
  

  

Abstract— In this work, we describe a methodology to 
probabilistically estimate the R-peak locations of an 
electrocardiogram (ECG) signal using a particle filter. This is 
useful for heart rate estimation, which is an important metric 
for medical diagnostics. Some scenarios require constant in-
home monitoring using a wearable device. This poses a 
particularly challenging environment for heart rate detection, 
due to the susceptibility of ECG signals to motion artifacts. In 
this work, we show how the particle filter can effectively track 
the true R-peak locations amidst the motion artifacts, given 
appropriate heart rate and R-peak observation models. A 
particle filter based framework has several advantages due to 
its freedom from strict assumptions on signal and noise models, 
as well as its ability to simultaneously track multiple possible 
heart rate hypotheses. Moreover, the proposed framework is 
not exclusive to ECG signals and could easily be leveraged for 
tracking other physiological parameters. We describe the 
implementation of the particle filter and validate our approach 
on real ECG data affected by motion artifacts from the MIT-
BIH noise stress test database. The average heart rate 
estimation error is about 5 beats per minute for signal streams 
contaminated with noisy segments with SNR as low as -6 dB. 

I. INTRODUCTION 

Of all the physiological parameters associated with the 
human body, those related to the heart consistently draw the 
most attention. One of the most widely used indicators of 
heart health is the heart rate obtained through the 
electrocardiogram (ECG). Not only is this a standard vital 
sign monitored in hospitals, it is also useful for recovering 
patients to self-monitor in-home. In addition, the heart rate 
also provides valuable feedback to health enthusiasts, 
especially during exercise.  

The scenario of in-home, around the clock monitoring is 
of particular interest, as demonstrated by the recent 
proliferation of wearable monitoring devices on the market. 
Heart rate variability (HRV) for instance, is an important 
indicator of heart health and it is a trend that needs to be 
monitored throughout the day; for example it has been shown 
that reduced HRV could predict the occurrence of myocardial 
ischemia [1].  

Monitoring in day-to-day life in a home setting or during 
exercise presents significant obstacles. Firstly, long-term in-
home monitoring would require a comfortable, wearable 
solution which would preclude the use of more stable and 
reliable electrode contacts such as gel-based adhesive 
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patches. Secondly, there will likely be motion artifacts 
affecting the stream of ECG due to the various activities 
performed by the user during the course of the day. Both of 
these factors result in a noisier ECG stream and estimating 
the heart rate from this is not so straightforward. 

As an example, Figure 1 shows two versions of the same 
ECG segment, one clean and the other corrupted by motion 
artifacts with 0 dB SNR. In both cases, the true ECG R-peaks 
are marked in blue. The bottom figure annotates all the peaks 
detected by a wavelet-based peak-detection algorithm, 
including false positives that are marked in black. 

There have been many proposed approaches in the 
literature to obtain an accurate heart rate estimate from a 
noisy ECG signal. Several works have been based on the use 
of an adaptive filter, but such techniques always depend on 
the availability of an external reference signal, such as 
accelerometer data [2] or electrode tissue impedance [3], 
which in turn increases the complexity and cost of the 
hardware. Moreover, different reference signals may be 
better correlated with different types of motion artifacts and 
thus a system based on only one reference signal may not 
represent a generalized solution to handle artifacts from a 
variety of user actions. 

Methods based on a Kalman filter do not rely on an 
external reference but these techniques assume that the signal 
and observation models are linear functions and that the noise 
is Gaussian, which is not always the case for biomedical 
applications [4]. The extended Kalman filter was introduced 
to circumvent the disadvantage of the linearity assumption 
[5], but just like the regular Kalman filter it still suffers from 
the fact that only unimodal Gaussian distributions can be 
tracked [4]. In other words, only one state can be tracked at a 
time and if the estimate diverges from the true state, it may 
continue to diverge beyond recovery. 

Blind source separation methods such as independent 
component analysis (ICA) used for motion artifact reduction 
[6] depend on having multiple streams of data, and again, this 
brings extra hardware cost; not to mention potentially 
compromising the comfort of the user in having to wear 
multiple sensors throughout the day. 

The particle filter is a probabilistic method that does not 
depend on any external reference signal nor assume a specific 
distribution for either the signal or the noise. It is robust and 
has the potential to recover from incorrect estimates since it 
always keeps track of multiple possibilities. It is 
generalizable and can relatively easily be adapted to handle a 
variety of signal and noise models. It is also straightforward 
to tune certain parameters of the particle filter to trade-off 
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between computational complexity, accuracy and robustness 
depending on the application scenario. 

 
Figure 1 - Clean ECG with R-peaks marked (top) and Motion Artifact 

affected ECG (bottom)  

The particle filter has been previously employed in other 
similar applications. However these usually involve a 
complex dynamical model for the ECG, which involves 
several state dimensions which in turn increases the 
computational cost and complexity [7-9]. Another work 
based on an ECG model has a much reduced dimensionality 
for the state space; however it is only tested for ECG 
contaminated by white or pink noise [10]. The target 
application scenario for these is detecting characteristic 
points in clean or white-noise affected ECG, which is quite 
different from our focus here. 

A particle filter has also been employed for muscle 
artifact affected ECG de-noising, however this also relies on 
a sophisticated model that is specific to the progression of 
ECG with multi-dimensional states and does not seem to be 
validated on ECG signals with a significant amount of noise 
[11]. Moreover, in all of the above, the approach that relies 
on the use of a single rigid and specific mathematical model 
may not be generalizable to be used for a wider variety of 
ECG signals from different subjects [12]. 

The primary contribution of this work is the introduction 
of an intuitive and lightweight particle filter framework that 
processes noisy ECG by probabilistically determining if a 
given peak in the signal stream corresponds to an R-peak or 
an artifact, followed by validation of the approach on real 
motion artifact affected ECG data. Moreover, the framework 
itself is generic enough such that it could be applicable to a 
wide range of users and scenarios as well as the tracking of 
similar physiological signals other than ECG, such as the 
photoplethysmogram (PPG). 

II. THEORY 

A. Particle Filter 
The particle filter employs a recursive technique to 

estimate the current state of the system by iteratively 
propagating and weighting a set of particles such that they 
converge to represent the posterior probability density of the 
state. In the current work, the state being estimated is the 

current heart rate corresponding to the ECG signal. Each 
particle represents a possible heart rate and the weight 
distribution of particles indicates the most probable candidate 
for the true heart rate of the signal; particles with higher 
weight have a higher probability of being the true state of the 
system. This distribution is guided by a weight update step, 
based on information from an observation mechanism, i.e. 
some method to observe the current true heart rate via noisy 
measurements, and provide a measure of the correctness of 
that observation. The observation mechanism will be 
described in detail in Section III B. 

B. Features and Limitations 
The particle filter requires no assumptions about the 

probability distribution of the state space, the observation 
model, or the nature of the noise affecting these. This allows 
the filter to track multiple hypotheses within an arbitrarily 
distributed probability space. This feature is especially useful 
for ECG data because very often, motion of the sensor causes 
spike-like artifacts which could be mistaken for the R-peak of 
ECG. Consequently, the posterior heart rate probability 
distribution, based on whether or not false positives are 
included, actually becomes a multi-modal distribution, rather 
than a single Gaussian distribution around the true value. The 
particle filter can keep track of these multiple possible heart 
rates until it converges to the true estimate.  

One of the primary disadvantages of using a particle filter 
is the computational effort; for several applications, 
especially those that rely on low-power devices with limited 
computational resources, handling a large number of particles 
may be unfeasible. For our application, however, we are only 
looking at tracking one dimension of data and we can achieve 
a low error rate with a relatively small number of particles 
compared to other implementations. 

III. METHODS 

A.  ECG Model 
Figure 2 shows two beats of a clean ECG stream with the 

R-peak and R-R interval marked. In this work, the particle 
filter probabilistically estimates the locations of R-peaks by 
leveraging the properties of consecutive R-R intervals; 
namely the fact that changes in the heart rate of the human 
heart are relatively smooth, stable and slow-changing. 

 
Figure 2 - ECG signal showing R-peak and R-R interval 

The particle filter estimates the heart rate for each fixed 
length moving window of the continuous ECG stream. If 
𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) represents the time domain ECG signal with duration 
of T seconds, we can define the window parameters as 
follows: 

                     𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑇𝑇 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 𝑇𝑇𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠⁄               (1) 

   𝑡𝑡1 = (𝑖𝑖 − 1)𝑇𝑇𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠                              (2) 



  

                              𝑡𝑡2 = (𝑖𝑖 − 1)𝑇𝑇𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑          (3) 

  𝑛𝑛𝑑𝑑 =  𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑑𝑑),  𝑡𝑡1 ≤ 𝑡𝑡𝑑𝑑 ≤ 𝑡𝑡2             (4) 

∀𝑖𝑖 ∈ (1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), 

where 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the total number of windows, 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is 
the window time duration (in seconds), 𝑇𝑇𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠 is the window 
step size (in seconds) and 𝑛𝑛𝑑𝑑 is the ith window of ECG  

Keeping in mind the calculation complexity, desired 
resolution of heart rate and the sufficiency of information in a 
window, we heuristically fixed the window time period and 
the window step size to be 4 seconds each.  

We assume in this model that the true heart rate does not 
vary by a few beats per minute (bpm) between two 
consecutive non-overlapping windows, which is a heuristic 
assumption. Hence, in this initial study, we do not yet 
consider extreme situations where higher rates of change are 
observed.  

B. Observation Mechanism 
The observation mechanism is used in particle filters to 

give some insight into the current true state of the system and 
it dictates the weight or reliability of each of the observations. 

In our work this observation mechanism is used to 
identify all possible candidates for an R-peak in one window 
of ECG. This is based on the MATLAB ‘findpeaks’ function 
as follows: 

𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛𝑑𝑑 ,𝑛𝑛𝑖𝑖𝑛𝑛𝑚𝑚𝑛𝑛𝑓𝑓,𝑛𝑛𝑖𝑖𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑒𝑒) 

=  {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑘𝑘} =  𝑃𝑃𝑊𝑊𝑖𝑖  

∀𝑖𝑖 ∈ (1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

where 𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛𝑑𝑑 ,𝑛𝑛𝑖𝑖𝑛𝑛𝑚𝑚𝑛𝑛𝑓𝑓,𝑛𝑛𝑖𝑖𝑛𝑛𝑇𝑇𝑖𝑖𝑛𝑛𝑒𝑒) finds the time 
of occurrence of all peaks in  𝑛𝑛𝑑𝑑 that have amplitude at least 
minAmp and such that no two peaks are within minTime 
distance, and 𝑃𝑃𝑊𝑊𝑖𝑖  is the set of peak locations in time, 
{𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑘𝑘}, returned by the findpeaks function. 

We then calculate the heart rate (in bpm) corresponding 
to each and every possible combination of these peaks in that 
window. The number of combinations for each window is 
given by: 

   𝑁𝑁𝑁𝑁𝑑𝑑 = ∑ �𝑘𝑘𝑖𝑖𝑗𝑗 �
𝑘𝑘𝑖𝑖
𝑗𝑗=3                            (5) 

𝑃𝑃𝑁𝑁𝑑𝑑  ≜ 𝑇𝑇ℎ𝑒𝑒 𝑓𝑓𝑒𝑒𝑡𝑡 𝑜𝑜𝑓𝑓 𝑁𝑁𝑁𝑁𝑑𝑑  𝑒𝑒𝑜𝑜𝑛𝑛𝑐𝑐𝑖𝑖𝑛𝑛𝑓𝑓𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑓𝑓 𝑜𝑜𝑓𝑓 𝑒𝑒𝑙𝑙𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑓𝑓 𝑜𝑜𝑓𝑓𝑃𝑃𝑊𝑊𝑖𝑖 

∀𝑖𝑖 ∈ (1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

where 𝑁𝑁𝑁𝑁𝑑𝑑 is the total number of combinations of peak 
locations in window 𝑛𝑛𝑑𝑑, and 𝑓𝑓𝑑𝑑 is the number of peak 
locations in the set 𝑃𝑃𝑊𝑊𝑖𝑖 . The set of combinations is restricted 
to those involving at least 3 peaks due to the nature of the 
observation weighting procedure, which is described at the 
end of this section. 

The observations are the heart rates estimates for each of 
these peak combinations, and are calculated as follows: 

    𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑗𝑗 =  𝑃𝑃𝑁𝑁𝑑𝑑
𝑑𝑑

(𝑗𝑗 + 1) − 𝑃𝑃𝑁𝑁𝑑𝑑𝑑𝑑(𝑗𝑗)                (6) 

𝑓𝑓𝑎𝑎𝑒𝑒𝑎𝑎𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑎𝑎𝑎𝑓𝑓𝑙𝑙 =
∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗
𝑚𝑚−1
𝑗𝑗=1
𝑚𝑚−1

                          (7)    

𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑓𝑓𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑
𝑑𝑑 = � 1

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎
� × 60          (8) 

∀𝑖𝑖 ∈ (1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), ∀𝑛𝑛 ∈ (1,𝑁𝑁𝑁𝑁𝑑𝑑), ∀𝑗𝑗 ∈ (1,𝑛𝑛 − 1) 

where 𝑃𝑃𝑁𝑁𝑑𝑑𝑑𝑑(𝑗𝑗) is the jth peak location in the nth element of 
𝑃𝑃𝑁𝑁𝑑𝑑, 𝑛𝑛 is the number of peak locations in 𝑃𝑃𝑁𝑁𝑑𝑑𝑑𝑑 and 
𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑓𝑓𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑

𝑑𝑑 is the heart rate observation in bpm 
corresponding to the nth combination of peak locations in 
window 𝑛𝑛𝑑𝑑  

Each of these heart rate candidates is then assigned a 
weight, which reflects the confidence that the set of peaks 
corresponding to that heart rate consists of true R-peaks only. 
In our work, we wanted to leverage the fact that the human 
heart rate is relatively steady and slow-changing, whereas 
peaks caused by motion artifacts are likely to be irregularly 
spaced in time. Keeping these in mind, the weight measure 
for a given set of peaks was calculated as follows: 

𝜎𝜎𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎(∀𝑗𝑗 ∈ (1,𝑛𝑛− 1),𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑗𝑗)         (9) 

𝑜𝑜𝑐𝑐𝑓𝑓𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡𝑑𝑑
𝑑𝑑 = 1/𝜎𝜎𝑑𝑑𝑑𝑑                          (10) 

∀𝑖𝑖 ∈ (1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), ∀𝑛𝑛 ∈ (1,𝑁𝑁𝑁𝑁𝑑𝑑) 

where 𝜎𝜎𝑑𝑑𝑑𝑑 is the standard deviation of the set of all elements 
of 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑗𝑗 for the nth combination of peak locations of the ith 
window and 𝑜𝑜𝑐𝑐𝑓𝑓𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡𝑑𝑑

𝑑𝑑 is the weight assigned to the nth 
combination of peak locations in window 𝑛𝑛𝑑𝑑  

Since this mechanism relies on standard deviation and 
seeing a trend in the heart rate variability, we decided that 
only combinations of at least 3 peaks would be considered in 
each window. Note that since the window size is 4 seconds, 
we expect at least 3 true R-peaks to be present even for very 
low heart rates. The proposed approach hinges on the 
assumption that at least one of the combinations constitutes 
the set of true R-peaks.  

 This ‘findpeaks’ function is a little too naïve on its own 
for noisy signals and so we leveraged the continuous wavelet 
transform (CWT) to reduce the number of false positives. We 
applied the CWT on the noisy ECG signal, and then used the 
‘findpeaks’ function on the resulting transformed signal (with 
higher thresholds) to find the locations of the peaks. 
According to the guidance of a previous work, a Mexican Hat 
wavelet with a center frequency of 0.25 Hz and a scale of 
5.29 was used to mimic the shape of an R-peak [13]. Each of 
the windows 𝑛𝑛𝑑𝑑 referred to in this work are the windows of 
the wavelet transformed ECG signal.  

It must be noted that although this process eliminates a lot 
of the false positives, several of them still remain and the 
particle filter is still necessary to track the true heart rate. It 
will be discussed further in Section IV that the heart rate 
estimation performance suffers if we rely solely on threshold 
based peak detection even after the wavelet transformation. 

C. Particle Filtering 
Estimating the true heart rate given a noisy ECG signal 

can be formulated as a state estimation problem, where the 
state space representation of the system is given by: 
 



  

𝒳𝒳𝑑𝑑~𝜋𝜋𝑥𝑥(𝒳𝒳𝑑𝑑) (prior distribution) 

𝑍𝑍𝑑𝑑|𝒳𝒳𝑑𝑑~ 𝑒𝑒(𝒳𝒳𝑑𝑑) (measurement model) 

𝒳𝒳𝑑𝑑+1|𝒳𝒳𝑑𝑑~ 𝑓𝑓(𝒳𝒳𝑑𝑑) (state dynamics) 

where 𝒳𝒳𝑑𝑑  denotes the true system state, i.e., the true heart rate 
at time t, 𝜋𝜋𝑥𝑥(𝒳𝒳𝑑𝑑) denotes the probability distribution of the 
system based on prior knowledge, 𝑍𝑍𝑑𝑑 denotes a set of discrete 
observations, i.e., the set of heart rate observations as 
described in the previous section, 𝑒𝑒(∙) is a function 
representing the observations conditioned on the true heart 
rate,  and 𝑓𝑓(∙) is the state dynamics model that characterizes 
the heart rate dynamics as a function of the moving window 
indices of the ECG signal over time. 

The state estimation problem can be delegated to a 
particle filter, which is a sequential Monte Carlo method that 
solves the problem by maintaining a set of weighted 
particles, each being a candidate state estimate, its weight 
being proportional to how likely the particle is to being the 
true state. At each step of the particle filtering problem, the 
goal is to estimate the posterior state distribution 
(𝑓𝑓(𝒳𝒳𝑑𝑑|𝑍𝑍𝑑𝑑)), i.e., the probability distribution of the current 
true state given a set of observations. This is estimated by 
the weighted sum: 

𝑓𝑓(𝒳𝒳𝑑𝑑|𝑍𝑍𝑑𝑑) = ∑ 𝑛𝑛𝑋𝑋𝑡𝑡
𝑝𝑝𝛿𝛿(𝑁𝑁𝑝𝑝

𝑠𝑠=1 𝒳𝒳𝑑𝑑 − 𝑋𝑋𝑑𝑑
𝑠𝑠)         (11) 

where 𝑋𝑋𝑑𝑑
𝑠𝑠 is the pth particle at window t, 𝑛𝑛𝑋𝑋𝑡𝑡

𝑝𝑝 denotes the 
weight of particle 𝑋𝑋𝑑𝑑

𝑠𝑠, 𝑁𝑁𝑠𝑠 is the total number of particles 
and 𝛿𝛿(∙) is the Dirac delta function, used to place a mass at 
the particle’s location in the posterior probability density 
function. 

The state-space representation of the heart-rate estimation 
problem given a noisy ECG signal can be formulated as 
follows: 

𝒳𝒳𝑑𝑑~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑜𝑜𝑎𝑎𝑛𝑛(𝐻𝐻𝐻𝐻𝑚𝑚𝑑𝑑𝑑𝑑 ,𝐻𝐻𝐻𝐻𝑚𝑚𝑑𝑑𝑥𝑥) (prior distribution) 

𝑍𝑍𝑑𝑑|𝒳𝒳𝑑𝑑~ 𝑒𝑒(𝒳𝒳𝑑𝑑) (measurement model) 

𝒳𝒳𝑑𝑑+1|𝒳𝒳𝑑𝑑~ 𝑁𝑁(𝒳𝒳𝑑𝑑 ,𝜎𝜎𝑥𝑥) (state dynamics) 

where 𝐻𝐻𝐻𝐻𝑚𝑚𝑑𝑑𝑑𝑑  and 𝐻𝐻𝐻𝐻𝑚𝑚𝑑𝑑𝑥𝑥 denote the assumed lower and 
upper limits of the heart rate. The prior distribution is 
considered to be a uniform distribution between these two 
limits. Here, 𝑁𝑁(𝒳𝒳𝑑𝑑 ,𝜎𝜎𝑥𝑥) denotes a Gaussian distribution with 
mean equal to the true heart rate in window t, and standard 
deviation 𝜎𝜎𝑥𝑥 reflecting the maximum expected change in 
heart rate from one window to the next. Thus, the state 
dynamics of the heart rate is formulated as a Gaussian 
random walk between windows and 𝜎𝜎𝑥𝑥 is set to be 3 bpm in 
accordance with the ECG model described earlier in Section 
III A.  

The measurement model 𝑒𝑒(𝒳𝒳𝑑𝑑), which relates the 
observations to the true heart rate, can be modeled as follows: 

𝑓𝑓(𝑍𝑍𝑑𝑑|𝒳𝒳𝑑𝑑) =  �𝑓𝑓(𝑍𝑍𝑑𝑑𝑑𝑑|𝒳𝒳𝑑𝑑)
 𝑁𝑁𝐶𝐶𝑖𝑖

𝑑𝑑=1

 

=  ∑ 𝑜𝑜𝑐𝑐𝑓𝑓𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡𝑑𝑑
𝑑𝑑𝑁𝑁(𝒳𝒳𝑑𝑑 ,𝜎𝜎𝑧𝑧) 𝑁𝑁𝐶𝐶𝑖𝑖

𝑑𝑑=1                   (12) 

where 𝑍𝑍𝑑𝑑𝑑𝑑 refers to 𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑓𝑓𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑
𝑑𝑑, the  nth heart rate estimate 

in window t from (8), 𝑜𝑜𝑐𝑐𝑓𝑓𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡𝑑𝑑
𝑑𝑑 is the weight associated 

with the observation, which can be thought of as a likelihood 
measure of the observation belonging to the true heart rate, 
and 𝑁𝑁(𝒳𝒳𝑑𝑑 ,𝜎𝜎𝑧𝑧) denotes a Gaussian distribution with mean 
equal to the heart rate in window t, and standard deviation 𝜎𝜎𝑧𝑧 
reflecting the maximum tolerable deviation between the true 
heart rate and the observation. 

The particles are initially distributed uniformly between 
𝐻𝐻𝐻𝐻𝑚𝑚𝑑𝑑𝑑𝑑  and 𝐻𝐻𝐻𝐻𝑚𝑚𝑑𝑑𝑥𝑥 , defined to be 30 and 220 bpm 
respectively for this work. The total number of particles, 𝑁𝑁𝑠𝑠, 
is set to be 100 and the individual particle weights are all set 
to be 1

𝑁𝑁𝑝𝑝
. 

When the first window of ECG is processed, each particle 
is assigned a weight to reflect the probability that it 
represents the true heart rate. This is done as follows: 

𝑛𝑛𝑋𝑋𝑖𝑖
𝑝𝑝 ∝ 𝑓𝑓(𝑍𝑍𝑑𝑑|𝑋𝑋𝑑𝑑

𝑠𝑠) =  �𝑓𝑓�𝑍𝑍𝑑𝑑𝑑𝑑�𝑋𝑋𝑑𝑑
𝑠𝑠�

 𝑁𝑁𝐶𝐶𝑖𝑖

𝑑𝑑=1

 

= ∑ 𝑜𝑜𝑐𝑐𝑓𝑓𝑛𝑛𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡𝑑𝑑
𝑑𝑑 × 𝑁𝑁( 𝑁𝑁𝐶𝐶𝑖𝑖

𝑑𝑑=1 𝑍𝑍𝑑𝑑𝑑𝑑 ,𝑋𝑋𝑑𝑑
𝑠𝑠,𝜎𝜎𝑧𝑧)                (13) 

𝑛𝑛𝑁𝑁𝑜𝑜𝑎𝑎𝑛𝑛𝑋𝑋𝑖𝑖
𝑝𝑝 = 𝑛𝑛𝑋𝑋𝑖𝑖

𝑝𝑝 ∑ 𝑛𝑛𝑋𝑋𝑖𝑖
𝑟𝑟

𝑁𝑁𝑝𝑝
𝑑𝑑=1�                       (14) 

∀𝑓𝑓 ∈ �1,𝑁𝑁𝑠𝑠� 

where 𝑋𝑋𝑑𝑑
𝑠𝑠 is the pth particle of the ith window, 𝑛𝑛𝑋𝑋𝑖𝑖

𝑝𝑝 is the 
weight of particle 𝑋𝑋𝑑𝑑

𝑠𝑠,  𝑁𝑁(𝑍𝑍𝑑𝑑𝑑𝑑 ,𝑋𝑋𝑑𝑑
𝑠𝑠,𝜎𝜎𝑧𝑧)  is the value of a 

Gaussian distribution with mean 𝑋𝑋𝑑𝑑
𝑠𝑠 and standard deviation 

𝜎𝜎𝑧𝑧 evaluated at 𝑍𝑍𝑑𝑑𝑑𝑑, and 𝑛𝑛𝑁𝑁𝑜𝑜𝑎𝑎𝑛𝑛𝑋𝑋𝑖𝑖
𝑝𝑝 is the normalized weight 

of the pth particle of the ith window. 𝜎𝜎𝑧𝑧 is set to be 2 bpm.  

The heart rate corresponding to the particle with the 
maximum weight is then returned by the particle filter as its 
heart rate estimate for that window:  

                𝐻𝐻𝐻𝐻𝐻𝐻𝑓𝑓𝑡𝑡𝑑𝑑 = 𝑋𝑋𝑑𝑑𝑚𝑚�
𝑑𝑑𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑𝑥𝑥

𝑚𝑚 𝑛𝑛𝑁𝑁𝑜𝑜𝑎𝑎𝑛𝑛𝑋𝑋𝑖𝑖
𝑚𝑚           (15) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝑓𝑓𝑡𝑡𝑑𝑑  is the heart rate estimate of the particle filter 
in bpm for window 𝑛𝑛𝑑𝑑 and 𝑛𝑛 is the index of the particle with 
the maximum weight.  

All the particles are then re-sampled such that, while 
maintaining the same total number of particles, there are now 
more particles around heart rates that had higher weight 
particles in the previous step. This is done in accordance with 
the well-known sampling importance resampling (SIR) 
procedure of particle filters to avoid the problem of particle 
degeneracy [14]. as follows: 

𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛𝑑𝑑
𝑠𝑠 = ∑ 𝑛𝑛𝑁𝑁𝑜𝑜𝑎𝑎𝑛𝑛𝑋𝑋𝑖𝑖

𝑟𝑟
𝑁𝑁𝑝𝑝
𝑑𝑑=1                    (16) 

        𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑𝑑𝑑
𝑑𝑑 |𝑎𝑎𝑓𝑓𝑛𝑛𝑓𝑓(0,1) ≤𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛𝑑𝑑

𝑑𝑑         (17) 

𝑋𝑋𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑑𝑑
𝑠𝑠 = 𝑋𝑋𝑑𝑑𝑑𝑑                               (18) 

∀𝑓𝑓 ∈ �1,𝑁𝑁𝑠𝑠� 

where 𝑋𝑋𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑑𝑑
𝑠𝑠 is the updated state of the pth particle of the 

ith window after resampling and 𝑎𝑎𝑓𝑓𝑛𝑛𝑓𝑓(0,1) is a randomly 
generated number from a uniform distribution between 0 and 



  

1. In the new distribution of particles, the weights are all reset 
to be equal. 

While transitioning to the next window, all particles are 
propagated according to the state dynamics model as follows: 

𝑋𝑋𝑑𝑑+1𝑠𝑠~𝑓𝑓(𝑋𝑋𝑑𝑑+1
𝑠𝑠 |𝑋𝑋𝑑𝑑

𝑠𝑠) 

~ 𝑁𝑁(𝑋𝑋𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑑𝑑
𝑠𝑠 ,𝜎𝜎𝑥𝑥) 

= 𝑋𝑋𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑠𝑠
𝑑𝑑 + (𝜎𝜎𝑥𝑥 ∙ 𝑎𝑎𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛)            (19)  

∀𝑓𝑓 ∈ �1,𝑁𝑁𝑠𝑠� 

where 𝑎𝑎𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛 is a randomly generated number from the 
standard normal distribution and 𝜎𝜎𝑥𝑥 is the heart rate deviation 
limit defined earlier. 

This is done to ensure that the particles reflect the 
changing state of the true heart rate and do not stagnate on 
values converged on previously. The entire process is 
repeated with the next window of ECG on this new 
distribution of particles. 

IV. EXPERIMENTS AND RESULTS 

A. ECG Database 
The ECG data is taken from the MIT-BIH Arrhythmia 

Database and the corresponding noise is taken from the MIT-
BIH Noise Stress Test Database [15, 16]. The noise data 
includes electrode motion artifacts and the database itself 
provides techniques to reliably add known amounts of this 
noise to the corresponding clean ECG data. In order to ensure 
that the various SNR levels are meaningful with respect to 
heart rate detection, the database defines signal power in 
terms of the QRS amplitude and the noise power is measured 
in a frequency weighted manner. 

For this work, we considered only those subjects whose 
ECG streams allowed for relatively simple R-peak detection 
for clean data. In other words, subjects exhibiting frequent 
ventricular ectopies or highly elevated T-segments were 
considered out of the scope of this initial study. With this 
criteria, we picked 7 subjects from the database; namely 
Subjects 103, 112, 115, 117, 122, 123 and 230. 

In this work, we evaluate the proposed particle filter on 
ECG signals with SNR levels ranging from 6dB to -6dB. The 
criterion for evaluation of performance is the error with 
respect to the true heart rate which was obtained using a 
simple peak detection algorithm on the clean ECG signal. 

For the ‘findpeaks’ function, the parameter minAmp was 
set to be 40% of the maximum amplitude of the 
corresponding clean signal, and minTime was set to be about 
270ms, corresponding to a heart rate of about 220 bpm which 
we consider to be the maximum in this target application.   

B. Heart Rate Estimation Results 
The signals were first high-pass filtered in MATLAB 

above 0.5Hz to remove the baseline wander. Each subject’s 
data consisted of a continuous ECG stream of about 30 
minutes. The first 5 minutes was clean, followed by 
alternating 2-minute segments of continuously noisy data (at 
the defined SNR level) and 2-minute segments of 
continuously clean data. This entire stream was processed by 

the particle filter, with the heart rate reported for each 4-
second window. 

Table I shows the overall heart rate estimation error of the 
particle filter, averaged over all time for each subject, as well 
as averaged over all 7 subjects, for the various SNR levels. 
Since there is some randomness associated with the 
distribution of particles in each step, the results are slightly 
different for every run of the filter on the same data. 
Therefore, the particle filter error numbers below are the 
result of averaging after 5 such runs on each dataset. Also 
listed in the table is the error from using the ‘CWT 
Findpeaks’ estimate, which entails calculating the heart rate 
from the peaks returned by the findpeaks function after the 
wavelet transform. This gives us a measure of the system 
performance if it relied only on the time-series observation 
mechanism and not the particle filter that follows. 

TABLE I.  MEAN ABSOLUTE HEART RATE ESTIMATION ERROR 

SNR Particle Filter error 
(bpm) 

CWT Findpeaks 
error (bpm) 

6dB 1.402 12.475 

3dB 2.169 17.613 

0dB 3.461 21.798 

-3dB 4.442 24.742 

-6dB 5.044 27.572 
 

C. Discussion of Results 
As can be seen from the results of Table I, the particle 

filter exhibits competitive performance even for SNR as low 
as -6dB and it compares favorably to relying on wavelet 
transform based peak detection.  

 
Figure 3 - Particle filter tracking compared to CWT Findpeaks method 

Figure 3 shows the tracking performance of the particle 
filter over 4 minutes for Subject 115’s ECG stream. The first 
2 minutes are clean followed by 2 minutes of noisy data with 
0dB SNR. We can see that while the CWT findpeaks method 
tracks perfectly during the clean sections, it drastically 
overestimates due to its inability to distinguish the false 
positives caused by motion artifacts in the latter half of the 
data. The particle filter estimate on the other hand, remains 
relatively stable and accurate in its estimate. 

While these results are promising, there are some 
limitations with the current approach. Firstly, while the 
standard deviation based weighting scheme brings the 
advantage of an intuitive mechanism for this initial study, it 
may be too simplistic for extremely noisy sections. 
Secondly, the method of examining every combination of 



  

peaks exhaustively within a window has no theoretical upper 
bound and could bring about significant computational 
wastage due to its naivety. We intend to address both of 
these issues as well as continue to explore the potential of 
the particle filter for physiological signal monitoring 
applications, especially the implementation in low power 
embedded systems, in future works. 

V. CONCLUSION 
In this work we present a particle filter framework for 

obtaining the heart rate from a noisy, motion artifact affected 
ECG signal. Unlike other techniques, a statistical particle 
filter based approach does not make any assumptions about 
the type of noise nor of the distribution of the state being 
estimated. Testing on real motion artifact affected ECG data 
is shown to have average error of only around 5bpm even 
during conditions with SNR as low as -6dB. This represents 
a very feasible solution for continuous and pervasive 
monitoring of heart rate. Moreover, due to the generic nature 
of the framework it is our hope that in future this technique 
can be leveraged for other physiological signals and 
applications as well.  
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