
  

  

Abstract— Accurate estimation of energy expenditure (EE) is 
a key enabler for many applications of healthcare and wellness. 
Heart rate (HR) based EE estimation methods typically require 
extensive training time to establish a relationship between HR 
and EE. In this work, we propose a method where just the few 
most representative EE-HR data pairs are used to train the 
estimation model. Furthermore, we present a systematical 
methodology based on the ranking of the correlation coefficients 
between EE and HR to find the least amount of EE-HR data 
pairs required for training while satisfying the constraint of 
estimation accuracy. During the experimental evaluation, while 
the study participants walk and run on a treadmill, our method 
is compared to three different training paradigms: training the 
EE-HR model 1) using all available data collected during the 
experiment, 2) using the EE-HR data only during speed changes 
(or during monotonic HR changes) and 3) using the EE-HR data 
pairs collected during constant speed. The results show that our 
method could maintain a comparable EE estimation 
performance as shown by only 2~4% changes on the coefficient 
of variation of root-mean-squared error (CV(RMSE)) for the 
testing dataset while saving nearly 91-97% training time for 
each individual. 

I. INTRODUCTION 
Inactive or less active lifestyles have become a major 

challenge among nearly two thirds of the total world 
population, leading to overweight, which in turn is one of the 
primary reasons for diabetes and many other disorders. 
Monitoring of energy expenditure (EE) for habitual activities, 
apart from sedentary time, can be crucial to maintain a healthy 
lifestyle. The accuracy of energy expenditure estimation must 
be good enough to be able to verify the required small 
differences between daily energy intake and energy 
expenditure (e.g., 500 kcal daily energy deficit for monthly 
weight loss of 4 lbs) [1]. A commonly accepted method for 
accurate EE monitoring is to use a computer-based stationary 
system to measure the oxygen consumption (VO2), an indirect 
estimate of EE. However, such a measurement method is 
inconvenient and cumbersome for 24-hour monitoring [2]. 
Alternatively, EE estimation based on motion detection is 
durable, portable and affordable, at the expense of relatively 
larger EE estimation error (20-35%), e.g., EE estimation based 
on counting steps taken. Estimation based on more intensive 
motion applications such as rowing and cycling have shown 
even larger error [3]. 
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An alternative is EE estimation based on heart rate, which 
is a highly-correlated physiological parameter reflecting EE 
regardless of activity patterns; EE estimation is relatively 
accurate in steady conditions like sitting or slow indoor 
walking when the contact between the HR sensors (e.g., 
electrocardiogram or photoplethysmogram sensors) and the 
skin is stable. Therefore, a wearable device with heart rate 
monitoring capability is a practical candidate for relatively 
accurate and suitable 24-hour EE estimation and monitoring. 
It is important to note that the EE monitoring is usually more 
meaningful during exercises, however, most of the 
regression-based models relating EE to HR show relatively 
large errors, which is possibly due to the natural fluctuations in 
HR during the relatively stable EE [4]. Therefore, the selection 
of suitable data for the regression model training could be one 
potential approach to enhance the training performance. 
Another obstacle in realizing the practical EE estimation stems 
from the fact that extensive calibration time is needed for each 
individual to adjust the predefined regression model to best fit 
the gold standard EE since no pre-defined guideline is 
available for effective calibration. Most of the previous studies 
build the regression model by simply using as much data as 
they can which lead to less than ideal and in cases poor 
performance [5]. For example, the calibration test to determine 
the EE-HR relationship takes a minimum of 45 minutes per 
subject, let alone subsequent processing of this data which is 
also time consuming [6]. Therefore, a well-defined 
experimental design and corresponding data selection 
algorithm will be beneficial to the reduction of calibration 
time and maintaining or enhancing the accuracy of the training 
model.  

In our work, we observed that the most-correlated EE-HR 
data pairs collected during the speed-change region is of 
essential importance for the regression model training. We 
propose a systematic method to find those most representative 
EE-HR data pairs and evaluate its efficiency. The 
experimental results show that our method leads to significant 
training time reduction while maintaining comparable 
estimation accuracy and performance.  

A large number of wearable devices have been used to 
estimate EE from movements and physical activities. Some 
methods directly use accelerometers combined with 
gyroscopes to estimate EE [7]. Some researchers believe the 
relationship between EE and HR differs in various activities 
and therefore, more sophisticated algorithms like hidden 
Markov models (HMM) and artificial neural networks (ANN) 
are used to classify activities before the EE estimation [8]. 
However, movements are not directly related to metabolism, 
since the movement type and conditions influence the 
estimation, and movement based methods cannot generally 
describe reliably the intensity of physical activity [9]. 
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Moreover, choosing the body locations for sensors placement 
to estimate EE is very important but challenging. For instance, 
a traditional waist-worn sensor is highly inaccurate for 
monitoring EE during riding a bicycle. 

Research studies have also shown that HR monitoring is a 
feasible technique for estimating EE [10]. Furthermore, it has 
been proven that the linear relationship between HR and EE 
varies among subjects [11]. Some groups perform activity 
recognition over a pre-defined set of activities, and then apply 
combinational multi-dimensional regression method to predict 
EE based on the HR and acceleration [12]. For the best 
accuracy, individual laboratory training of the EE-HR 
relationship is necessary.  

Our method has its roots in HR-based EE estimation, but 
focuses on data selection for the regression model training 
with an expectation of reducing as much training time as 
possible for each individual while maintaining a comparable 
estimation performance. 

II. METHODS 

     HR data is mostly significant during speed changes as the 
EE varies. When the speed remains constant, the HR and EE 
remain relatively consistent. This will be illustrated later in 
this manuscript. Our method to select the most correlated 
EE-HR data pairs when the speed changes. This process can 
be divided into two steps. Firstly, we use accelerometer data 
to monitor the speed change time region and choose the 
corresponding EE-HR pairs. Secondly, most-correlated 
EE-HR data pairs are obtained by correlation-based segment 
ranking calculation on the previous selected data which will 
be described in Subsection III.B. 

A. Detection of Speed abrupt Changing Samples 
Three-axis accelerometers can be used to monitor the 

speed changes by tracking the principal frequencies in the 
power spectral density of the accelerometer stream. Speed 
variations along with the HR changes are shown in Fig. 1. The 
monotonic change region of HR also reflects the abrupt speed 
transition but with a slightly wider time span due to the time 
taken for heart to adjust to the speed and activity intensity 
changes and the need to pump more blood. The time span 
corresponding to the speed changes for the regression is 
defined as the time interval centered on the sample where 
exact speed change happens, with a span of 10 seconds on 
both sides. This time duration is often somewhat short and is 
not very visible in Fig. 1 although they can be noticed with 
sufficient attention.  

B. Correlation-based Segment Ranking 
Within the time segments, where the running speed is 

changing, it is observed that the EE-HR pairs contribute 
differently to the regression model. The reason could be 
multi-fold. The first cause is short term physiological random 
fluctuation of EE and HR within these regions. Secondly, 
there are uncertainty and noise associated with EE and HR 
measurement devices. Finally, motion artifact during running 
will bring random distortion to the signal. Therefore, we 
applied an algorithm to automatically select EE-HR pair with 
the best correlation and with an expectation that those 

well-selected training data will lead to superior performance 
while reducing the training time.  

At first, we divided all EE-HR data pairs inside these 
areas into different segments. After we evaluated each 
segment based on the Pearson product-moment correlation 
coefficient between HR and EE, as shown in (1): 
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where iX and iY are HR and EE samples acquired from 
chest worn ECG and integrated metabolic system (gold 
standard) in the ith segment, i

Xµ , i
Yµ and i

Xσ , i
Yσ  are the mean 

and standard deviation of iX  and iY , respectively and the 
resultant i

YX ,ρ  is in the range of [-1,1].  

Secondly, the correlation coefficients for all the segments 
are ranked in a descending order as shown in (2).  
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The final data pairs are selected by thresholding as shown 

in (3).  

}{ , ThreshIndex i
IndexYXselected >= ρ          (3) 

      Thereafter, those selected points specified by selectedIndex  
could be used for training the linear regression model as in (4). 

bHRaEE += *                            (4) 

 
Figure 1. HR (BPM) over time and 3 speed segments detected for subjects A, 

B, C, D 

III. EXPERIMENTS 

A. Lab Test Description 
The ground truth EE was measured using Parvo Medics’ 

TrueOne system together with a Cardiac Science TM65 
treadmill. The accuracy is 0.1% for 0-10% CO2. Gas flow was 
measured by a Rudolph heated pneumotach.  



  

The lab, during our experiment, was kept at constant room 
temperature (21oC). HR was measured using a Polar chest belt. 
Additionally, one 3-axis accelerometer sensor was attached to 
the wrist of subjects to monitor the running speed. 

B. Test Protocols 
The treadmill test was manually controlled. We collected 

data for each of the four subjects, at speeds of 3 mph, 4 mph 
and 5 mph. The duration of data collection session for each of 
the three speeds was 7 minutes. The switching time between 
two consecutive speeds was 2 seconds.  

C. Subjects Characteristics 
Four healthy male subjects were selected for the purpose 

of our test. The subjects had different heights and weights. 
Their physical characteristics are listed in Table I.  

TABLE I.  CHARACTERISTICS OF SUBJECTS 

Subject Age Height (in) Weight (lb) 

A 22 76 195 

B 23 64 148 

C 25 71 175 

D 25 72 207 

      The Institutional Review Board at University of Texas at 
Arlington approved the study, and all subjects signed 
informed consent forms. 
 

IV. RESULTS AND DISCUSSIONS 

With all the training data points (EE-HR pairs) used as 
input, a linear regression model is obtained for each subject. 
Fig. 2 clearly demonstrates a linear relationship exists between 
EE and HR for all the subjects, across all three running speeds. 
We put all the training and testing data together for each 
subject.  

 

 
Figure 2. Illustration of the linear relationship between EE and HR for 4 

subjects 

For training the regression model, four different cases are 
considered: Case 1) using all EE-HR data pairs regardless of 
running speed, Case 2) all EE-HR data pairs during constant 
running speeds, Case 3) all EE-HR data pairs during speed 
changes and Case 4 (our method) ) the selected EE-HR data 
pairs by our proposed correlation based method.   

By implementing our correlation coefficient based 
ranking method for all the segments of EE-HR data pairs 
during speed changes, we performed a simple test to validate 
that merely a few most-correlated EE-HR data pairs are 
sufficient to construct an accurate regression model, which is 
shown in Fig. 3. The figure shows that the RMSE of the 
regression model begins to stabilize after adding a few data 
pairs.  The RMSE is calculated using the test data. The total 
number of samples considered is the number of EE-HR pairs 
during the transitional regions (speed changes). The number 
of pairs is directly sampled in the transition region when we 
experience speed changes as shown in Fig. 1 with the number 
of samples ranging from 44-60 for each subject. In a practical 
application, the threshold on the correlation coefficient could 
be decided based on trial and error to determine the 
most-correlated EE-HR data pairs. 

 

 
Figure 3. RMSE on the testing dataset over increasing training sample 

size-correlated EE-HR data pairs on 4 subjects 

For each subject, Fig. 4 shows the two regression models 
constructed using all EE-HR data pairs and using only our 
selected EE-HR data pairs, respectively.   

For all subjects, the raw EE-HR pairs are very noisy with 
a large deviation. The regression results with our selected 
EE-HR pair data agrees well with the results for all EE-HR 
data pairs while showing a minor deviation.  



  

 
Figure 4. Comparison of two regression models built from all EE-HR 

data pairs and selected EE-HR data pairs (Black circles: All EE-HR pair data.  
Red line: All pair Green line: selected pair regression result) 

In Table II, we show the regression performance by the 
coefficient of variation of the RMSE (CV(RMSE)) and the 
training time by number of samples for four cases. The 
CV(RMSE) is defined in (5), where ty , tŷ are the true and 
estimated EE respectively,  y is the mean of ty , and n is the 
total number of test data.  
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TABLE II.  THE RESULT OF EE ESTIMATION PERFORMANCE AND 
TRAINING TIME OVER FOUR TRAINING DATASET CASES  C 

  Subject 
A B C D 

Case 1 CV(RMSE) 0.19 0.28 0.28 0.19 
Sample Size 245 384 282 289 

Case 2 CV(RMSE) 0.18 0.28 0.28 0.19 
Sample Size 191 324 238 229 

Case 3 CV(RMSE) 0.39 0.32 0.32 0.18 
Sample Size 54 60 44 60 

Case 4 -   
our 

method 

CV(RMSE) 0.22 0.3 0.3 0.23 

Sample Size 22 20 13 9 

Case 4 vs. 
1d 

CV(RMSE)a 0.03 0.02 0.02 0.04 
Sample Size 
reduction b 0.91 0.95 0.95 0.97 

a) Difference CV(RMSE) for Case 4 relative to Case 1.  

b) Sample size reduction for Case 4 relative to Case 1.  

c) Case 1: all EE-HR data pairs. Case 2: Data pairs from constant speed. Case 3: Data pairs from when 
speed changes. Case 4 - our method: selected data pairs from Case 3 

d) Selected versus 1: relative changes for Δ CV(RMSE) and sample size reduction between Cases 4 and 
1 

 The results show that the sample size (and training time) 
using our method can be reduced by more than one order of 
magnitude compared to Cases 1 and 2 and significantly 
compared with Case 3 (4X reduction) while the regression 
model maintains a comparable accuracy. It is also important 

to note that the accuracy of the regression model leveraging 
our technique is better than Case 3. 

V. CONCLUSION 
An HR-based EE regression model training efficiency 

based on selected samples was investigated. Experiments on 
four human subjects on a treadmill with speeds of 3 mph, 4 
mph and 5 mph were carried out. Samples with the 
most-correlated EE-HR data pairs from the speed transitional 
region observed to be the best candidates for constructing the 
regression model. The regression results showed only 2~4% 
changes on the coefficient of variation of root-mean-squared 
error (CV(RMSE)) while saving nearly 91-97% training time 
for each individual. Our methods along with the test 
procedures are proved to be very effective to model the 
EE-HR relationship.  
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