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ABSTRACT
In this paper, we present a method to synchronize data from 

multiple sensors in a cyber-physical system without any software 

or hardware modifications to the sensors.  This method allows for 

synchronization of low-power embedded systems in heterogeneous 

sensor networks, regardless of accuracy of individual sensor clocks 

by using the events in the physical world to drive the 

synchronization in the cyber world.  We propose two methods to 

select portions of sensor data streams to drive the synchronization: 

one leveraging the notion of known templates and the other using 

an information theoretic approach. Using the events as well as cues 

from the delay models, we determine alignment points between the 

data streams.  These alignment points are used to synchronize the 

data.  This novel approach is based solely on the sensor data for 

synchronization, and it can be applied post-deployment on systems 

of heterogeneous sensors that are not well designed and lack 

effective synchronization.  Experiments show an average accuracy 

improvement from ~12000ppm to ~2400ppm for a template based-

method and from ~12000 to ~277ppm and ~445ppm for 

information theoretic methods when comparing the synchronized 

(corrected) clock data to an ideal clock source. 

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems] 

General Terms
Algorithms, Reliability, Experimentation. 

Keywords
Cyber-physical systems, synchronization, alignment, sensor 

networks, data-driven. 

1. INTRODUCTION
The number of electronic sensors is rapidly growing, and we will 

soon be dealing with trillions of sensors and actuators deployed 

around the world in a global cyber-physical system [1].  Data 

synchronization between sensors in such a network is critical.  

Synchronization aids in data fusion [2, 3], estimation [4], and other 

designed tasks in cyber-physical systems. Additionally, 

synchronized data may create opportunities for designs and 

concepts that unsynchronized data cannot support. 

Due to inaccurate clocks, clock drifts, delays in time stamping, and 

wireless transmission delays, data between sensors may be 

unsynchronized and misaligned.   For example, a clock source with 

±2000 parts per million (ppm) error would drift by approximately 

120ms for every minute of operation.  Furthermore, highly accurate 

clocks can still drift or be misaligned from other clocks in the 

system.  Many current synchronization methods are based on 

communication between/among the sensors. Sensors may 

communicate with a central server to synchronize, but adding the 

necessary communication hardware and software can be expensive. 

If the sensors can communicate with the cloud or some other 

aggregation node, the communication delays and dropped data 

packets could add to the synchronization issues.  In many cases, 

such sensor communication will not be possible. 

In cyber-physical systems, sensors and actuators provide a crucial 

link between certain physical phenomena and the cyber-world (i.e., 

computation and communication). As the number of sensors in the 

environment increases, the system is likely to be heterogeneous 

with a variety of clock generation methods, sampling rates, and 

communication protocols, which may be outside of the user’s 

control. Therefore, one cannot expect to add hardware or software 

to each sensor in the system to support synchronization. 

Additionally, time stamping data upon reception by some central 

node or in the cloud ignores possible transmission delays and 

assumes immediate and accurate time stamping of received data.  

We require a novel technique that operates solely on the sensor data 

streams to synchronize the sensor data without modification to the 

sensor software or hardware. This synchronization tool could run 

in the cloud or at some aggregator node so that any sensor in the 

network can be synchronized without sacrificing the embedded 

nature and low power designs of the sensors.   

In this paper, we present a method to align data from multiple 

sensors without any additional software or hardware on the sensors.  

Physical events measured by the sensors can provide a common, 

direct link between the data and the timing.  This is the foundation 

of our proposed alignment and synchronization algorithm. This 

method takes data from a (possibly heterogeneous) sensor network, 

then uses measurements of physical events to find and align 

distinguishable critical points in the data sets to improve 

synchronization of the total data stream. 

The remainder of this paper is organized as follows. Section 2 

reviews related works on clock synchronization and alignment 

techniques.  Section 3 provides background information on 

oscillators and sensor clock types.  Section 4 explains our methods 

and algorithms for sensor synchronization and alignment.  Section 

5 covers the experiments and gives an analysis of the results 

obtained.  Finally, Section 6 presents conclusions and future work. 

2. RELATED WORKS
Techniques for sensor synchronization can be broadly divided into 

several categories: hardware based, communication based, and 

software based synchronization techniques.   Some methods require 

combinations of these general techniques for the synchronization 

of sensor data. 

Hardware techniques generally add components to the sensors to 

improve the accuracy and reduce drift of the clock.  Clock and data 
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recovery circuits synchronize the system by generating special 

pulsed patterns in the data that provide information for 

synchronizing clocks [5, 6].  These circuits require modifications 

for the sender (i.e., sensor) and receiver (i.e., host PC) of the data 

to handle the encoding and decoding, respectively, of the 

synchronization pulses in the data.  Buevich et al. use a hardware 

clock-rate adjustment circuit in addition to a power-line sensing 

circuit to reduce clock drift and keep sensor clocks synchronized to 

a global clock [7].    

Many synchronization methods for wireless sensor networks are 

based on two-way communication between the sensors or two-way 

communication with a host.  Tabata et al. present a scheme to 

synchronize clocks in adjacent nodes in a mesh network [8].  The 

sensors exchange messages to determine master and slave nodes for 

synchronization purposes. Deemster et al. use a Kalman filter to 

estimate when the sensor and the host are not synchronized [9].  

This information is used to trigger a “synchronization action” (i.e. 

time request) from the host to the sensor.  Round trip time and the 

remote time are then used to synchronize the system.  The sensor 

enters a special timing mode and does not make measurements 

when handling the synchronization messages.   

Other synchronization techniques use software that is not on the 

sensor to synchronize the data. Olson used a software 

synchronization technique based on finding low-latency 

measurements to estimate the delay between a sensor measurement 

and the time stamp on the host PC for data fusion in a mobile robot 

[10].  Zaman and Illingworth present a method to restrict clock drift 

based on events measured by odometry and vision sensors on a 

mobile robot [11].  This method assumes the clocks are generally 

closely aligned and further inhibits deviation by detecting the 

moment when the robot starts to move in both data streams. 

Bækgaard et al. present a method for synchronizing EEG data with 

eye tracking data [12].  The blinking signature on each modality is 

used for synchronization by aligning blink probability functions 

determined for each modality through cross correlation.   

The hardware and communication synchronization methods require 

the sensor to have special hardware or software to enable the 

synchronization, which incur extra cost and energy to the system 

and in some cases, disrupt the measurements. These methods also 

require complete control over every sensor in the system to keep 

sensor synchronization. The software methods synchronized the 

sensors without modifying the sensors. The last two methods 

discussed improve synchronization by measuring concurrent events 

on multiple sensors.   

Our proposed method can improve synchronization based on 

known, predetermined events as well as unknown events.  Given 

known events, we generate templates to detect events on one sensor 

and align them with related events detected on a second sensor.  

Alternately, if no events are known ahead of time, our method can 

determine which events from one sensor can likely be used to align 

with unknown events on a second sensor that measures the same 

physical phenomena.  The proposed method also works with no 

sensor hardware or software modifications. 

3. BACKGROUND 
There are a variety of clocking circuits used in sensors.  The 

accuracy of these clocks typically vary from ±20ppm for a crystal 

oscillator to ±5000ppm or higher for digitally controlled oscillators 

(DCOs), voltage controlled oscillators (VCOs), and relaxation 

oscillators.  Oscillators with higher accuracy generally add cost and 

power to sensor designs.  To reduce cost and power concerns, 

sensors may not always be designed with the most accurate clock 

sources. Even sensors with high accuracy clock sources and similar 

sample rates will see a drift over time.  Due to drift and inaccuracies 

of the clocks as well as transmission delays, all sensors in the 

system can be considered as sensors with possible poor 

synchronization and some jitter in the sampling rate. 

Figure 1 details an experiment to measure delays between multiple 

clock sources on a single custom sensor. The sensor has three clock 

sources that were used to timestamp the data, a crystal oscillator, a 

DCO, and a relaxation oscillator. Please refer to Section 5 for a 

more detailed description of the sensor.  The data was collected 

from the sensor that started fully charged and ran until the battery 

was depleted.  The graph shows the difference between timestamps 

for the crystal oscillator vs. the DCO and between crystal oscillator 

and the relaxation oscillator. With no synchronization, the 

difference in the measurements is greater than 10 minutes for the 

DCO and the relaxation oscillator vs. the crystal after 22.5 hours of 

data collection.  This amount of error would make combining data 

from sensors with these different clocking methods nearly 

impossible without some form of synchronization. 

We note that for this particular sensor, there are two approximately 

linear segments that occur during the time that the data is captured.  

Essentially, the delay of the DCO vs the crystal for this sensor 

changes over time, but it is linear for long periods.  The change in 

slope (i.e., inflection point) between the segments can be seen 

around sample 6.2 million.  A similar change can be seen between 

the crystal and the relaxation oscillator around sample 12 million.  

These changes in clock accuracy are likely due to the decrease in 

the battery voltage of the sensor over time.   

Given an event detected in one sensor data stream, these models of 

delay (i.e., delay profiles) can be used to estimate a range on the 

data stream of another sensor using a different clock source where 

the related event can be located.  In other words, understanding the 

clock types on the sensors used can influence the frequency and 

amount of synchronization (or data alignment) needed in the 

system, as well as reduce the amount of data necessary to search 

for critical data points.  Furthermore, reducing the size of the search 

will ideally improve accuracy in matching and synchronization. 

 

Figure 1: Clock source differences for over 22.5 hours.    

4. ALIGNMENT AND 

SYNCHRONIZATION FORMULATION 
Our proposed alignment method leverages events in the physical 

world to improve sensor synchronization.  Specifically, we search 

the data streams for evidence of physical events that are monitored 

by multiple sensors.  These events can then be used to align the 

sensor timestamps.  We select one of the sensors in the system and 

treat this as our “world clock” (i.e., the ideal sensor).  Any sensor 

can be selected without loss of generality, but the most accurate 

sensor (if known) would generally be preferred. 
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4.1 Alignment Concept Formulation 
Consider two sensors, 𝑆1 and 𝑆2, that are measuring a physical 

phenomenon where 𝑆1 is the ideal sensor. Sensors 𝑆1 and 𝑆2 

collect sets of data points 𝑥𝑖 and 𝑦𝑖, respectively, where 𝑖 ∈ {1 … 𝑛} 

is the time index and 𝑛 is the current time.  The sensors sample the 

data with sampling periods of 𝑇1 + 𝜖1𝑖 for 𝑆1 and 𝑇2 + 𝜖2𝑖 for 𝑆2 

where 𝑇𝑘 is the expected sampling period and 𝜖𝑘𝑖 represents the 

jitter in the sampling period for 𝑘 ∈ {1,2}.  Each data point is time 

stamped by a clock source on the sensor generating the following 

data streams 

 𝑿 = {(𝑥𝑖 , 𝑡𝑖)},   𝒀 = {(𝑦𝑗 , 𝑡𝑗
′)},   𝑖, 𝑗 ∈ ℕ   (1) 

where 𝑡𝑖 is the timestamp from the clock source on 𝑆1 and 𝑡𝑗
′ is the 

timestamp form the clock source on 𝑆2.  With these concepts in 

place, we define alignment points. 

Definition: An alignment point is a measurement (e.g., 𝑥𝑖) of a 

physical phenomenon or event in a sensor data stream  that can be 

accurately distinguished and directly related to a measurement 

(e.g.,  𝑦𝑗) of the same event in the data stream of another sensor.   

For example, a sensor measuring the movement of a light switch 

and a light sensor would have measurements in their respective data 

streams related to the events of turning on and turning off the lights.   

We denote the correct correspondence between the shared 

measurements of an event on two sensors as 

 𝑥𝑖 ≡ 𝑦𝑗  where 𝑖 ≠ 𝑗. (2) 

We determine the times related to the data points selected to 

generate a set of alignment points denoted as 

 𝑨 = {{𝑥𝑖 , 𝑡𝑖}, {𝑦𝑗 , 𝑡𝑗
′}}.  (3) 

We select a subset of the alignment points, then use the timing data 

from one sensor clock source to synchronize the other sensor’s 

clock.  For a given alignment point from 𝑨, we set 𝑡𝑗
′ ← 𝑡𝑖 , 

intuitively, replacing the less accurate clock or time with the more 

accurate time.  After all times in A are adjusted, the clock data, 𝑡′ 
(i.e. 𝑆2 time), is linearly resampled between the alignment points 

to create a new time series, �̂�.  The new time series is combined 

with the data points from 𝒀 to create a synchronized data stream 

 𝒀𝒔 = {(𝑦𝑗 , �̂�𝑗)}. (4) 

As shown in Figure 1 and discussed in Section 3, the delays of one 

clock oscillator vs. another are often approximately piecewise 

linear over long collection times.  However, the clock jitter may 

make the delay nonlinear over shorter segments.  Additionally, 

other sensors and clock sources likely will not exhibit the same 

behavior as the clocks on the custom sensor.  Without greater 

knowledge of the delay profiles, linear resampling gives a valid 

estimation of the timing data between alignment points.  Other 

resampling schemes could be used if more appropriate. 

Understanding the delays over long data streams can assist in 

determining the optimal alignment points for processing large 

amounts of data and ensuring minimal processing time.   If the 

relative drift between two clocks is known (at least approximately) 

and piecewise linear over a certain time window, the amount of 

processing can be reduced by selecting alignment points from 𝑨 on 

either side of the inflection points when the slope of the linear fit 

changes.  Because only two points are necessary to determine a line, 

distinguishable points closest to the inflection points from the delay 

profile would likely give the best possible alignment with minimal 

processing.  If the drift is not constant or nonlinear, more alignment 

points can be used to improve the synchronization. 

A limitation of this technique is the possible matching of the wrong 

data points in data stream 1 and data stream 2.  Minimizing the 

search range based on knowledge of the possible delays helps to 

reduce this risk.  Highly repetitive/periodic signals could still cause 

an issue, but single point errors do not propagate any 

synchronization error beyond the next alignment point.  Essentially, 

the algorithm recovers from any errors at the next alignment point.  

For long-term collections, it is expected that there will be more time 

of inactivity, which will also mitigate the risk. 

4.2 Template-Based Alignment Point 

Selection 

If previous synchronized data sets for known physical events are 

available, we can use templates and pattern matching algorithms to 

extract alignment points from the data streams.  Figure 2 shows an 

example template for two sensor data streams.  The sensors 

represent the accelerometer data from sensors attached to the thigh 

of a subject (sensor 1) and a chair (sensor 2) when the subject does 

a stand-to-sit motion.  This two-signal template represents the 

relationship between the two properly synchronized data streams. 

We use dynamic time warping (DTW) [13] to find the locations in 

the sensor 1 data stream that match the sensor 1 template. The 

locations in data stream 1 that match the template provide a set of 

data points for the sensor 1 data stream that indicate a known event. 

For all data points found in the first data stream, the corresponding 

data points in the second sensor data stream must be found.  We use 

a registration technique based on mutual information for image 

registration [14] to compare the templates and both sensor data 

streams to find these points.   

Mutual information is defined as 

 
𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦) log2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 (5) 

where 𝑝(𝑥) and 𝑝(𝑦) are the probability distributions (estimated by 

histograms) of signal 𝑥 and signal 𝑦, respectively, and 𝑝(𝑥, 𝑦) is 

the joint probability for signal 𝑥 and signal 𝑦.   

 

Figure 2: Sensor 1 (thigh) & Sensor 2 (chair) templates 

The templates are treated like a 2-by-N image where N is the length 

of the templates.  To determine the matching points on the sensor 2 

data stream, a search range is selected based on the index of the 

data point from sensor 1.  A sliding window centered around this 

point on data stream 2 is searched, as illustrated in Figure 3. The 

alignment point for the data streams is determined by the highest 

mutual information when comparing the template image against the 

2-by-𝑁 images from data stream 1 and a sliding window on data 

stream 2. 
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Figure 3: Matching of 2xN template vs 2xN signal 

4.3 Entropy Based Alignment Point Selection 
In many cases, we do not have the full knowledge or understanding 

of the cyber-physical system. Therefore, we are unable to make a 

set of templates with ideal timing.  In this scenario, possible critical 

data points on data stream 1 can be found through statistical or 

information theoretical approaches. 

Entropy is a measurement of the randomness of a signal [15] and is 

calculated as 

 𝐻(𝑥) = − ∑ 𝑝(𝑥) log2 𝑝(𝑥) (6) 

where 𝑝(𝑥) is the probability of a given 𝑥 in the signal’s 

distribution based on a histogram. Using a sliding window across 

data stream 1, the entropy is calculated for each window.  The 

highest entropy values give segments of the data stream with the 

most information (in Shannon’s sense) or most “interesting” 

distributions.  The entropy peaks are used to select data points in 

the first stream that will be used for matching. 

Figure 4 shows a data stream and the related entropy calculation.  

The segments of the signal with the highest entropy match the most 

distinct features of the signal, which is expected. Because we do 

not know exactly what these data streams represent, we assume that 

the physical event that creates an “interesting” event on one sensor 

will also cause a similar event on the other sensors measuring the 

same phenomena.  For example, if one sensor measure vibrations 

on a bridge while another measures the load on the bridge, a large 

truck driving over the bridge will cause a significant event in the 

data streams of both sensors and therefore corresponding high 

entropy measurements. 

 

Figure 4: A data stream and the entropy calculated. 

Once the data points on the first data stream are selected, the 

corresponding data points on the second data stream must be 

determined.  This is again done through mutual information as 

described in (5).  In this scenario, the mutual information is 

calculated on the first data stream segment against a sliding window 

on the second data stream within a range based on the index from 

data stream 1 and the delay profile. The peak of the mutual 

information calculation is selected as the corresponding data point 

for the second data stream. The two data points and times are 

combined to make the alignment point. 

4.4 Alignment Point Subset Selection 
Each alignment point determined by the template or entropy based 

methods could be used for synchronization of the signals, but this 

may be computationally expensive depending on the length of the 

signals and the number of alignment points available.  We want to 

select a subset of alignment points (i.e. 𝑺 ⊆ 𝑨) for synchronization.  

Consider that each alignment point 𝑎𝑖 ∈ 𝑨, has a position in the 

signal, 𝑝𝑖, and quality score, 𝑞𝑖, which indicates how well the 

alignment point can accomplish the alignment. Based on these 

characteristics, we define two methods for selecting 𝑺. 

4.4.1 Regional Peak Selection 
The first method for determining 𝑺 is called Regional Peak 

Selection.  Based on the quality score and a region, 𝑅, we select the 

subset of alignment points.  The highest quality score is selected, 

and other alignment points within the region around this peak are 

dominated (i.e. not selected).  All 𝑎𝑖 are ordered by decreasing 𝑞𝑖 

and the following 𝑺 is determined by 

 𝑎𝑖 ∈ 𝐒  𝑖𝑓𝑓 max (𝑞𝑖), |𝑝𝑖 − 𝑝𝑗| > 𝑅 and 𝑖 > 𝑗. (7) 

This method prioritizes the quality of the alignment point, but also 

works to spread the alignment points across the signal.  Because 

of the emphasis on quality, there could be larger regions of the 

signal with no alignment points if the value of 𝑅 is too high. 

4.4.2 Binary Search Selection 
The second method of selecting 𝑺 is called Binary Search Selection.  

This method is based on bisecting the signal to select the positions 

for the alignment points.  The number of bisections, which directly 

drive the number of alignment points, is selected by choosing a 

level 𝐿. The number of alignment points that this method will select 

is equal to 2𝐿 − 1 as each segment of the signal from the prior level 

is bisected at the current level.  The positions based on the level, 

𝑙𝑘 , are used to determine 𝑺 and is based on  

 𝑎𝑖 ∈ 𝐒  𝑖𝑓𝑓 |𝑝𝑖 − 𝑙𝑘| <|𝑝𝑗 − 𝑙𝑘|, ∀ 𝑙𝑘. (8) 

The Binary Search Selection method prioritizes evenly spacing 

alignment points throughout the signal.  It should be noted that 

some alignment points may be selected multiple times if they are 

closest to multiple level positions, 𝑙𝑘.  If that occurs, duplicates will 

be removed 

5. Experiments and Results 
In the experiments, we use a custom sensor board with a Texas 

Instruments MSP430 microcontroller, and an InvenSense 

MPU9150 inertial measurement unit (IMU) collecting data at 

200Hz.  The sensor uses the MSP430 crystal oscillator (±20ppm), 

the MSP430 DCO (±5,000ppm), and the MPU9150 relaxation 

oscillator (±12,000ppm) to timestamp the data.  Using MATLAB, 

the alignment algorithms are applied to the sensor data for one 

sensor using the crystal oscillator timestamp, and the second sensor 

using the MPU9150 oscillator timestamp. 

5.1 Metrics 
The alignment algorithms are evaluated using the following metrics 
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𝑝𝑝𝑚 =

Δ𝑡

𝑇
× 1,000,000 (10) 

where 𝐸𝑛𝑇𝑜𝑡 is a measure of how much the synchronized data 

differs for all data points through the data point n, and 𝑝𝑝𝑚 is a 

standard measure of accuracy for clocks. 𝐸𝑛𝑇𝑜𝑡 takes into account 

jitter between the synchronized data timing and the ideal data 

timing while 𝑝𝑝𝑚 measures how much drift the sensor has at a 

specific point relative to how long the sensor has been running.  The 

end points of the clocks are set equal when calculating 𝐸𝑛𝑇𝑜𝑡 to 

normalize the metric between synchronized and unsynchronized 

data.  We calculate the 𝑝𝑝𝑚 using a sliding window of 6000 

samples (i.e., ~30s) for each point in the data stream. We use the 

crystal oscillator on the second sensor as our gold standard.  The 

accuracy of the crystals (±20𝑝𝑝𝑚) ensures that the drift between 

the two sensor crystals will be small (~ 2.4ms max for 60 seconds).  

Two sets of experiments were designed to test the alignment and 

synchronization algorithms. 

5.2 Template Based Experiments 
The template based experiments were conducted with two sensors 

and known templates as discussed in section 4.2. In the first 

experiment, Sensor 1 is attached to the right thigh of a human 

subject; and Sensor 2 is rigidly attached to the arm of an office 

chair.  The first template represents a stand-to-sit motion on the X-

axis of the accelerometer on the thigh sensor while the second 

template represents the vertical displacement of the chair measured 

by the Z-axis of the accelerometer in the chair sensor. 

In the second template-based experiment, Sensor 1 is a wrist-worn 

sensor and Sensor 2 is mounted on an office door.  The first 

template is the X-axis gyroscope on the wrist worn sensor and is 

used to detect when the door knob is turned.  The second template 

from the sensor on the door uses the X-axis of the gyroscope to 

detect when the door is opened or closed. 

The final template based experiment uses the first sensor on a 

record-player turntable and the second sensor on the tone arm of 

the turntable.  The Sensor 1 template is the Z-axis gyroscope, which 

measures the rotation of the turntable.  The second template is the 

X-axis gyroscope of Sensor 2 which represents the arm lifting.  

5.3 Non-template Based Experiments 
There were two non-template (i.e., entropy) based experiments.  In 

the first set of experiments, two IMU sensors were rigidly attached 

to each other (i.e., stacked).  In the second experiment, the two 

sensors were placed on the two arms of a chair.  In these 

experiments, we do not have a template, rather we expect that 

events causing measurable signals on one sensor will also cause 

detectable signals on the other sensor.  As explained in Section 4.3, 

entropy is used to select the data points in the first signal, that are 

then used to find the corresponding data points the second data 

stream.  For these experiments, the same axis and modality (i.e., 

accelerometer axis) of each sensor was used for signal processing.  

The window size for a segment was set to 200 samples (i.e. ~1s).  

5.4 Results and Analysis 
Table 1 shows the synchronization metrics for the non-template 

based and the template based experiments.  We compare the subset 

selection algorithms against each other as well as the original data 

for the non-template based experiments.  The Binary Search 

method was run with values of 𝐿 from two to five showing an 

average improvement of ~12,000ppm to ~196ppm and ~359ppm 

for the two scenarios.  The Region Peak method was run with 

values of 𝑅 that generated the same number of alignment points as 

the Binary Search method for fair comparison.  The Region peak 

method showed an average improvement from ~12,000ppm to 

~209ppm and ~680ppm for the two scenarios. We used all 

alignment points for the template-based experiments because of the 

smaller number of alignment points (i.e., 4 or less). The average 

improvement for the three template based experiments were from 

~11,000ppm to ~5,000ppm, ~1800ppm, and ~200ppm. 

Generally, the template-based solution has larger errors than the 

non-template-based solution except for the last template based 

experiment.  The primary cause of this additional error is the human 

based movements in the first and second template based 

experiments.  The subject may do the movement (i.e., stand-to-sit 

and open door) at speeds that vary from the templates.  

Additionally, the two matching algorithms used for each set of 

alignment points increases the chances for error in matching and 

therefore synchronization.  The first cause of error is mitigated in 

the turntable experiment because the machine performs the actions 

(i.e. turning the turn table and lifting the arm) at the same speed 

each time, which leads to more accurate synchronization. 

Figure 5 shows the error between the input clock and the gold 

standard clock as well as the error between the input clock and the 

synchronized clock based on the Binary Search method with 𝐿 =
2.   The beginning and end of the clock signals are made equal when 

generating this figure.  Please note that the figure is illustrating the 

impact of the synchronization as the error between the 

synchronized clock and the gold standard clock (the area between 

red and blue lines) is lowering significantly. The error between the 

gold standard clock and the synchronized clock (after the 

alignment) corresponds to ~35ppm with an 𝐸𝑛𝑇𝑜𝑡 = 1.2ms.  

Figure 6 shows raw sensor data before (red dotted line) and after 

the alignment (green solid line) and synchronization algorithm for 

a stand-to-sit versus the chair.  At this alignment point, the 

algorithm adjusts the original sensor clock by 279ms.  Due to the 

factors mentioned for template based alignment, this is not a perfect 

alignment.  There is still an error of about 38ms when compared to 

the ideal clock source.   

 

Figure 5: Input clock error vs gold standard and Binary 

Search Method (𝑳 = 𝟐) for a stacked sensor experiment. 

 

Figure 6: Comparison of chair vs thigh sensor alignment 
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Table 1: Metrics for Original and Synchronized Data 

Template Based Method 

Experiment 
Thigh, 

Chair 
Wrist, 

Door 
Turn-

table 
Original 

𝑬𝒏𝑻𝒐𝒕 (𝐦𝐬) 72.8 51.6 22.9 13.3  

𝒑𝒑𝒎 5,131.1 1,862.2 199.9 11,907  

Non-Template Binary Search Method 

Experiment Stacked 
Two on 

Chair 
Original 

𝑬𝒏𝑻𝒐𝒕 (𝐦𝐬)  

𝒎𝒊𝒏 1.2 6.0 10.9 

𝒎𝒂𝒙 16.4 24.9 216.1 

𝒂𝒗𝒈 5.9 11.4 70.2 

𝒑𝒑𝒎 

𝒎𝒊𝒏 35.3 291.8 11,443 

𝒎𝒂𝒙 423.5 513.0 14,259 

𝒂𝒗𝒈 195.8 359.2 12,224 

Non-Template Region Peak Method 

Experiment Stacked 
Two on 

Chair 
Original 

𝑬𝒏𝑻𝒐𝒕 (𝐦𝐬) 

𝒎𝒊𝒏 2.9 10.4 10.9 

𝒎𝒂𝒙 27.4 33.2 216.1 

𝒂𝒗𝒈 7.4 27.3 70.2 

𝒑𝒑𝒎 

𝒎𝒊𝒏 107 215.7 11,443 

𝒎𝒂𝒙 529.1 838.9 14,259 

𝒂𝒗𝒈 208.5 680.7 12,224 

 

Longer data captures amplify the effects of drift on the data, and 

therefore the alignment points will have a greater positive effect on 

the quality of synchronization.  The Binary Search method shows 

the best accuracy for the non-template based synchronization.  The 

average accuracy was ~277ppm for the two scenarios with average 

𝐸𝑛𝑇𝑜𝑡 = 8.6ms, which is less than two samples of error for a 200 

Hz clock. The average 𝐸𝑛𝑇𝑜𝑡 for template-based method is 49ms 

which is worse than the original 𝐸𝑛𝑇𝑜𝑡 due to the high nonlinearity 

in the unsynchronized clocks. Using a larger number of alignment 

points would improve this metric. On the other hand these 

experiments had an average accuracy of ~2398ppm which is much 

better than the unsynchronized clock.  Most of this error is due to 

the imprecise human based templates.    For the experiment with a 

well-defined mechanical template, the accuracy is ~200ppm, which 

is in line with the best non-template based methods. 

6. CONCLUSIONS AND FUTURE WORK 
We presented an alignment and synchronization algorithm for 

cyber-physical systems that requires no modifications to the sensor 

software or the sensor hardware.  The algorithm synchronizes 

sensor data timing based solely on the data streams of the sensors 

and a clock from one of the sensors.  The algorithm can also 

determine the points in the data that are likely to give the best data 

points for alignment when no templates are available. 

We plan to continue this work by improving estimating the delays 

of the system during processing to more efficiently align and select 

alignment points.  Additionally, we will look at the interaction in 

synchronizing multiple sensors in a network and how to determine 

the optimal sensors for alignment. 
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