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ABSTRACT

Recognizing activities of daily living (ADL) in-the-wild,
while users follow their daily routine, is challenging due to
the presence of various activities that do not belong to the
set of desired activities in which the system is interested (i.e.,
NULL class). In this paper, we propose a framework for ADL
recognition via wearable motion sensors with the ability to
detect NULL class. Existing ADL recognition systems either
ignore the NULL class or use some training data to train
a model for recognizing it. However, our framework uses
only samples of the desired activities in the training phase
and learns to detect the NULL samples based on a modified
variational autoencoder model that outputs reconstruction
probability. Experimental results show that in detecting six
ADL with accelerometer data, our system achieves 14%
higher F1-score compared to the models that use training
samples of NULL activities.

Index Terms— Wearable motion sensor, ADL recogni-
tion, variational autoencoder, NULL class detection

1. INTRODUCTION

Recognizing activities of daily living (ADL) with motion sen-
sors is gaining a bold traction in mobile computing as it pro-
vides vital information about people and their activities which
can enhance the effectiveness of many real-world applica-
tions [1]. In contrast to controlled data collection paradigm,
in real-world scenarios, only a few parts of a sensor data are
relevant for ADL recognition systems, and a big portion of the
motion data usually belongs to activities for which the system
is not trained. Those irrelevant activities, called NULL activ-
ities, introduce a big challenge for ADL recognition systems
as the system does not know how to deal with them. Our aim
is to develop a framework for recognizing ADL in-the-wild
using wearable motion sensors with the ability to distinguish
between NULL and desired activities by only using the sam-
ples of the desired activities in the training phase.

This is significant because the NULL class represents
a theoretically infinite space of arbitrary activities and thus

explicitly modeling of it is very challenging, if not impossi-
ble. Moreover, contrary to the systems that are trained for
controlled environments, real-world ADL recognition sys-
tems cannot ignore samples of the NULL class since those
samples usually constitute a major portion of the datasets.
Such a system can monitor the activities under realistic, ev-
eryday life conditions, which can be useful in a wide variety
of applications, such as health monitoring [2].

To avoid the issues with NULL activities, existing ADL
recognition systems either restrict the experiments by asking
participants to perform only the activities of interest and noth-
ing else, or manually remove the samples of NULL activities
from their analysis. The performance of these systems de-
grades drastically when the system is tested in-the-wild due
to the natural occurrence of countless NULL activities, espe-
cially when these resemble the ADLs of interest. Several sys-
tems have attempted resolving this degradation by defining an
extra NULL class during training. These systems still suffer
from the important problem that they can only handle NULL
activities that were given during the training phase (i.e., pre-
viously unseen activities can be confusing to the system).

To address the aforementioned issues in real-world ADL
recognition, we propose a two-stage activity recognition sys-
tem that is able to recognize the samples of the NULL ac-
tivities only based on using samples of desired activities in
training. In the first stage, the system tries to detect if an in-
put data belongs to the set of desired activities on which the
system is initially trained. If not, the system will ignore that
sample. We approach this as a NULL class detection problem
where we modify a variational autoencoder (VAE) to provide
a probabilistic reconstruction error, instead of the subjective
absolute error, for detecting NULL samples. We also propose
a measure for understanding the confidence of the classifier
based on which the system can solicit the user for providing
annotations when it is not confident about an input. In sum-
mary, the contributions of this paper are as follows:

• We propose an in-the-wild ADL recognition system
based on a VAE that can recognize NULL activities
without needing their samples in the training.

• We modify a typical VAE to output the probability of



reconstruction instead of the absolute error, which al-
lows to have a global criteria for distinguishing between
NULL and desired activities.

• We show the effectiveness of our algorithm through
several experiments with real-world smartphone’s data.

2. BACKGROUND

Many studies have tried to perform ADL recognition in-the-
wild by using wearable motion sensors, but very few of these
have elimination of NULL activities as their focus [3–7]. One
approach estimates the confidence of a classifier to detect
NULL samples at the end of classification, but this has a high
false-positive rate as it misclassifies ADLs with a low classi-
fier confidence [8]. The samples from all NULL activities are
used to train a separate NULL class in addition to the desired
activities [1]. The performance of this system degrades when
it encounters novel samples, which are not included in the set
of NULL activities that are used in the training phase.

In applications other than ADL recognition, however, sev-
eral NULL class detection techniques have been proposed to
detect samples that do not belong to the initial training data.
Distance-based approaches put a threshold on the distance
between the new data point and normal data to determine
whether it is a NULL sample [9, 10]. The threshold is tuned
subjectively, and it should be reconfigured when the struc-
ture of the data is changed. Probabilistic approaches estimate
the probability density function of the input data and thresh-
old it to define the boundaries of normal data [11, 12]. They
require complex algorithms to estimate the true distribution
of the data. Reconstruction-based algorithms try to recreate
the inputs through which they also learn the structure of the
dataset. They compare reconstruction error, which is the dif-
ference between the output of the system and the original in-
put, to a constant threshold to detect the NULL class [13–15].

3. METHODS

Detecting instances of NULL activities is essential for in-the-
wild ADL recognition systems. To distinguish between the
NULL and desired activities’ samples, we propose a two-
stage framework as shown in Fig. 1. In the first stage, we
train a VAE only on the samples of the desired activities [16].
The reconstruction probability is then used for distinguishing
between NULL and desired activities. In the second stage,
the samples that are detected as NULL are removed. For the
remaining samples, the features created by the VAE are fed
to a classifier for recognizing the activity. The system is also
able to estimate its confidence which can be further used to
remove samples that might belong to the NULL class or ask
for user’s feedback when it is not certain about an input.

Fig. 1. An overview of the proposed system for ADL recog-
nition in-the-wild

3.1. NULL class detection

3.1.1. Variational autoencoder

Autoencoder (AE) is a type of neural network that can learn
the intrinsic structure of the data in an unsupervised manner.
This is done by mapping a high-dimensional input (x) to a
low-dimensional latent space (z) and then reconstructing the
input from the latent space. The first part is called the encoder
(g : x → z) and the second part is decoder (f : z → x).
Through this process, the AE (f ◦ g : x → x) learns the
structure of the low-dimensional manifold that the data lies
on. Reconstruction error, which is the difference between the
original input and its reconstructed copy (i.e., output of the
AE), is equivalent to distance from the input to the manifold.

VAE is a specific type of AE that treats the latent variable
(z) as a random variable by assigning a Gaussian probability
distribution to it [17]. Thus, VAE is a useful tool for modeling
uncertainty in motion signals that come from user variations
and sensor noise. The objective function given in Equation 1
is used to train a VAE:

L(x) = − log p(x|z) +Dkl{q(z|x)||p(z)} (1)

where 1, q(z|x) is posterior distribution of the latent vari-
able z estimated by the encoder. p(z) is the prior for the latent
variable and is chosen as a zero-mean, unit-variance Gaus-
sian. The output of the encoder is mean and standard devi-
ation of a Gaussian that serve as the parameters of q(z|x).
Finally, the − log p(x|z) is the reconstruction error which is
estimated by the decoder. This can be obtained by minimizing
conventional loss functions such as mean squared error.

In a deep VAE, each of encoder and decoder is created
by stacking multiple hidden layers. We choose three convo-
lutional hidden layers for encoder (with 32 neurons in each
layer), which can extract informative features from the raw
data automatically [3]. Three deconvolutional layers are also
used for the decoder. Based on our experiments, it was diffi-
cult to obtain a reasonable accuracy with a lesser number of
layers. Increasing the layers, however, increases complexity
of the model and makes it difficult to be run on wearable de-
vices [18], without significantly improving the performance.
Our data stream of the 3D accelerometer is segmented into
3-second windows with an overlap of 50%, and each window
is fed as one input to the neural network.

3.1.2. NULL class detection

The reconstruction error of the VAE would be small for any
data created by the same distribution as the training data.



Contrarily, data that is not created by a similar distribution as
the training data (do not lie on the same low-dimensional
manifold) would have a large reconstruction error [15].
Therefore, by comparing the reconstruction error of the VAE
with a constant threshold, we can detect NULL samples that
are not similar to the training data. However, as the absolute
reconstruction error ( |x − f ◦ g(x)| ) depends on the val-
ues of the data, such a threshold would be subjective, and it
should be changed when the subject or the configuration of
the sensors changes. To address this issue, we modify the
typical VAE to output the reconstruction probability instead
of the absolute error. The likelihood p(x|z) for one data point
is modeled with a Gaussian distribution as Equation 2.

p(x|z) =
1

σ
√

2π
e

−(x−f(z))2

2σ2 (2)

where σ2 is the variance and f(z) is the output of the VAE.
The negative log likelihood can then be written as Equation 3.

− log p(x|z) =
1

2σ2
(x− f(z))2 + log σ

√
2π (3)

Typically in VAE models the σ is assumed to be constant
so minimizing the negative log likelihood becomes equivalent
to minimizing squared error loss function (the first term on
the RHS of Equation 3). To retrieve the reconstruction prob-
ability, which is a general metric and does not depend on the
dataset, we propose to model the σ as an output of the neu-
ral network and try to estimate its value for each input data.
Thus, the decoder in our framework has two outputs. One is
the reconstructed version of input x (i.e., f(z)) and the other
is the variance of this estimation. By estimating the variance
in addition to the typical output of the VAE, we can calcu-
late the actual reconstruction probability by Equation 3. This
value is higher for the samples similar to the training data and
lower for new samples such as NULL class samples. Note
that the probability is a generic metric that is independent of
the data. The samples for which the reconstruction probabil-
ity is lower than a threshold (we set it to 0.6 based on our
experiments) are assumed to be from the NULL class and are
removed. The samples with reconstruction probability higher
than the threshold are fed to the classifier to detect the activity.

3.2. ADL recognition

The latent variable z created by the encoder in the VAE is a
compressed version of the input data that contains the most
informative features of it. These features can be leveraged for
recognizing the ADL, which removes the need for extracting
manual features from the raw data. In fact, the raw data is fed
to the convolutional layers of the VAE and the features are
extracted automatically. We use three fully connected layers
for combining the features and mapping them to the ADL.
The first two contain 32 neurons, and the last one contains the
same number of the neurons as the number of desired ADL.

The outputs of the encoder are the parameters of a Gaus-
sian distribution (i.e., mean and standard deviation) that serve
as the posterior distribution of the features, given a data point.
For each single input datum xi, we sample from this distribu-
tion for N = 50 times and feed all those samples to the clas-
sifier network. The output of the classifier for all N samples
is calculated and the Monte-Carlo estimation of the mean of
the outputs is taken as the final decision of the classifier.

c̄ =
1

N

N∑
j=1

h(zj) zj ∼ N (µi, σi) (4)

where h is the classification network, µi and σi are the outputs
of the encoder for ith input data, and c̄ is the final decision of
the classifier which determines the activity of interest.

We can also leverage empirical standard deviation of the
outputs of the classifier for N samples (Equation 5) to esti-
mate the confidence of the classifier. For the samples that the
classifier is confident about, the labels would be more consis-
tent, while for non-confident ones, the classifier would gener-
ate distinct labels that leads to a higher standard deviation.

s =
( 1

N

N∑
j=1

(h(zj)− c̄)2
) 1

2

zj ∼ N (µi, σi) (5)

4. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the performance of our framework we use a
publicly available ADL dataset called Actitracker that con-
tains real-world ADL data captured by a smartphone from
multiple subjects [19]. We use the data from first 10 subjects.
The labeled data includes sitting, standing, lying down, walk-
ing, jogging, and stair climbing and we call them basic ADLs.
In addition to the labeled data of those six basic ADLs, this
dataset contains a large amount of unlabeled samples form
other activities that users performed during their normal daily
living. Unlabeled data, which constitutes the NULL class, has
13 times as many samples as the whole labeled data.

4.1. NULL and ADL recognition performance

We first investigate the performance of our method in detect-
ing NULL form basic ADLs, described in Section 3.1.2. We
consider all basic ADLs as the non-NULL class to evalu-
ate performance of the models regarding distinguishing be-
tween NULL and non-Null (a two-class classification). Table
1 represents the F1-score in NULL class detection with 10-
fold and leave-one-subject-out (LOSO) cross-validation and
compares it to other methods of NULL detection described
in [1]. The ”bgClass” defines a NULL class in addition to
the basic ADLs, ”preReject” inserts a two-class classifier be-
fore actual ADL classification step, and ”postReject” adds the
NULL rejection step after classifying the ADLs (for more de-
tails see [1]). We applied those NULL detection approaches



Table 1. Average F1-score of NULL class detection
10-Fold LOSO

bgClass [1] 74% 67%
preRejcet [1] 77% 70%
postReject [1] 76% 70%
Our method 92% 85%

to a classifier with a similar structure as ours (Section 3.2)
to have a fair comparison. It should be noted that all these
methods use some samples of the NULL class in their training
phase, which is the nowadays common approach for dealing
with NULL activities. We chose 50% of the NULL samples
randomly to train models in [1] and the remaining 50% was
used in the testing phase. In contrast to the models in [1], our
model does not use any training data from the NULL class.

As Table 1 shows, our system outperforms the models
in [1] by 15% in both 10-fold and LOSO validations regarding
NULL detection task, exhibiting its superior ability in detect-
ing and removing NULL samples. This superiority is due to
the fact that the models that use the training data from the
NULL class (models in [1]) are only capable of recognizing
a limited set of NULL activities (those that are available in
the training). However, the NULL class could include a wide
variety of unknown activities, and those systems do not know
how to deal with samples of a new activity that they have
never seen before. Our system, however, can detect any sam-
ple that differs from the samples of the basic activities.

We then evaluate the system in recognizing the six ba-
sic ADLs in the presence of the NULL class. In our frame-
work, the NULL detection step removes the samples detected
as NULL and passes the non-NULL samples to the classifier
to recognize one out of six ADLs. In Table 2, we compare
the F1-score of our framework with models in [1] regarding
ADL recognition. As Table 2 shows, our method achieves
higher accuracy, 14% in 10-fold and 13% in LOSO, com-
pared to the models in [1] regarding recognizing six ADLs. In
fact, the system that can better detect and remove NULL sam-
ples can obtain higher accuracy in terms of recognizing ADLs
too. In addition, we investigate the performance of a baseline
model that does not have any NULL detection/removal step
to see how the models that are trained in controlled environ-
ments (i.e., without considering NULL class) perform in-the-
wild, where NULL class samples are present. For the baseline
model, we train a classifier similar to our classifier (neural
network with the same structure) with only six basic activ-
ities without including any NULL rejection step. According
to Table 2 the baseline model fails significantly when the sam-
ples of NULL class are present in the testing phase since the
amount of NULL samples in testing is much larger (6 times)
than the basic ADLs. The reason is that this model does not
detect and remove NULL class samples, so it confuses them
with the basic ADLs. This proves the need for considering
NULL class for in-the-wild ADL recognition systems.

Table 2. Average F1-score of ADL recognition in the pres-
ence of NULL class

10-Fold LOSO
Baseline 13% 10%
bgClass [1] 70% 65%
preRejcet [1] 73% 67%
postReject [1] 72% 65%
Our method 87% 80%
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Fig. 2. Comparing average (a) absolute reconstruction error to
(b) reconstruction probability for basic and NULL activities

4.2. Reconstruction probability evaluation

To study the impact of using reconstruction error on NULL
class detection, we compare it to the case of using absolute
reconstruction error. Figure 2 represents the mean of abso-
lute reconstruction error (Figure 2-a) as well as reconstruc-
tion probability (Figure 2-b), proposed in this paper (Equa-
tion 3), for samples of NULL and basic ADLs (non-NULL)
for 10 subjects (horizontal axis). As mentioned in Section
3.1.2, the absolute reconstruction error is a subjective measure
that changes significantly when the range of the input data
changes. It can be seen in Figure 2-a that this value changes
significantly from one subject to another, which makes it im-
possible to set a global threshold that can distinguish NULL
from basic ADLs for all subjects. However, Figure 2-b shows
that the reconstruction probability is more consistent among
different subjects, which allows us to set a global threshold
for all the subjects (0.6 in our experiments).

5. CONCLUSION

We proposed a framework for recognizing ADL in-the-wild
using VAE. The proposed system is capable of detecting sam-
ples of NULL activity that constitute a major part of real-
world data. Our system works based on wearable motion
sensors and can provide important and useful contextual in-
formation about the users and their activities and can unlock
many real-world sensing and computing paradigms.
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