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ABSTRACT | Recent years have witnessed a large influx of

applications in the field of cyber–physical systems. An impor-

tant class of these systems is body sensor networks (BSNs)

where lightweight embedded processors and communication

systems are tightly coupled with the human body. BSNs can

provide researchers, care providers and clinicians access to

tremendously valuable information extracted from data that

are collected in users’ natural environment. With this informa-

tion, one can monitor the progression of a disease, identify its

early onset, or simply assess user’s wellness. One major

obstacle is managing repositories that store the large amount

of sensing data. To address this issue, we propose a data

mining approach inspired by the experience in the areas of text

and natural language processing. We represent sensor read-

ings with a sequence of characters, called motion transcripts.

Transcripts reduce complexity of the data significantly while

maintaining morphological and structural properties of the

physiological signals. To further take advantage of the phys-

iological signal’s structure, our data mining technique focuses

on the characteristic transitions in the signals. These transi-

tions are efficiently captured using the concept of n-grams. To

facilitate a lightweight and fast mining approach, we reduce the

overwhelmingly large number of n-grams via information gain

(IG) feature selection. We report the effectiveness of the

proposed approach in terms of the speed of mining while

maintaining an acceptable accuracy in terms of the F-score

combining both precision and recall.

KEYWORDS | Body sensor networks (BSNs); data mining;

n-grams; Patricia tree; string templates

I . INTRODUCTION

Body sensor networks (BSNs) are becoming an increas-

ingly popular field of research for a variety of applications
ranging from fall and posture detection [1], [2] and

telemedicine to rehabilitation and sports training [3], [4].

These systems are composed of lightweight wearable

sensors that capture different physiological data from the

human body. This physiological data may include an

inertial description of human movements, electrocardio-

graph (ECG) readings of the human heart, electromyog-

raphy (EMG) readings of the muscle activity, skin
conductance level, blood pressure, and many more.

Physiological signals of these modalities can be observed

by sensors mounted on wearable devices. However, the

modern sensing platforms are not perfect. Along with the

useful physiological information they also capture noise

and other data collection artifacts. Data collection artifacts
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are abnormalities in the signal that can be introduced by
the specific sensor deployment conditions. For example,

the type of a strap used to attach a sensor to the body can

significantly affect the recorded observation. Additionally,

from the high level perspective, similar movements may

look the same, and the specific movement execution can

introduce variations in the senors observations of those

movements. For example, a sit-to-lie movement can be

performed smoothly, or the subject can throw themselves
on the bed and briefly bounce on the mattress. While both

movements achieve the same goal, from the inertial sensor

perspective they do not look exactly the same.

A. Need for BSN Data Repository
BSN platforms are desirable because they provide a

relatively inexpensive way to collect realistic and, more

importantly, quantitative data about the subjects without
constraints of the lab environment. A problem that has not

received sufficient attention is storing and tracking the

collected data. The data collected from these wearable

systems are especially valuable in the cases of medical

observations. The ability to search and compare BSN

observations can potentially shed light on diseases such as

Parkinson’s disease [5], which do not have a cure or even a

quantitative, objective diagnostic process [6]. Parkinson’s
disease is a neurological disorder, however many of its

symptoms, such a slow automatic movements (for

example, blinking), inability to finish some movements,

impaired balance while walking, muscle rigidity, and

varies tremors, severely affect human movements and can

be observed with the help of inertial sensors. The task is

aided by the fact that many devices in our daily lives, such

as cell phones, already have inertial sensors built-in.
Furthermore, the seamless nature of BSN nodes allows

their deployment prior to serious health problems to

monitor the onset of the condition. The following example

demonstrates the usefulness of the idea. A person can be

monitored for an extended period of time (e.g., multiple

years) with the help of a few sensor nodes. All of the data

are simply collected and stored in the data repository.

After some time, this person is diagnosed with a disease
that involved gait abnormalities. It would be beneficial to

analyze old data and extract gait parameters for disease

evaluation, examination of disease progress, and treat-

ment. A data mining approach would be able to identify

movements of interest, in this case walking, so that the raw

data of movements can be used to extract the required gait

parameters.

B. Capturing Signal Structure
During data collection researchers aim to minimize the

number of nodes attached to a subject to improve system

wearability. This results in a particular choice of sensor

types, node count, and node placement. In a practical

deployment scenario, a subject’s preferences may also

cause some changes in the way sensors are placed. For

example, a cell phone on the belt of one subject and a
sports watch on another can be collecting accelerometer

data about walking. These differences seem to deem the

information not comparable and possibly not useful. The

problem can be resolved with a larger BSN repository,

where similarities in portions of the data can link multiple

data sets together, thus providing user with more data or

even a new perspective of the data with a sensor not

immediately available to that user. It is not practical to use
the artificial metadata about the experiment, such as

movement type or speed, to combine observations,

because two variations of the same movement might be

performed very differently. In other words the system

should be able to recognize not only the movement itself,

but also the specific way the movement is performed. For

example, when the system is searched for occurrences of

limping in the right foot of the subject, it should not
return every instance of walking, even though limping is

likely to be observed during walking trials. To avoid this,

the structure of the compared movement needs to be

investigated. When comparing the signals, we rely on the

idea that similar movements have inherently similar

structure, while different movements have fundamental

differences, which is also the main assumption of the

structural pattern recognition [7]. This idea is important,
because it suggests that while observations may not match

in their entirety, due to data collection artifact and

individual subject performance, they still have a signifi-

cant structural similarity and can be compared by

extracting representative signal properties. For structural

techniques to be effective it is essential to design an

effective data representation approach that simplifies the

multidimensional BSN data yet captures the structure of
the signal.

C. Design Challenges
BSN sensor nodes are highly constrained in terms of

memory, processing resources, and battery lifetime. This

means that all of the collected data cannot be stored on the

wearable device, communicated wirelessly for an indefi-

nite amount of time, or processed with complicated and
possibly slow computational approaches on the device

itself. At the same time, they have a potential to produce

very large data sets over time. This suggests that the data

representation approach needs to significantly reduce the

complexity of the data, while maintaining the character-

istic structure of the signal. This task is further compli-

cated by the possibility of errors in the signal and

intersubject variability in movement performance. This
problem can be solved by applying limited processing to

the sensor data, as it is being collected, to reduce its size

and complexity. This step, however, needs to preserve the

structural parameters of the signal. This can be achieved by

applying limited processing that exclusively focuses on

identifying transitions in the signal that uniquely charac-

terize each movement. For this step to be successful, it is
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essential for the system to extract the properties of the
signal capable of capturing such characteristic transitions.

While in other systems, redundancy may be acceptable and

even desirable, the resource and time constraints of the

BSNs demand that the considered set of signal properties

be minimal. That means that some of the machine learning

and signal processing techniques may not be suitable for

implementation on the sensor nodes.

With these requirements in mind, we present a data
mining model for large BSN data repositories. Our

approach has two steps. 1) We first propose a solution for

the problem of data representation. For this, we define a

technique for movement primitive construction from

multidimensional physiological signals using clustering

algorithms. We explore algorithms that preserve the

original structure of the signal, even if human movements

have timing inconsistencies. Unlike other works, we
consider multiple clustering techniques for primitive

construction using a small and computationally simple

feature set. We combined the constructed primitives with

their timing properties to generate string transcripts to

capture the relational information from the signal. 2) We

then define a novel data mining model that explores

structural and relational properties of the string tran-

scripts. We use information gain (IG) to select the parts
of transcripts that can best differentiate between move-

ment, and then define a tree-based classifier for data

indexing and mining. We verify the quality of our model

by applying it to a pilot movement data set. While other

works focus on achieving the highest possible accuracy of

classification, the key objective of our work is to define a

data mining approach that can be applied to a very large

data set, which results in decisions that favor speed and
simplicity of computation. While we do not explicitly

trade the accuracy for speed and simplicity, it is an

important tradeoff we keep in mind during system design

decisions.

II . RELATED WORKS

The goal of data mining is identifying relevant objects. The
relevancy of an object may be defined by some features of

parameters or its similarity to other objects. This task is

trivial in a well-structured and indexed database. However,

when the data are not trivially structured, defining features

is not obvious, or the measure of similarity is not defined

for a specific object, this becomes challenging. It can be

generally partitioned into phases. Information retrieval is

the first phase where important, for a given application,
information is extracted from a possibly noisy data. Object
summarization is the second phase where each object of

interest is defined in the contest of the relevant

information, extracted during the first phase. The first

phase combines information theory with the properties of

the specific object type. The second phase tries to identify

the best way to store and parse the metadata extracted

during the first phase to efficient data mining. Before
looking into the details of the BSN data mining, it is

important to looking into a set of basic machine learning

techniques often used in data mining problems.

A. Mining Techniques
The most simple classification rule based on a set of

instances is called 1R or 1-Rule. In this approach, the
system selects one attribute of the collected sensor

readings and makes a classification decision based on it.

While this is a very simple approach, it tends to work

reasonably well for some applications [8]. The rule

selection can be described as follows. For each possible

attribute, the system can count how often each value of

that attribute appears in any given class, and make an

attribute-class assignment based on the most appearing
value. Calculate the error of all of the attributes based on

the cross-validation set, and select the attribute with least

error. This algorithm faces two major issues. First, it may

not be able to account for the values that are missing in the

training set. Second, when an attribute has a large number

of values it is prone to overfitting (or detect trends specific

to the training data and not the desired observations).

Statistical modeling is a more involved approach to the
problem. Instead of selecting only one attribute, the

system can select all of the attributes, assuming that they

are independent equally likely. Such an approach is known

as naive Bayes and can perform well when its assumptions

hold [9]. The approach has two major problems. First, it

assumes that each of the attributes is independent, which

is likely not the case for many real problems. This problem

is extensively studied [10], [11] where the authors propose
a semi-Bayes type of approaches to try and model actual

data dependencies, correct data bias, and manage attribute

weights. The second problem is the assumption that the

attributes are normally distributed, which once again may

not hold in many practical applications.

Another way to address the issue of different attributes

having different weights is known as divide and conquer.

Typically, that suggests creation of a tree-like structure,
where each node corresponds to a specific attribute [12].

This way an attribute does not correspond to a whole level

of the tree, meaning that at the same level different

branches may use different attributes. This type of

approach works in a top–down manner, which, at each

level of the tree, seeks the best attribute to split the

remaining data. The difficulty of this approach lies in

selecting proper attributes at proper locations in the tree.
It often uses feature selection algorithms such as IG [13],

mutual information [14], and utility-based solution such as

Bayesian information criterion (BIC) [15]. Shortcomings

of these approaches are defined by their respective

assumptions. For example, IG tends to work very well

when attributes have very few possible values, preferring

binary attributes [16]. IG performance decreases as the
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number of possible values increases due to the nature of
the entropy calculations.

Previously described approaches work best with nom-

inal attributes, however the idea can be extended to the

numerical attributes as well. The most simple and relatively

effective approach is known as linear regression, where

the idea is to represent class values as linear combinations

of the attributes and their respective weights [17]. The

idea is to calculate proper weights during the training
process, and apply the classifiers on the validation data.

While this approach often works very well, it has a serious

drawback. Namely, it assumes that the data can be

modeled in a linear fashion, which may not be the case.

This problem can be addressed with the help of logistic

regression, and then evaluated with log-likelihood maxi-

mization [18]. A major problem with this approach is

probabilities not adding up to 1 when the logistic
regression is applied to multiple classes.

In the instance-based learning, the training trials

themselves are used to evaluate unknown samples. It is

done with the help of a distance function defined for the

data in question. For classification purposes, the system

measures the distance from an unknown trial to the

training sample and selects the one with the shortest dis-

tance. A simple example of this learning time is 1-nearest-
neighbor (1-NN) approach. However, it values each

attribute equally just like naive Bayes. Additionally, a

specific classification can be heavily affected by the

outliers that do not represent the class well. These

problems can be partially addressed by a k-NN-type

solution, where instead of finding the nearest sample in

the training data, the system looks for a consensus among

k-NNs [19]. However, k-NN approaches are very slow
compared to the competition.

Clustering algorithms are applied when there is no

predetermined class to be detected, but rather the

observed instances are split into natural groups. During

the clustering step, the instances are combined together,

based on strong resemblance, to form groups that can act

as classes during the detection process. There are many

approaches for clustering implementation, but they
mainly focus on bringing the similar instances together,

while separating the dissimilar instances. One of the

most commonly used clustering approaches is known as

k-means [20]. It takes the training instances and the

number of desirable clusters as an input, and groups

instances together based on their proximity. In the context

of the Euclidean distance, the k-means approach iteratively

minimizes the total squared distance from each instance
to the cluster centers. It generally has two weaknesses.

First, the best number of clusters is not always obvious,

while a bad choice can result in improper grouping.

Second, the iterative approach heavily depends on the

initial selection of the cluster centers. Different random

selections can result in significantly different clustering with

no guarantee.

B. Structural Recognition in BSN
We next explore the structural data representation

efforts for BSN data. In the context of BSN data, the idea of

structural data representation and recognition is explored

in [21]. This approach has a major weakness. The

comparison evaluation is based on the value of Levenstein

distance (or edit distance) [22]. Edit distance calculation

assigns the same weight to deletion, insertion, and

substitution operation. It is not a problem when the
compared strings have similar size. However, BSNs can

observe the same movement at different speeds, which may

mean that the speed of movement execution can start

dominating the edit distance value. It is possible to

manually manage the weights of each one of the three

edit distance operations, however that would generate a

heuristic type of approach [23]. Another way to deal with

this issue is to normalize the length of each primitive in
motion transcripts [24]. While this approach might work in

some specific applications, in general, it is very hard to

predict how to scale parts of movements depending on the

overall execution speed. A possible solution to this problem

is to identify significant transitions in the motion tran-

scripts and base the transcript comparison on variations in

these transitions. In the field of speech processing, a similar

function is often performed by n-gram features. n-grams are
substrings of length n. They were first introduced by

Shannon [25] as means to analyze vulnerability of ciphers

but since then, they have been extensively used in the field

of speech and text recognition.

n-grams [26] proved to be useful in structural

parameter extraction when used for spoken language

recognition [27]. n-grams can be used to capture phoneme,

in the case of spoken language, and grammatical con-
structs, in case of written language, to identify bodies of

speech or text. Similarly, n-grams can be used to analyze

text summaries [28] or translation quality [26] with

respect to co-occurrence statistics. While good at recog-

nizing major structural differences, n-grams can also be

used in the case of fine grain spelling error correction [29].

In addition to maintaining structural information of the

considered string, n-grams can also significantly reduce the
amount of information that needs to be stored and verified.

Instead of storing a large body of text, the system can

identify important transitions and improve both the

memory usage and the execution speed of the search.

These important n-grams can be better organized with a

suffix tree [30], which would increase the speed of

identifying language constructs [31]. In fact, suffix trees

are often used to index a large data store in the natural
language processing and other fields. For example, in the

field of molecular biology, DNA sequences can be indexed

with the help of suffix trees [32]. Sadakane [33] discusses

an efficient query algorithm on a large compressed body of

text using suffix trees. The general effectiveness of the

suffix trees is discussed in the work trying to identify local

patterns in a event sequence database [34].
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At first glance, the above examples have little in
common with data collected from BSNs. Suffix tree

approaches normally index a unidimensional data set,

while BSNs normally have a set of multiple sensors with

multiple dimensions of sensing. This problem can be

resolved by combining all of the data readings and

representing them with unidimensional primitives [21].

While this simple approach seems to resolve the issue, it

fails to recognize that each one of the sensing
dimensions (or individual orthogonal sensing axis of

sensors such as accelerometer) can observe variations

such as changing speed and amplitude of the signal. In a

text data set the variations are 1-D, just like the data

itself; this is not the case in multidimensional sensor

readings of BSNs. Furthermore, it is not clear how

variations occurring in multiple sensing dimensions should

be handled in the context of a 1-D primitive. It is possible
that different combination of signal variations may hinder

the structural consistency of the combined primitive

representation.

III . PROBLEM OVERVIEW

In this section, we first describe the system used through-

out this work. We then discuss the desired properties of
the solution in the context of the defined system. Finally,

we briefly introduce the pilot application used to evaluate

our approach.

A. System Operation
The system, in this paper, consists of a set of wearable

nodes placed on the human body to collect inertial
observations of the human movements, and a computer

that maintains the BSN repository and facilitates data

organization and mining. In our case, a local computer has

been used, however it can be replaced by a remote server,

PDA, or even a smart phone without any loss of generality.

The wearable nodes are connected to the computer via

wireless radios. It is desirable to shift the computer

functionality to the wearable nodes, and avoid using the
battery for expansive wireless communication. While we

keep this goal in mind during the approach design, it is out

of the scope of this work.

The system begins operation by sampling the local

sensors of the wearable devices. The local sensor data

are communicated to the computer for processing.

Information, relevant to a given application, is then

extracted from the data on the computer side. The
extracted information is used to construct a query to

the BSN repository that can return observations already

stored in the repository that most resemble the

observed data. Fig. 1 illustrates the overall signal

processing flow. The details of the system execution are

described in the following sections and summarized in

Section VII.

B. Hardware
During the experiment, subjects were equipped with

several TelosB sensor nodes with custom-designed sensor

boards. Each sensor board has a tri-axial accelerometer

(providing x-, y-, and z-axis of acceleration) and a bi-axial

gyroscope (providing x- and y-axis of angular velocity).

Sensors were sampled at 50 Hz. This sampling frequency is

high enough to provide acceptable resolution of the
movements, and has been previously suggested by several

other authors for physical movement monitoring applica-

tions [35], [36]. Furthermore, it satisfies the Nyquist

criterion [37]. After collecting the data, each node sent its

readings to the base station. In our case, the base station is a

node without a sensor board, which forwards all of the

received data to the PC via a USB connection for further

processing.

C. Pilot Application
While we are designing an approach for data mining in

a large BSN repository, a large data set is not available to

us. Instead, we apply the proposed approach to a

classification problem. Classification accuracy is similar
to the indexing and searching accuracy, which means that

a classification application can assess the precision of the

proposed technique. Furthermore, as the approach is

designed for a large data set, we aim to make it as fast as

possible. For the experiment, we collected data of ten

movements from three subjects. The details of the

experimental movements can be found in Table 1. Every

Fig. 1. BSN mining system overview.
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subject repeated each movement ten times to increase the

size of the data set. Each subject was equipped with nine
sensor nodes positioned on both ankles, both thighs, both

wrists and upper arms, and on the belt (as shown in Fig. 2).

D. Desirable Solution Properties
The focus of this study is to address the problem of data

mining for the BSN data repositories. The system takes raw

sensor readings as an input and performs a computation-

ally efficient search in the repository for the signals similar

to the input. Due to a potentially large size of the

repository, the approach needs to be fast yet reliable.
Consequently, we focus on the speed and simplicity of the

approach. Sensor readings can be viewed as observations

made by the system. Upon receiving an observation as the

input, the search approach should be able to identify a

movement to which the observation belongs, so that it can

be stored in the appropriate place in the repository. It

should be able to compare signals of two movements and

find possible similarities. Furthermore, it should be able to
identify similar portions of the signals, which can be useful

if a subject exhibits a consistent abnormality in performing

multiple movements. Finally, it needs to identify move-

ments that contain certain instances of the signal, for

example, identify all the movements where the torso

moves forward.

IV. DATA REPRESENTATION

A physical movement can normally be represented as a

sequence of shorter motions. Capturing the structure of

the movement involves capturing these shorter motions
and timing relationships between them. This can be done

by identifying motion primitives. A common way for

unsupervised data grouping is clustering. We follow the

idea introduced in [21] and use a clustering technique for

primitive generation. We extract features from the signal

and cluster the resultant feature set, which means that the

clustering outcome is dependent on the perspective that

the features can provide. This adds flexibility to the system
because different feature sets can characterize the signal

from different perspectives.

A. Primitive Construction
Before applying a clustering technique, it is necessary

to decide what data set the clustering is applied to. One

way to handle this issue is to combine all of the sensory

axis of one node and use all of the available to the node

data to define primitives. This approach is flawed because,

when the multidimensional data is merged into a

unidimensional primitive, combining variations of each
of the sensing axis could modify the structure of the

combined primitives. Each one of the sensory axis can

produce slightly different readings due to a minor

alteration in the movement performance. An example of

such an alternation can be a slight delay of the movement.

This alternation does not modify the structure of the

individual sensory axis signals, but, since alternations of all

of the axis are independent of each other, aligning them
with respect to time can significantly change the structure

of the combined primitives. Fig. 3 demonstrates an

example where a slight variation in one of the axis’ signals,

which does not violate the signal structure for that axis,

introduces changes to final primitives. The figure

illustrates two trials of the same movement from the

perspective of two different sensory axis. While the signals

in the second trial have the same structure as the signals in
the first trial, as demonstrated by the individual tran-

scripts, their timing is inconsistent with the signals in the

first trial. The bottom part of the figure demonstrates the

combined transcript generated from two individual

transcripts. Large vertical blocks correspond to the parts

Fig. 3. Signal alignment issue with respect to time.

Table 1 Pilot Application Movements

Fig. 2. TelosB sensor node with a custom sensor board.
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of the combined transcript of the second trial that do not
have a corresponding counterpart in the first trial, which

suggests that, if the primitive transitions are not aligned in

the original signals, the time aligned combination of these

signals may not be consistent between both trials. We also

expect to have noise in the inertial data our sensor nodes

collect, which will introduce another source of error.

To avoid the issue with alignment, we consider the

reading of each sensing axis separately. Primitives are
created for each one of the axis. In effect, we treat each

sensing axis as a separate classifier. This approach has an

additional benefit of increasing the flexibility of the

system. The system does not require all of the sensing

axis used in one experiment to be present in other

experiments, which means that it does not force users into

a particular hardware configuration.

1) Data Clustering: Clustering is a very effective method

of grouping similar data points, and distinguishing

between different data points. When trying to cluster

BSN data, a clustering approach is normally applied to

feature vectors extracted from the original signal. There is

a variety of features that can be extracted from inertial

data. Different approaches rely on first and second

derivatives, signal mean, amplitude, variance, standard
deviation, peak detection, morphological features, and

more. During our study we tried to identify a small and

simple feature set that would produce good results. The

resultant clusters should be able to identify enough

transitions in the signal so that each movement of interest

would be characterized with a unique subset of such

transitions. Our primitive generation experiment conclud-

ed that first and second derivatives are sufficient to
describe the structure of our data set. To minimize the

effect of the intersubject differences in features, the

system normalizes features with respect to each subject

using standard score (or z-score) [38]. While we used these

specific features for our experiment, the proposed

approach is independent of the feature selection and

only requires that selected features would represent the

structure of the input signal.
There is a wide array of clustering techniques that

includes hierarchical, partitional, conceptual, and density-

based approaches. For our analyses, we considered two

clustering approaches. First, we considered a k-means

clustering approach [39]. k-means is a hierarchical

approach that attempts to partition the data in a way

that every point is assigned to a cluster with the closest

mean, or cluster center. In spirit, this approach is similar
to expectation maximization in Gaussian mixture models

(GMMs) [40], which is the second clustering approach

that we consider. The approaches are similar, because both

of them try to identify the centers of natural clusters of the

data instead of artificially selecting points in the training

set as cluster centers. GMM clustering computes the

probability that any given point is assigned to every

individual cluster and makes an assignment that max-
imizes its likelihood of such assignment. We selected the

above approaches because of their computational simplic-

ity, and the property that they are trying to identify cluster

centers of the data set without any prior knowledge of the

data. Both approaches start with random cluster centers

and reevaluate them after each round of computation.

Once the cluster centers stay constant within a predefined

threshold, both algorithms assume to have converged to
the natural cluster centers of the data and return the

result.

A major problem to consider during unsupervised

clustering is the number of clustersk that produces the best

results. To find the best solution we varied k from 2 to the

length of the shortest observation in the training set, while

evaluating parameters of both k-means and GMM models.

In case of k-means, we made the decision based on cluster
silhouette [41]. Silhouette is calculated based on the

tightness of each cluster and its separation from other

clusters. For every pointi, the silhouette is defined as

sðiÞ ¼ bðiÞ � aðiÞ
max aðiÞ; bðiÞð Þ (1)

where aðiÞ is the average distance of pointi to all other

points in its cluster, bjðiÞ is the average distance of pointi to

all the points in cluster j, and bðiÞ ¼ minðbjðiÞÞ,8j.
Silhouette sðiÞ describes how well the pointi is mixed

with the similar data points and is separated from the

different data points. As a result, the quality of a clustering
model with k clusters and d training points can be

evaluated as

QualityðkÞ ¼
Pd

i:1 sðiÞ
d

: (2)

The larger the average silhouette value, the better is the

model. Therefore, the best value of k can be selected by

finding the largest QualityðkÞ [41].
In case of the GMM, we used expectation–

maximization (EM) [42] to find the best mixing para-

meters for GMM. The mixing parameters, such as the

mean and covariance matrices, depend on the number of

clusters k. Once the GMM parameters are selected there

are multiple ways to evaluate the quality of clustering that

include log likelihood, Akaike’s information criterion

(AIC) [43], and BIC [44]. Table 2 demonstrates the
difference between quality estimation models for a GMM

Table 2 Quality Estimation of GMM-Based Clustering Using EM
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with k clusters, maximum likelihood of the estimated

model L, and n points in the training set.

Log likelihood just reports the likelihood of the model,

and AIC and BIC attempt to penalize the system for the

number of clusters. We found the penalty of the BIC to be

too harsh on our data set, which led to an extremely small
number of clusters. As a result we selected AIC as the

GMM model evaluation tool. We evaluated the value of

AIC based on different values of k and selected k that

produced the smallest AIC result.

B. Motion Transcripts
Each movement can be described as a series of

primitives. When an unlabeled movement needs to be
classified, the system can extract features from each of its

data points, and, based on the clustering technique, assign

motion primitives to them. Motion transcripts are

sequences of primitives over a certain alphabet assigned

to movement trials. Since the data from different motes

are not comparable, the system has to make sure to

differentiate between individual motes by using a unique

alphabet for each one. Fig. 4 demonstrates a sample
transcript generated by the ankle node for a Blie-to-sit[
movement. Each one of the sensing axis uses a separate

alphabet, so while they are displayed with the same color

the values of different transcripts are not related.

V. COMPARISON METRIC

Once the BSN data are converted to motion transcripts the

system requires an efficient way to classify and search

them. In Section II, we discussed edit distance, a common

approach to compare strings. However, edit distance does

not perform well when the input data have noise and vary

in length. Additionally, the edit distance calculation is very

slow with order of Oðn2Þ, where n is the length of the
string. While it may be an acceptable solution for a small

application, its speed performance is not at all acceptable

for a large data repository potentially containing terabytes

of data. To resolve the issue of edit distance, the system can

use the idea of n-grams that can track transitions in motion

primitives in linear time with respect to the trial length.

The goal of the n-grams is to track important transitions

between movement primitives in string transcripts.
However, the task of identifying n-grams that represent

important transitions is not simple. The difficulty of the

task is increased since overlapping n-grams are extracted to

improve the quality of the recognition. This means that

potentially there is a very large number of n-grams that can

be selected from any given transcript.

A. n-Gram Selection
The objective of this operation is to identify a small

number of n-grams that can uniquely characterize the

movement of interest, and provide means of distinguishing

that movement from others in the repository. There is a

variety of ways to select proper n-grams, once n-grams are
extracted from all of the training data. IG has proven to be

effective in the field of natural language processing [45].

IG becomes complicated to compute and less effective

when each evaluated feature can take a large number of

values. However, in our experiment, each n-gram has two

possible values. A specific n-gram can be present in a

motion trial and the value of B1[ is assigned to it, or the

n-gram can be absent with a value of B0[ assigned. While IG
proved effective on our data set, the proposed approach is

not dependent on this particular n-gram selection tech-

nique and can be modified based on the specific user

demands.

IG can assess the effectiveness of a feature by tracking

changes in the entropy after consideration of that feature.

IG of an feature f on the collection of movements m is

defined as

Gainðm; fÞ ¼ HðmÞ � HðmjfÞ (3)

where HðmÞ defines entropy of the movement set, and

HðmjfÞ defines conditional entropy of the movement set

with respect to feature f . We use a slightly modified

approach, because when the system is looking for a target

movement all the other movements can be treated the

same way. It is possible that a feature might be good at

identifying one movement while being unable to differen-
tiate between the rest of the movements. That feature

would have a bad general IG, however if we compute IG

with respect to each movement, we can identify good

features for each movement. Practically, this means that

while computing IG of a feature with respect to particular

movement mi, the movement set is split into subsets of

fmig and fFnot_ mig or fm� mig. In this case, HðmijfÞ can

be different for each mi and need to be calculated
individually. Which means that we can redefine the IG as

Gainðmi; fÞ ¼ HðmiÞ � HðmijfÞ: (4)

HðmiÞ represents the amount of expected information

that set m carries itself with respect to movement mi.

Fig. 4. Sample transcripts for three-axis accelerometer and

two-axis gyro.
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Conditional entropy HðmijfÞ defines the expected amount
of information the set m carries with respect to feature f
and movement mi.

Once all the n-grams have an IG assigned to them for

each movement, we can sort the list of IGs and select t
n-grams that have the best IG. This is a very simple

approach because it does not consider correlation between

features, meaning that some of the features can be

redundant. However, even this simple approach can
generate good results [46] and is selected for simplicity.

IG performance can also suffer from movement or subject-

specific signal variations. For example, if a subject has a

consistent way of performing a movement, which differs

from other subjects, the IG may select the subject-specific

transitions as characteristic for the whole movement. In

reality, these transitions will not be observed from any

other subject, and represent an overfitting problem. This
problem can be addressed by disqualifying n-grams that do

not appear in enough training trials before the IG is

applied. This step makes selecting a clustering technique

that creates a sufficient number of clusters even more

important. If the number of primitives is low, selecting

only the often appearing n-grams, before the IG is applied,

is likely to result in almost identical n-gram subsets

selected for every movement.

VI. CLASSIFIER

Once the set of good n-grams is selected, an approach needs

to be defined for fast movement classification and search.

This approach also should not rely on the knowledge of the

complete structure of the data, and be able to finish

classification and search based on partial information.
These properties are exhibited by suffix trees [47]; more

specifically, we used the Patricia tree in our implementa-

tion. Patricia trees are used to represent sets of string by

splitting them into substrings and assigning substrings to

the edges. This idea fits naturally with n-grams that are

substrings. Once all of the n-grams are selected for each

movement, we combine them and assign the combined set

to the edges of a Patricia tree. The paths from the root to all
of the leafs correspond to all the possible permutations of

the combined n-gram set. This idea is illustrated in Fig. 5,

where a sample Patricia tree is generated for six move-

ments. The path BBBB,[ BAEE,[ and BEBB[ corresponds a

sit-to-stand movements.

Once the Patricia tree is created, each leaf of the

Patricia tree corresponds to a subset of the movements.

During testing, we use the n-grams of the test trial to
traverse the tree and return the corresponding movement

set. It may be an empty set or it may contain one or more

movements. Specifically, if not enough n-grams are

present to traverse the tree to a leaf, the system returns

all movements assigned to the leafs of the subtree rooted at

the node where the traversal terminated. For example, in

Fig. 5, if the traversal would terminate at Node2, then the

set containing {sit-to-stand, stand-to-sit, sit-to-lie-to-sit,

bend and grasp} is reported as the answer. If the traversal

would terminate at Node5, then only the set containing

{sit-to-lie-to-sit, bend and grasp} is reported. Finally, if the

traversal terminates at a leaf Node1 1, then the system

reports only step backward as the answer.

VII. DATA MINING MODEL

Based on the construct defined earlier we propose a data
mining approach. The approach has two distinct parts:

training and query processing.

A. Training
During the training phase of the execution the system

acquires parameters that can be used during the query

processing. The training starts with selecting a portion of

the available data trials for training. First and second

derivatives are then extracted from each one of the trials for

every sensing axis of the motes. Features are then

normalized with respect to each subject using standard
score (or z-score) [38] in order to remove intersubject

variations of the same movements. Then, normalized

features are used to define data clusters as described in

Section IV-A1. Once the data clusters are defined,

primitives are extracted for the data points in each training

trial, and then combined to define motion transcripts as

described in Section IV-B. The next step is to extract

n-grams from each one of the transcripts generated for the
training samples. Since the number of n-grams is very large,

the system then selects a small number of t n-grams using

the IG as described in Section V-A. Finally, the system

constructs a Patricia tree with selected n-grams on the

edges and movement classes on the leafs as described in

Section VI. The overall process is demonstrated in Fig. 6.

The parameters defined during the training are data

Fig. 5. A sample Patricia tree for six movements.
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clusters for each sensing axis of the motes, n-grams selected

with respect to the IG criteria, and Patricia trees for

classification. Clusters are represented by the cluster center

coordinates, while important features selected for each

sensing axis of each motes are then combined and stored.

B. Query Processing
When a system needs to classify or query for a

movement it receives input in the form of the sensor

readings. First and second derivatives are extracted from

the sensor readings of each of the sensing axis. Based on

these features and clusters, defined during the training of
the system, each data point of the trial is labeled with a

primitive. Primitives are combined with respect to timing

alignment into motion transcripts. The system then

traverses the transcript of the trial and verifies if it

contains important n-grams selected during the training.

Using this information the system traverses the Patricia

tree defined for this sensing axis during the training and

returns the set of movements assigned to the leaf the
traversal terminated at. If the traversal terminated at a

node p that is not a leaf, the algorithm returns all the

movements assigned to the leafs of the subtree rooted at

node p. This allows the system to avoid introducing bias for

the axis that observe the same signal for two different

movements. Since all of those operations are defined in

terms of individual sensing axis, an approach is required to

combine the local decisions. In this work, we employ a
simple voting scheme, which performs well in the context

of our data. However, this method can be improved by

treating each sensory axis as an individual classifier. To

make a final decision, the individual classifiers can be

combined in an intelligent way such as AdaBoost [48]. In

order to avoid enforcing a certain structure on the

hardware, we aim to define a flexible approach that can

make a decision with only a subset of sensing axis

available. When this idea is combined with the need for

speed and simplicity, a simple majority voting approach is

applied. This approach performs well in our pilot

application, however, the system is not constrained to

this approach and can be modified. The flow of the query

processing is demonstrated in Fig. 7.

Because the system initially processes each sensing axis
individually, it is possible to query only for a subset of axis

available in the system. This can be useful when a specific

sensor is not available to all users. For example, one user

can use a 3-D gyroscope, while another may use only a 2-D

gyroscope. Additionally, since the system uses a voting

scheme it is possible to make classification decisions based

on the local view of only a subset of nodes.

VIII . EXPERIMENTAL RESULTS

To verify the performance of our approach we apply it to a

pilot application discussed in Section III-C. The pilot
application can be split into two problems. The first

problem is locating the correct place in the repository to

store a signal for an unknown trial. To achieve it, we split

the available data into two equal sets. The first half of the

data is used to train the system, while the second half of

the data is used to verify the classification accuracy of the

approach. The second problem is creating a representative

signal template for each movement, and being able to
search the entire repository for the trials consistent with

the template. We start by training the system on the entire

data set. During the training, the system selects n-gram

sets, or templates, characteristic to each movement. We

then use individual templates to search for relevant trials

in the entire repository. While evaluating the first

problem, we also compare the results of classification

Fig. 6. System training flow.
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when k-means clustering is used to the results when GMM

clustering is used. We then consider accuracy of the

approach with respect to the length of the n-gram n, and
number of features selected t. For small numbers of n and t,
which would allow us to consider those as constants in the

complexity analyses, the approach achieves nearly linear

time. Finally, we demonstrate the accuracy tradeoff with

respect to n and t. For the second problem, we first evaluate

how often each of the templates appears in the repository

on average. We then consider the computed templates in

the context of individual trials. If a trial contains enough
n-grams from a given template, it is accepted as the

movement represented by that template. Otherwise the

trial is rejected. We report the accuracy of trial classifica-

tion for each of the movement templates.

A. k-Means or GMM?
In this section, we apply our approach to movement

transcript generated based on the k-means and GMM

clustering. We compare the two approaches for a 3-gram
with the number of selected n-grams varying from 1 to 6

per sensing axis in Table 3, and with {1. . .6}-gram with

only 1 n-gram selected from each sensing axis in Table 4.

Both tables indicate that an increase int or n would

increase the precision and recall for both approaches until

the overfitting point is reached. It is also clear that the

GMM approach outperforms the k-means approach with

respect to varying both n and k, and therefore is a better

candidate for our application.

B. Classification Accuracy
To evaluate classification accuracy of the model we

evaluate precision and recall of movement classification

using then-gram size of n ¼ 3, and select number of

features t ¼ f1; 2; . . . ; 5g with GMM clustering model.

We tested our model by splitting the data into two parts.

Half of the data was used to train the system, while the

other half was used to test it. The results of the
classification are demonstrated in Table 5. The table con-

tains the F-score defined as ð2� P� RÞ=ðPþ RÞ, where

P is the classification precision, and R is a classification

recall. This table confirms that adding more n-grams would

improve both average precision and average recall until an

Table 3 {3–7}-Gram Average Performance of k-Means Versus

GMM With 1 n-Gram Selected

Fig. 7. Query processing flow.
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overfitting point is reached. Note that individual values for
movements sometimes decrease when an additional feature

is selected. This is due to the fact that the data set we have

has a considerable amount of noise, and while an n-gram

improves the overall classification accuracy it may cause

confusion in classification of some trials where it appears as

noise and not an important transition. Table 5 displays the

number ofn-grams extracted from each sensing axis, so the

total number of the n-grams extracted by a sensor node
should be multiplied by 5. However, even after that the

classification accuracy is fairly high for the number of

considered features.

C. Parameter Tradeoff
The system we define has two parameters that

classification accuracy depends on. We can select the

length of the substring n and the number of n-grams t
selected for classification. Ast is increasing so does the

accuracy until the overfitting point is reached. After the

overfitting point is reached the accuracy of the approach
will no longer improve with additional features. It is clear

that a large n inherently is able to capture more structural

information. However, since we use a moving window

n-gram extraction, a single erroneous primitive affects

more n-grams for large values of n, which means that the

overfitting problem or training on the trial but not model

specific n-grams should happen sooner. We expect the

system to converge to the best accuracy faster for large

points of n but it also means that the overfitting point will

happen faster as well. Table 6 demonstrates F-score of

accuracy versus the number of n-grams t for different

values of n.

From the tables it is clear that higher values of n are

desirable before overfitting, which means that n should be

determined based on the expected amount of noise in the
original signal. For the lower amount of noise a higher

value of n would work better, while when the amount of

noise is large, low values of n will provide a safer solution

with less risk of overfitting. In this example, the quality of

the precision is improving from n ¼ 3 to n ¼ 5, it is fairly

stationary from n ¼ 5 to n ¼ 7, and finally, n ¼ 9 has

decreasing results. The fact that large n-grams take more

time to locate in the training trials should also be
considered. The system can evaluate multiple possibilities

during the training and generate the curves to identify the

best operational point from the perspective of the

application.

D. Movement Template Evaluation
Based on the parameters selected in Section VIII-C, we

define Ti as combination of sets of 3-grams selected for
each sensing axis during the training process for move-

ment Mi. Unlike the previous problem, we use the entire

data set to train the templates. Once the training is

complete and the templates are generated, we evaluate the

average quality of each Ti. It is done by checking how often

the n-grams of each Ti appear in movement trials of every

movement. Intuitively, n-grams of Ti should appear more

often in Mi than any other movement, in order for the
template to be effective. Table 7 demonstrates the results

of this evaluation normalized with respect to the size of

each template, meaning that on average 51% of T1 appear

in trials of M1, while only 36% of T1 appear in trials of M2.

Two observations can be made based on the results in

Table 7. First, it is clear that n-grams of Ti appear most

often in the Mi itself. This observation is in line with our

expectation from a good template. While n-grams of the Ti,
on average, appear 10% more often in the respective Mi,

they also appear in trials of other movements a sizable

amount. This result suggests that a closer look on a per-

trial basis is required to evaluate the template quality. The

intuitive approach to this problem is to search for trials

that have the entire template present. However, in a

realistic system that contains some noise this solution is

Table 5 Classification Precision With Respect to the Number

of Features Selected

Table 6 Precision With Respect to n-Gram Size, and Number of

n-Grams Selected

Table 4 3-Gram Average Performance of k-Means Versus

GMM With {1. . .6} n-Grams Selected
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not practical, since it is unlikely that many trials will be

perfect. Table 7 confirms this; the highest average values

for each Ti are close to 50% and not 100%. We solve this
problem by introducing a variable �. � defines the

proportion of the number of n-grams from a Ti that need

to be present in a trial for it to be classified as Mi. If the �
value is too low, it is likely that some trials will be

erroneously identified as Mi, increasing the number of

false positive errors and decreasing the precision of the

template. However, if the � value is too high, some trials of

the Mi will not be identified, increasing the amount of false
negative error and decreasing the recall of the template.

Additionally, lower values of � can speed up the

computation, which is desirable in our problem due to a

potentially large number of movements in the repository.

To achieve a balance between the precision and recall, as

well as to promote faster data mining, we select the value

of � ¼ :5. The value of 50% is also suggested by Table 7,

where the average presence of more than 50% n-grams
from a template Ti identifies the movement Mi, associated

with that template. Table 8 demonstrates the normalized

number of trials of each movement identified as Mi by each

of the templates Ti, meaning, for example, that template T1

selects 78% of trials belonging to M1.

With � ¼ 0:5, each Ti correctly identifies substantially

more trials of its own movement than any other

movement. This low value of � also defines a search
speed increase of up to 50% since only 50% of the trials in

templates need to be located. However, a some number of

false negative and false positive errors are made, which

suggests that a static value of � is inappropriate. Templates
T1 and T2 do well at identifying only trials of their

respective movements. However, less than a half of the

appropriate trials is identified. This suggests that the value

of � ¼ 0:5 is too high for these templates. At the same

time, T6 and T7 have a much better rate of recognizing

trials of their respective movements, but they also falsely

identify trials of other movements. This suggests that the

value of � ¼ 0:5 is too low for these templates. Defining a
movement-specific value of �i, based on the training set,

for each template, can decrease the amount of errors in the

system.

IX. CONCLUSION

We generated motion primitives based on instantaneous

simple features and unsupervised clustering. We showed
how the signal primitives can be combined into motion

transcripts, which are unidimensional representations of

the multidimensional BSN data. Inspired by the tech-

niques of natural language processing, we applied the

concept of n-grams retrieval for tracking transitions in the

movement transcripts. Due to the large number of n-grams

extracted from a movement trial, we apply a simple IG

approach to the features to select k features that provide
the most information about each sensing axis. Based on the

Table 7 Average Template Evaluation Normalized With Respect to the Template Size

Table 8 Template Evaluation for Individual Trials Normalized With Respect to the Number of Trials of Each Movement
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selected n-grams we build a suffix tree for fast query and
identification of movements in the database. We demon-

strate that the system can achieve average F-score of 97%

on our pilot data with the help of only one characteristic

for each movement transition. We also explored the
tradeoff between the length of the extracted n-grams and

the required number of features for the best classification

results. h
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