however, more than
one activity label may exist within one such window, which
will cause misclassification – this is known as the multi-class
problem as depicted in Fig. 1. In case of such multi-class
windows, using larger window size could lead to higher mis-
classification rate as Fig. 1 illustrates [9]. Specifically, in the
application of health monitoring, assisted living, or sports
monitoring it is vital to precisely detect and log activities such
as driving, walking, running etc. In these applications, detect-
ing the start and stop time, or more generally time of transition
between these activities, is important where the aforemen-
tioned error in multi-class windows can negatively affect them.
On the contrary, using smaller windows will enhance the
ability to track such activity label transitions, although, the
overall decision accuracy may decline since limited informa-
tion is provided to the classifier. Hence, there is an obvious
tradeoff when selecting optimal window size that depends on
the unique characteristic of activity signals. Typically, this will
have to be determined empirically or by domain experts.

Extracting features from signal segments requires expert
knowledge to design the features carefully and customiz-
ing them for recognition systems since the performance of
recognition systems is highly dependent on the quality of the
features [10]. Furthermore, using such hand-crafted features

may miss crucial latent patterns in raw signals. Also, for
every potential change in configuration of the system, such as
changes in the type of sensors or activity labels, these engi-
neered features may need to be reconsidered and redesigned.
To handle these challenges, researchers have proposed deep
learning models - specifically convolutional neural networks
(CNN) - that are capable of extracting informative features
automatically from raw time-series data [11]. The existing
approaches still have a few limitations including: (i) 1D
convolutional filters are usually applied to each axis of a
multivariate sensor output separately which ignores inter-
axes correlations and patterns; (ii) temporal order of human
activities is not considered; (iii) usually only the raw time
series are fed to a CNN, even though the CNN might not
be able to distinguish between certain activities as some may
have similar signal patterns in time domain. For instance,
a smartphone placed in the pocket may measure a similar
pattern of acceleration in time domain when the person is
riding a car or when he is on a train.

To handle the challenges of selecting a window’s fixed size
and automated feature extraction with CNNs, we propose 2D
signal images along with a hierarchical search framework for
detecting the exact moment of transition between activities.
The images are in fact 2D matrices of input data that con-
sist of samples of raw timeseries in the rows and different
axes of motion sensors placed in the columns in a specific
order (Section III-B) to maximize the ability of the CNN to
capture inter-axis correlations. The hierarchical segmentation
framework incorporates multiple window sizes to analyze
motion sensor data and recognize modes of locomotion and
transportation while also precisely identifying the exact tran-
sition time between activities. Our framework leverages a
set of standard, discriminative, hand-crafted features along
with a CNN to further extract more complex features that
would otherwise be ignored. To distinguish between modes
of locomotion and transportation effectively, the deep learning
framework receives the input from hand-crafted features, raw
time-domain signals, and the power spectral density (PSD).
The PSD is essential since it helps to distinguish between
challenging modes of motorized transportation that do not
have a clear and distinct pattern in the time domain sig-
nals. A divide and conquer-based algorithm is proposed to
analyze different window sizes, and a searching algorithm is
designed to accurately detect the sample at which activity
transition occurs. This enables us to take advantage of the
strengths of large windows and small windows at the same
time.

The contributions of this work are as follows:
•We propose a framework to analyze data gathered by

smartphone embedded sensors and detect transitions between
modes of locomotion or transportation. In the experiments, our
system precisely detects such transitions.

•We propose an activity signal image (2D input matrices of
raw data) that allows the typical 2D CNN, to capture inter-
axes correlations more effectively. Our proposed model also
takes into account the temporal order of human activities.
Moreover, by mixing the expert knowledge with automatically
extracted features from the CNN, we achieve a higher accuracy
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compared to the conventional deep learning based systems that
use merely the raw data.

•We demonstrate the effectiveness of our system on a
publicly available dataset typically used for locomotion and
transportation detection via smartphones. Unlike most existing
work in this area, we evaluate our model with sample-based
classification metrics.

II. RELATED WORKS

Detecting modes of locomotion and transportation is a par-
ticular case of activity recognition that has been widely studied
within the wearable and mobile computing communities [12].
Different pedestrian modalities such as walking or running,
non-motorized transportation, such as biking, and motorized
transportation, such as bus, train or car are different type
of locomotion and transportations that have been studied by
researchers [1]. Many researchers have used accelerometers for
detecting different pedestrian and non-motorized locomotion
including walking, running or biking [13], [14]. A novel
accelerometer-based technique was presented for accurate and
fine-grained detection of transportation modes using smart-
phones [1]. To segment the sensors data, they used a sliding
window with a duration of 1.2 seconds in an effort to promptly
detection transitions. Consequently, accuracy suffered when
attempting to distinguish between bus, train, metro, and tram
modes.

Adaptive signal segmentation techniques have been pro-
posed to overcome the aforementioned issues with a fixed
size windowing approach. A novel approach to adaptively
adjust the window size was designed to achieve the most
effective segmentation based on the probability that the signal
belongs to a particular activity class [5]. They started with
3-second windows, and if they detected that a window con-
tains a transitional activity, they expanded the window size
until they get the most confident decision from the classi-
fier. Another adaptive time window method was proposed
to extract features from quasi-periodic signals for activity
recognition [15]. They detect changes in activity and take the
beginning and end time as segmentation boundaries. However,
their technique worked only for signals that have periodic
patterns.

A dense labeling paradigm based on fully connected neural
network was designed for predicting the label of each sample
in a time-series instead of segmenting and finding the label
for each segment [7]. This approach overcomes the prob-
lems posed by multi-class and fixed size sequence. Another
study proposed a human activity recognition algorithm based
on a U-Net to perform activity labeling and prediction at
each sampling point [16]. The activity data of the triaxial
accelerometer is mapped into an image with the single pixel
column and multi-channel as input into the U-Net network
which can perform pixel level activity recognition. These
models, however, are computationally expensive as they need
to run classifier on every single sample to generate per-sample
labels. Moreover, to work with larger window sizes, which is
required for detection of certain complex activities, these mod-
els become arbitrarily huge with a large number of trainable

parameters, which increases their memory and computational
requirements. To address the memory challenges, the dense
models typically run with smaller window size [16], which
reduces the ability of the models in detecting more complex
activities in which analyzing longer windows would be helpful.
Our proposed method, however, handles both large and small
window sizes without an increase in required memory or
trainable parameters.

Multi-labeling methods have been proposed to detect more
than one label in a single instance of input. The idea of multi-
label activity recognition from video frames was proposed
in [17]. In this article, the authors were able to detect multiple
activities occurring in one scene by leveraging clustering
and classification methods at the same time based on the
assumption that instances from the same class usually organize
themselves into clusters. This idea, however, needs extract-
ing informative features that guarantee the aforementioned
assumption, which requires carefully crafted features. There-
fore, applying such a technique to deep neural networks is
challenging and optimizing such a model will be computation-
ally expensive. A multi-label classification approach was also
proposed to detect activity and accelerometer sensor location
simultaneously [18]. In this article, every combination of the
activity and sensor on-body locations was considered as a
separate class and a single classifier was trained to detect them.
Although this idea is applicable to our problem, its shortcom-
ing is to train a single classifier for all the possible outcomes,
which introduces challenges in distinguishing complex labels
that may have similar patterns of motion signal. Our proposed
approach can be seen similar to [18] in the sense that we train
separate classifiers for different possible combination of two
activities. In our model, in the first stage we detect one out of
all possible activities. However, in contrast to the multi-label
approach proposed in [18], in the next levels of the hierarchical
model, we only utilize two-class classifiers which improves
the likelihood of detecting the correct class due to using
a limited search space. Limiting the search space becomes
more important as we move towards detecting activities from
smaller windows since lesser amount of information would be
provided to the classifier.

To address the challenge of extracting informative features
for complex activities, deep learning has been used in recent
works. Several prior investigations use data from inertial
measurement units (IMU) or motion sensors to automatically
extract features and detect human gestures and activities using
CNN. In one study, axes of the IMUs were treated like
different channels of an image provided to a three layer CNN,
outperforming traditional machine learning algorithms with
respect to the accuracy [11]. A CNN based approach that
captures temporal dependency of a signal was proposed to
perform activity recognition with a cell phone’s accelerom-
eter [19]. These investigations used 1D convolutional units
which can consider temporal patterns of the signal but not the
relationship between different axes of a sensor.

To overcome this problem, data from an accelerometer and
a gyroscope were converted into images to be used in a
CNN for detecting basic human activities, which outperformed
state-of-the-art in terms of both recognition accuracy and
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Fig. 2. The overview of the proposed framework for transition-aware activity recognition.

computational efficiency [20]. However, this study did not take
into account the correlation between all combinations of sensor
axes. Deep learning methods that use more than just CNN for
ADL recognition have also been developed. A combination of
CNN and recurrent neural network (RNN) was used to detect
modes of locomotion as well as hand gestures [21]. In this
article, four convolutional layers were used to extract features
of the signal and two recurrent layers were used to model
temporal behavior of the features. The article shows that using
RNN in addition to CNN can slightly increase accuracy. This
works uses RNN to understand the temporal features within a
window of signal. However, the authors ignore the temporal
order of human activities between consecutive segments of
data, which can also be learnt by RNNs.

III. METHODS

Fig. 2 shows our proposed framework for transition-aware
activity recognition. We start by segmenting the sensors’ data
into relatively large windows (one minute in this study) and
recognize one out of N possible activities called coarse-
grained classification. This consists of three components. First,
a dense neural network (DNN) that accepts the hand-crafted
features and maps them to higher level features. Next, a CNN
that accepts raw time domain signal and performs automated
feature extraction. Last, a DNN processes signal’s PSD. One
final DNN combines the outputs of the three layers and applies
Softmax activation to produce a one-hot vector decision of
length N . Since this may be considered as a distribution, the
index with the greatest probability corresponds to the appro-
priate label. A label arbitrator module makes use of an RNN
to modify the outputs of the coarse-grained classifier with
respect to the temporal order of activities. Lastly, if an activity
transition is detected for two consecutive windows, they are
then divided into smaller sub-windows. The sub-windows are
processed by a constrained version of the classifier to find the
exact location of transition.

A. Problem Formulation

Let, Xi , be a d-dimensional feature vector at time-step, i .
The features consist of x, y, and z direction values recorded
by accelerometer, gyroscope, and magnetometer sensors. If we
segment the data into lengths of T , as shown in Fig. 3,

Fig. 3. A multi-class window of data.

the label assigned to the window as a whole may correspond to
that of the first, last, or any other sample within that window.
However, labels are not always consistent through the segment
which leads to misclassification - such as for the kth transition
sample of the window in Fig. 3. We call such a window as
a multi-class window and the kth sample at which transition
happens as the transition sample. To handle this, we propose
an efficient search algorithm to detect such transition samples,
k, where yk �= yk+1, so we may accurately classify activity
labels to samples occurring before and after such transitions.

B. Coarse-Grained Classification

The first stage of our framework classifies the appropri-
ate activity label for each segment of sensor readings. This
requires preprocessing the data and a deep neural network
referred to as primary classifier.

1) Preprocessing: Input data is segmented into windows
of one minute. Such a large window size is chosen to:
1) cover enough information to detect activities and 2) reduce
computational time-complexity significantly.

A set of conventional features are extracted from each
segment of sensor data. Table I lists the features used in
this study, including the name and dimension. These are all
consistently used time-domain features for activity recognition
[10], [22]. The features are collected from each axis of
the sensor modalities (i.e., accelerometer, gyroscope, pressure
sensor). The same set of features are extracted from the
magnitude of each signal as well in order to remove the effect
of sensor orientation.

The raw data of each segment is also fed to a CNN for
automated feature extraction to compensate for the possibility
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Fig. 4. Example to show PSD of magnitude of acceleration varies among
different modes of motorized transportation.

TABLE I
HAND-CRAFTED FEATURES

of missing significant underlying patterns when relying on
hand-crafted features. For example, bus, car, train, and sub-
way modes have similar time-domain signal patterns, which
cannot be distinguished by either those hand-crafted features
or the CNN that works on raw time-domain signals. However,
we observed that the amount of vibration varies among differ-
ent vehicles. This is captured by frequency components of the
acceleration signal as shown in Fig. 4. This figure illustrates an
example of how the power spectrum density of the magnitude
of the acceleration is different among different modes of
transportation. To distinguish between those activities, we
calculate the PSD for each segment of the sensor readings
and feed it to a DNN. All the inputs, that is, hand-crafted
features, raw data, and PSD, are normalized to 0 mean and
unit standard deviation.

2) Primary Classifier: The primary classifier consists of three
independent deep networks that work on three different types
of input as shown in Fig. 2. The first dense neural network
(DNN), which is fed with hand-crafted features, contains three
fully connected layers where the details are represented in
Table II. It has been shown that increasing the number of
layers (known as depth) can significantly increase learnability
and decrease the number of required neuron units in each
layer [23]. In the current study, we use a DNN with three fully
connected layers as we did not gain significant improvement
by increasing this beyond three.

Fig. 5. Our proposed 2D signal image (i.e., 2D matrices composed of
raw timeseries data) for considering the correlation between all the axes
of a sensor. The yellow rectangles show m∗3 kernels where m is the
kernel length. By putting sensor axes in this order, the 2D kernels with
width of 3 can capture the correlation between all the axes.

TABLE II
DETAILS OF DNN WORKING WITH HAND-CRAFTED FEATURES

The second neural network is a CNN that extracts fea-
tures from raw time domain signals segmented into one-
minute windows. Previous studies have shown the ability
of CNN in capturing short-term temporal patterns in time-
series motion signals through applying convolution operation
between trainable filters and the timeseries along the time
axis [11]. Existing works that use CNNs for automated feature
extraction for this task usually apply 1D kernels to each axis
of the sensor data ignoring possible correlations between the
axes. To prevent this, we propose sorting the axes of a single
sensor to a specific order creating signal images so that we can
take advantage of 2D convolutional. Fig. 5 shows how sensor
axes should be ordered to create the signal image so that an
m × 3 convolutional kernel (where m is the kernel length)
can capture the patterns from all combinations of sensor axes.
In Fig. 5, the yellow rectangles show the m ×3 kernels where
starting from top to the bottom of the kernels extract features
from xy, y, x, xz, xzy, zy, y, and z axes respectively, where
xy indicates the correlation between x and y. The CNN in
this study is composed of three convolutional layers where
the details are represented in Table III. The stride length
of 1 and ReLU activation function is used in all the layers.
In an effort to distinguish between the challenging modes of
motorized transportation, we feed the PSD of the signals to a
DNN consisting of an architecture similar to that expressed
in Table II. The intuition behind using a DNN is because
CNNs capture patterns of signals regardless of the location of
their occurrence, while in PSD the location of the patterns are
important as they correspond to different frequencies. In this
case, using a DNN, which assigns different weights to different
regions of PSD signal, is a better choice.
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Fig. 6. (a) An example of a misclassification that can be fixed by label
arbitrator; (b) the output of RNN as label arbitrator.

TABLE III
DETAILS OF CNN FOR AUTOMATED FEATURE

EXTRACTION FROM RAW TIME-SERIES

Finally, a shared DNN is responsible for combining the
output of all three networks and mapping them to the final
class labels. The output of each network, before feeding to
this DNN, is first passed through a batch normalization layer
so that they all be in the same range. Then a fully connected
layer with 128 neurons is used to combine all the features
together with ReLU activation function. The last layer of this
DNN works with Softmax activation function as shown in
Equation 1. The number of the neurons in the last layer is
equal to the number of the classes to be classified.

f (xi ) = exi∑N
j=1 ex j

(1)

Equation 1 shows the Softmax where xi is i th input to the
function and N is the total number of function inputs, which,
in the case of classification, is equal to the total number of
classes. In this study, in the coarse grained classifier the value
of N is equal to the total number of modes of locomotion and
transportation to be recognized. For the fine-grained classifier,
however, this value is equal to two (see Section III-C-2). The
fine-grained classifier works with a narrower search space
since it is expected to detect the activities with smaller window
sizes. The outputs of the Softmax function are values between
zero and one, and the total sum is equal to one. The output
of this function is equivalent to a categorical probability
distribution.

For each of these classifiers, the dropout technique is uti-
lized to reduce chance of overfitting. The key idea of dropout is
to randomly deactivate some units along with their connections
in the neural network during training [24]. This deactivation
prevents the units from co-adapting too much and improves
generalization because it forces the layers to learn the same
concepts with different neurons. However, the dropout layer
is deactivated during the prediction phase.

C. Fine-Grained Classification

1) Label Arbitrator: To further modify the labels created
by the coarse-grained classifier, a label arbitrator module is
proposed to model the temporal order of human activities.
Fig. 6-a shows an example of a misclassification due to
labeling windows as a whole. The second segment, which

Fig. 7. An example of a 60-second segment of the data that contains
more than one activity. The activity on the right and left hand side of the
transition sample is different.

belongs to the class "car" is misclassified because it may have
a signal similar to the class "train". In general, one mode
of locomotion or transportation cannot occur within another.
Moreover, certain orderings of activities are not typical for a
given user. For example, in the SHL dataset [25], the studied
subject never rides a bike right after leaving the train or
subway. To best capture this, we train an RNN which receives
the latest five segments’ labels as input (i.e., last five minutes)
and outputs the most likely sequence of labels for those five
segments. An example of the output of this RNN, which may
be described as a sequence-to-sequence model, is depicted in
Fig. 6-b. This RNN is trained on the whole training dataset
and learns the temporal order of activities. During the testing
phase, the labels created by the coarse-grained classifier are
passed through this RNN to modify the labels. This RNN
contains one layer with 25 long-short-term-memory (LSTM)
neurons.

2) Transition Detection: Although segmenting the data into
large windows (60-second in this study) achieves better accu-
racy in recognizing activities, especially for detecting modes
of transportation, it may lead to a higher error for multi-class
windows that contain more than one activity (i.e., transition
from one activity to another). In such cases, detecting the
sample at which the transition between activities occurs is
desired to improve the performance.

We know that when a transition occurs at time stamp
ttransit ion , the activity occurring at t > ttransit ion should be
different from that at t < ttransit ion as shown in Fig. 7.
Therefore, at the transition sample if we look at a segment to
the right and a segment to the left, we expect the corresponding
windows to express different probability distributions [26]. So,
by monitoring such characteristics, we may identify transition
points. In other words, it is the problem of identifying the
sample where the probability distribution of a time series
changes [27]. This means that by going through every sample
and estimating the probability density of the activities for a
segment to the right and left, we can find the sample at which
the transition happens. However, this naïve approach is very
computationally expensive as it depends on detecting labels
for the prior and post segments of every sample of data. For
instance, working with 60-second windows with sampling rate
of 100 Hz (as in SHL dataset in this study), we need to run the
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classifier 6000∗2 times (i.e., for all the samples within the two
windows). To address this problem, we propose a divide and
conquer algorithm to narrow the windows in which a transition
is more likely to occur as much as possible before searching
for the exact sample of transition. In Section IV-C we prove
that this approach has a substantial improvement with respect
to computational cost.

Algorithm 1 Divide and Conquer for Narrowing Down Multi-
Class Windows

Input: Two consecutive 60-second window Wt−1 and Wt

and their labels A and B , two-class classifier fAB

Output: Two 5-second windows W1,W2containing transition
1: W1 = Wt−1
2: W2 = Wt

3: for i from 1 to 2: // dividing 60-second window first
in 30 seconds and then 15 seconds
4: Split W1 in two same length windows W1,1and W1,2 and
feed them to fAB to get L1,1 and L1,2
5: Split W2 in two same length windows W2,1and W2,2and
feed them to fAB to get L2,1 and L2,2
6: L = [L1,1, L1,2, L2,1, L2,2] // Li, j ∈
7: if there is any A to B transition in L:
8: W1 = the last segment with label A in L
9: W2 = the first segment with label B in L
10: else if L only contains A:
11: W1 = W2,2
12: W2= [ ]
13: else:
14: W1 = W1,1
15: W2= [ ]
16: end if
17: end for
18: Split W1 in three same length windows W1,1,W1,2, W1,3
and feed them to fAB to get L1,1, L1,2, L1,3
19: Split W2 in three same length windows W2,1,W2,2, W2,3
and feed them to fAB to get L2,1, L2,2, L2,3
20: L = [L1,1, L1,2, L1,3, L2,1, L2,2, L2,3] // Li, j ∈ {A,B}
21: ifthere is any A to B transition in L:
22: W1= the last segment with label A in L
23: W2= the first segment with label AB in L
24: else if L only contains A:
25: W1 = W2,3
26: W2= [ ]
27: else:
28: W1 = W1,1
29: W2 = [ ]
30: end if

The proposed divide and conquer algorithm is shown in
Algorithm 1. We first detect the windows that are susceptible
to contain a transition. This is executed by comparing the
activity labels of two consecutive windows. The labels of
t th and t-1th windows may be denoted as Lt and Lt−1
respectively. If Lt = A, Lt−1 = B , and A �= B , then we
identify the two windows t-1 and t susceptible to contain a
transition. We then divide each of the one-minute segments
(t and t-1) into two non-overlapping 30-second sub-windows.

Algorithm 2 Search for Transition Sample
Input: Two consecutive 5-second window W1 and W2 and
their labels L1 and L2, two-class classifier fAB

Output:The transition sample
1: S= [ ]
2: for i in all the samples within W1 and W2:
3: W1 = window(i,i+500) // window(start,end) segments
the data from index start to end
4: W2 = window(i-500,i)
5: feed W1 and W2 to fAB to get P(A|W1), P(B|W1),
P(A|W2), and P(B|W2)
6: Si = P (B | Wi+) ∗ P (A | Wi−) − P (A | Wi+) ∗
P(B|Wi−)
7: end for
8: transition sample = index(max(S))
9: for j in W1, W2:
10: if j < transition sample:
11: assign label A to sample j
12: else
13: assign label B to sample j
14: end if
15: end for

This process is depicted in Fig. 8. For each of the four
30-second sub-windows, we use a fine-grained classier to
identify the appropriate activity label. Although its architecture
is similar to the coarse-grained classifier, it is only trained for
two-class predictions to distinguish between labels A and B
(which were the labels assigned to the original windows by
the coarse-grained classifier). In this way, the search space is
limited for the fine-grained classifier.

As the coarse-grained classifier works with a larger window
size, it accesses more information describing each segment,
so it can detect one out of N different activities with higher
confidence. The fine-grained classifier, however, runs on a
smaller window size and analyzes much less information.

Despite this, limiting the search space enables the fine-
grained classifier to sustain accuracy [28]. Again, for each
of the four 30-second sub-windows we compare the activity
labels and further divide those consecutive windows that differ
into two 15-seconds sub-windows and pass them into the fine-
grained classifier. This whole process is repeated once more by
dividing the two 15-second sub-windows with distinct labels
into three 5-second sub-windows. Finally, the two remaining
5-second windows with distinct labels are chosen as the
candidates for containing a transition. It should be noted that
we have trained a separate fine-grained classifier for every
possible combination of two activity labels and for every
window size.

After narrowing down to the 5-second sub-windows,
we start sample-wise search to identify the exact transition
point. Algorithm 2 shows this procedure. We process each
sample of the two 5-second sub-windows and segment two
more 5-second windows to the right and to the left of it. They
are then again fed to the fine-grained classifier to detect the
activity label of A versus B . The probability of each activity
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Fig. 8. Divide and conquer-based hierarchical segmentation to find small windows in which the activity transition happens. The two class-classifiers
only look for the activities that were initially determined by the primary classifier.

for each sample is put into a matrix as shown in Equation 2,
and the transition score is calculated based on Equation 3 for
each sample. In Equation 2, Mi is the matrix of transition
between activities for i th sample, Wi− is the 5-second sub-
window containing the samples before sample i , Wi+ is the
5-second sub-window containing the samples after sample i ,
and P(A|W) is the output probability of the neural network
from Equation 1 which classifies activity A for the data of
window W . In Equation 3, Si is the transition score for sample
i th with respect to what we detect as the transition point.

Mi =
[

P(A|Wi−) P(A|Wi+)
P(B|Wi−) P(B|Wi+)

]
(2)

Si = P (B | Wi+) ∗ P (A | Wi−) −P (A | Wi+) ∗ P(B|Wi−)

(3)

The transition score calculated by Equation 3 is greatest at
the sample where the window to the right and left have two
different labels (i.e., A and B) with highest confidence (i.e.,
highest probability) [26]. These scores are then sorted and
the sample with the greatest score is chosen as the transition
point. All samples occurring before the transition sample
receive label A while those occurring after receive label B .
In Section IV-C we show that our proposed framework is
competitive with the naïve search method while improving
its computational cost by a power of 20.

The two components of the fine-grained classifier including
label arbitrator and transition detection could introduce some
latency in the classification process. Given the largest window
size in our study is one minute and the transition detection
module analyzes two consecutive windows, the minimum
latency required for transition detection would be two minutes.
The other component, label arbitrator, acts as a post-processing
module to further refine the labels based on the temporal order

of activities. This module looks at labels over last five minutes,
which can translate into a latency of five minutes. For real-
time applications, however, by using a moving window over
last five minutes and refining only the label of the most recent
window, one can ignore this latency.

IV. RESULTS

To demonstrate the performance of our system when recog-
nizing modes of locomotion and transportation and detecting
the exact moment of transition between modes, we conduct
four experiments: 1) we show effectiveness of our method
using sample-based F1 score and compare it to the conven-
tional fixed-window based approaches (Section IV-B); 2) we
compare the accuracy and computational time of our algorithm
to the naïve search method (Section IV-C); 3) we provide
activity-based misalignment measures (Section IV-D) to show
an in-depth assessment of our proposed transition detection
approach for multi-class windows; and 4) we analyze the
effect of each component of the proposed framework on the
performance of the system (Section IV-E).

We evaluate our approach using the SHL dataset explained
in Section IV-A. The activities to detect are still, walk, run,
bike, car, bus, train, and subway. They are further divided
into three different sub-tasks that mimic different application
interests, and we report the performance for each of them. The
sub-task scenarios are defined as follows:

• Scenario1: Five classes as still, walk, run, bike, and
vehicle. The vehicle class contains all car, bus, train, and
subway activities.

• Scenario2: Six classes including still, walk, run, bike,
road, and rail. The road class contains bus and car
activities while the rail class contains train and subway
activities.
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Fig. 9. Comparing the F1-score of our proposed method with traditional
methods who use fixed-size windowing approach for signal segmentation
shows the superiority of our method and importance of considering multi-
class windows in activity recognition with timeseries.

• Scenario3: Eight classes considering each activity as a
separate class.

A. Dataset and Task Description

The objective of this article is to recognize modes of
locomotion and transportation activities and precisely detect
transition points between the activities via data recorded with
motion sensors. The activities that have to be recognized are
still, walk, run, bike, car, bus, train, and subway from the
publicly available SHL dataset. The SHL dataset used for
this study comprises 271 hours of training data and 95 hours
of test data [25]. The data is recorded by a Huawei Mate
9 smartphone attached to the right front pocket of participants
over a period of seven months. The orientation of the smart-
phone is not necessarily fixed. The data includes readings from
a 3D accelerometer, gyroscope, magnetometer, and ambient
pressure sensor as well as linear acceleration, gravity, and
orientation (represented in quaternion form). Data is collected
from all sensors at the frequency of 100 Hz and all samples are
labeled. We aim to precisely identify transition points between
modes of locomotion and transportation in time-series sensor
data. Therefore, we evaluate the performance of our system
with sample-based classification metrics.

B. Sample-Based Classification Results

To demonstrate the overall effectiveness of our activity
recognition framework we compare it to the conventional
approach of using fixed size windows. The results of this
comparison are shown in Fig. 9. The overall performance,
blue and cyan bars, report the F1-score for all the samples
in the testing dataset, and the multi-class windows, orange
and yellow bars, show the F1-score for only the 60-second
windows that contain a transition between the activities. As the
figure shows, in all three scenarios, our method (blue and
orange bar) outperforms the fixed size windowing approach by
28% in multi-class windows that contain transitions between
modes of locomotion and transportation. The overall accuracy
of our method for all test samples is 1.5% better than the fixed-
windowing approach since most of the windows, 96%, do not
contain a transition in this dataset. To mimic the conventional

Fig. 10. The overall confusion matrix for detecting eight modes of loco-
motion and transportation with our method (numbers are percentage).

fixed windowing approach we used the same classifier as
Section III-B-2 and removed the transition detection module
(Section III-C-2), so the classifier analyzes only 60-second
windows and assigns one label to all the samples within a win-
dow. This approach performs poor in multi-class windows. The
lower accuracy of fixed-size windowing approach, specifically
for transitional windows, stresses the importance of multi-class
windows for accurate recognition. Moreover, from Fig. 9 it can
be seen that when we combine some modes of transportation
together as one class (i.e., scenarios 1 and 2) the accuracy is
higher compared to the case of detecting them separately (i.e.,
scenario 3).

It should be noted that our proposed algorithm functions
based on the assumption that one window of size 60 seconds
could contain up two activity classes. Although in some cases
there might be more than two activities occurring within a
60 seconds window (e.g., walk to train platform, wait few
seconds, and take train), in the current application we are
mainly interested in detecting long-term transportation and
locomotion activities. Hence, very short instances of walking
or standing, which may happen in between two transportation
and locomotion activities are not of interest. In this case, our
proposed algorithm may consider such a short-term activity
as one of the two longer term classes. In most of context-
aware applications and services detecting long-term activities
and the moment of change between the two is more important
than short term transitional activities. In the SHL dataset,
60-second windows with more than two activity label were
not observed as the labels are provided for long-term modes
of locomotion and transportation. In fact, in SHL, short-term
transitional activities that may happen in between two modes
of transportation and locomotion have not been considered.
Expanding the proposed algorithm for detecting cases with
short-term transitional activities inspires an excellent future
direction.

Fig. 10 shows the overall confusion matrix of our model
for scenario 3 where all the class labels are considered inde-
pendently. In the confusion matrix, each column corresponds
to the true label and each row corresponds to the estimated
label. As seen in Fig. 10, most of the misclassifications
occur between the train and subway classes because they
have very similar signal behaviors. This also explains why
the performance is better in scenario 1 and 2 compared to
scenario 3 as seen in Fig. 9. The activity ‘still’ is also confused
with some of transportation activities when the vehicle moves
steadily. Walk, run and bike are the easiest to be recognized
as they possess unique and specific patterns in both time and
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Fig. 11. The performance versus window size which shows that
60-second window is the optimum window size.

frequency domains. We also assess the effect of the size of
the window on the performance to find the most optimal
window size to start with in our algorithm, as shown in Fig. 11.
The values correspond to scenario 3 where all activity labels
are treated separately. As the figure represents, a 60-second
window size is the smallest choice that yields an acceptable
accuracy before a significant decline occurs. This proves that
60-second window is the best option to begin analysis with
for our proposed framework. Furthermore, this justifies the
fairness of our comparison in Fig. 9 as 60 seconds is the best
choice for the fixed-size windowing approach.

Lastly, we compare the performance of our method to the
existing state-of-the-art methods with respect to recognition
accuracy for multi-class windows. As aforementioned, we
make use of the SHL dataset which has been used in the
HASCA Sussex-Huawei Locomotion Challenge 2018 [29].
The F1-Score of the winner of the competition on multi-
class windows is approximately 65%, which is 17% less than
our method, while their overall accuracy is 93.9% [30]. Our
framework achieved overall 0.5% higher F1-Score than [30]
which is mainly due to better detection of multi-class windows
although less than 4% of all data windows contain such multi
labels. Another study [31] achieved the best overall F1-score
of 92.9% using CNN with frequency-domain sensor inputs
and post-processing based on majority voting, which is 1.5%
less than ours. They do not report the performance over multi-
class labels but it is believed that the main difference is related
to those challenging segments of data. It must be noted that
the results demonstrate without frequency domain inputs, the
F1-score drops to 86.6% and without the postprocessing, it
drops to 82.5%. Finally, the best accuracy that was provided
with traditional machine learning models was 87% through
SVM. There are only a few studies that share the results
specifically over multi-class (i.e., transition) windows. Such
results were reported for the participants of the HASCA2018
challenge [29]. The two best performance obtained on multi-
class windows were approximately 75% [32] and 74% [28] in
this competition, which are 7% and 8% less than our method.

C. Computational Time

To show the effectiveness of our divide and conquer algo-
rithm which narrows down the window that is susceptible
to have multiple, distinct labels, we compare it to the case

TABLE IV
COMPARING COMPUTATIONAL TIME AND ACCURACY OF OUR METHOD

WITH NAÏVE SEARCH APPROACH WHO PERFORMS THE SEARCH ON

ALL THE SAMPLES WITHIN A 60-SECOND WINDOW

Fig. 12. Illustration of different misalignment performance metrics.
Different colors show different activities.

of searching for the transition sample within a 60-second
window called “naive search” in Table IV. In this approach,
when we suspect a transition from one window to the next,
we go through all the samples within those two windows (of
size 60 seconds) and at each sample we apply the transition
detection algorithm. In fact, in this approach, the divide and
conquer method is not utilized and transition search algorithm
is directly applied to the samples of 60-seconds windows.

As Table IV shows, our algorithm achieves the same accu-
racy as the naive search, yet it performs the task 20 times
faster. This improvement is achieved due to reducing the win-
dow size for sample-wise search through changing the window
size hierarchically with divide and conquer algorithm. In fact,
the naive search approach requires the classifier to be executed
for 12000 samples within the two windows. Meanwhile, our
approach only requires runtime execution for: four 30-second
windows, four 15-seconds, six 5-second windows, and finally
sample-wise search for 600 samples within the two 5-second
windows. This is 614 runs of classifier which is significantly
less than 12000 runs in the naïve, brute-force search.

D. Activity-Based Misalignment Performance

To demonstrate the effectiveness of our activity recognition
and transition detection method, we evaluate performance
regarding activity misalignment measures proposed in [33].
These activity-based metrics capture the failures of standard
sample-based classification evaluation methods by measuring
artifacts such as overfill, underfill, and substitution as shown
in Fig. 12.

For each activity A the underfill is the ratio of the samples
that are predicted as not A while there are instances of A at
the beginning or end of a period of activity A. The overfill
is the ratio of samples that are predicted as A while they are
not A at the beginning or end of a period of activity A. These
two metrics are not related to classifier’s mistakes but they
happen due to inappropriate signal segmentation. These two
metrics are of interest of this study, where our method tries
to minimize them. Substitution is the typical misclassification
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Fig. 13. Sample-wise misalignment performance metrics. The figure depicts these metrics for only multi-class windows. It shows that a huge amount
of misclassifications happened in fixed-size windowing approach is due to underfill and overfill but not substitution.

which is the actual mistake of the classifier. These measures
provide deeper insight to the sample-wise misclassifications
within a class as they can provide an in-depth evaluation of
the effectiveness of the proposed approach for the problem of
transition detection within multi-class windows. Specifically,
the two metrics underfill and overfill demonstrate the weak-
ness of inappropriate signal segmentation. These measures
are independent of typical classifier’s mistakes that happen
due to insufficient training. We report these three activity
misalignment measures with respect to the ground truth for
each activity.

Fig. 13 compares overfill, underfill, and substitution metrics
between our approach and fixed size windowing approach
for all the misclassified samples within only the multi-class
windows that contain transition. As the figure shows, our
model has less underfill and overfill, 28.98% and 26.28%
respectively, and 0.45% less substitution, compared to the fixed
size windowing approach on average over eight activities.

This proves its superiority with respect to the precision of
transition point detection. As the figure shows, the fixed-size
windowing approach performs very poorly; the deficit is more
significant in overfill and underfill but not in substitution.
This shows that most of the misclassifications come from
assigning one label to all the samples of a window. This
means that the (in)capability of the classifier is not the source
of misclassification; instead, inappropriate signal segmentation
causes the problem. The small amount of substitution in both
our method and the fixed-size windowing approach shows
that the classifier does not make many misclassifications with
respect to one activity versus another. However, when fixed-
size windowing approach assigns one label to all the samples
within a window, it increases the misclassification around the
transition moment, which in turn causes more overfill and
underfill instances. Since most of the error (∼15%) in multi-
class windows is related to overfill and underfill and less is
related to the substitution, we can assume that the error of
detecting the exact moment of transition could be less than
9 seconds which is 15% of the total length of main windows
(i.e., 60 seconds).

Fig. 14. The confusion matrix of detecting modes of locomotion and
transportation over multi-class (i.e., transition) windows with our method
(numbers are percentage).

Fig. 14 shows the confusion matrix for multi-class win-
dows that contain transition between activities. This confusion
matrix is measured per sample of data. As the figure shows,
most of the activities are confused with the class still. The
reason for this is to have several multi-class windows con-
taining the still class in which overfill and underfill can cause
misclassified samples.

E. Component Evaluation

In this section, we investigate the effectiveness of different
parts of our model. First, we assess the effectiveness of
our proposed signal images for 2D CNN as described in
Section III-B-2 by comparing it to typical 2D CNN and 1D
CNN where the results are shown in Fig. 15. The typical 2D
CNN includes putting three axes of sensors in a 6000∗3 image
file, where the window size is 6000 corresponding to a minute
of data, and apply 2D kernels. As Fig. 15 shows, the signal
image proposed in this study (Section III-B-2) along with
2D convolutions improves the accuracy by 2% on average
compared to the case of applying 2D convolutions to a simple
signal image (typical 2D CNN). The issue with typical 2D
CNN approach is that it cannot consider all possible inter-
axes correlations. Moreover, our approach outperforms the
most commonly used approach in the literature, which is
1D convolutions, by 2.5%. 1D convolution is not capable
of capturing any inter-axes correlations, despite that such
correlations contain important activity information.
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Fig. 15. Comparing the proposed 2D signal image with typical 2D and
1D convolutions.

Fig. 16. Evaluation of the effect of each component of coarse-grained
classifier. F: Hand-crafted Features; T: Raw Time-domain Signal;
P: PSD.

The second investigation is devoted to the compo-
nents of the coarse-grained classifier. As explained in
Section III-B-2, the coarse-grained classifier receives inputs
from three different sources, namely the hand-crafted features,
raw time-domain signals, and the PSD. Fig. 16 shows the per-
formance of the system with different configurations of inputs
in scenario 3 where all the classes are considered separately.
Based on this figure, using all three sources together achieves
the best results, showing that each part of this network is
necessary to obtain good results. Based on Fig. 16, using only
raw time-domain data with CNN gives the lowest accuracy.
Deeper assessment of this case reveals that the CNN with
raw data can detect walk, run, and bike activities very well
while it is incapable of distinguishing between motorized
transportations as well as “still”. The reason behind this is
the fact that all the motorized and still activities have a
similar time-domain pattern. Moreover, the signal of these
activities does not have a specific pattern; instead, it is semi-
constant signal dominantly. Another interesting conclusion
from this figure is that hand-crafted features perform better
than automated features of CNN which is in contrast to [21].
This shows that although CNN performs well in terms of

automated feature extraction, it should be used very carefully
since it does not work appropriately facing with signals that
do not have specific distinguishable patterns. Finally, from this
figure we can conclude that utilizing both hand-crafted and
extracted features of CNN together is a reasonable solution as
they can compensate for shortcomings of each other.

Finally, using the label arbitrator module, which utilizes
RNN to model temporal order of human natural activities,
improves the performance by 7%. This shows that considering
the nature of human activities, which is sequential and follows
certain temporal orders, is critical for building accurate activity
recognition systems.

V. CONCLUSION

In this study we proposed a deep learning based framework
for detecting activities, specifically, modes of locomotion and
transportation with wearable motion sensors, along with the
ability to precisely detect transitions between the activities.
We improved the performance of a conventional CNN for
activity recognition by: 1) proposing a new structure of signal
image that allows us to consider all possible multi-axes
correlations, 2) incorporating multiple outputs from expert
knowledge and automated features, and 3) proposing a label
arbitrator based on RNN to model temporal order of human
activities. Moreover, the proposed search algorithm for finding
the exact sample of transition between activities reduces the
computational time significantly while it achieves a reasonable
accuracy compared to the case of naïve search. The proposed
methodology can be leveraged in different classification tasks
where detecting the exact moment of transition in time-series
data is of interest. In fact, this technique can be an alternative
for fixed-size segmentation approach for analyzing sensors
time-series. Our proposed methodology, if deployed on a large
scale, can provide important and useful contextual information
for the users to mobile applications, and can unlock many
new context-aware mobile sensing, computing and application
paradigms.
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