IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012

583

From Modeling to Implementation of Virtual
Sensors in Body Sensor Networks

Nikhil Raveendranathan, Stefano Galzarano, Vitali Loseu, Raffaele Gravina, Roberta Giannantonio, Marco Sgroi,
Roozbeh Jafari, and Giancarlo Fortino

Abstract—Body Sensor Networks (BSNs) represent an emerging
technology which has received much attention recently due to its
enormous potential to enable remote, real-time, continuous and
non-invasive monitoring of people in health-care, entertainment,
fitness, sport, social interaction. Signal processing for BSNs usually
comprises of multiple levels of data abstraction, from raw sensor
data to data calculated from processing steps such as feature
extraction and classification. This paper presents a multi-layer
task model based on the concept of Virtual Sensors to improve
architecture modularity and design reusability. Virtual Sensors
are abstractions of components of BSN systems that include
sensor sampling and processing tasks and provide data upon
external requests. The Virtual Sensor model implementation relies
on SPINE2, an open source domain-specific framework that is
designed to support distributed sensing operations and signal pro-
cessing for wireless sensor networks and enables code reusability,
efficiency, and application interoperability. The proposed model
is applied in the context of gait analysis through wearable sensors.
A gait analysis system is developed according to a SPINE2-based
Virtual Sensor architecture and experimentally evaluated. Ob-
tained results confirm that great effectiveness can be achieved in
designing and implementing BSN applications through the Virtual
Sensor approach while maintaining high efficiency and accuracy.

Index Terms—Body sensor networks, SPINE, signal processing,
virtual sensors.

I. INTRODUCTION

HE wide variety of potential applications for Wireless

Sensor Networks (WSNs) in conjunction with severe
resource constraints [1] makes difficult to design an operating
system that is both sufficiently lightweight and powerful.
Because of resource abundance, traditional desktop operating
systems and environments provide APIs for many different
problems and domains. However, operating systems for WSNs,
such as TinyOS [2], provide only minimal facilities, such as

Manuscript received November 08, 2010; revised January 23, 2011, February
08, 2011; accepted February 09, 2011. Date of publication February 28, 2011;
date of current version February 01, 2012. This work was supported in part by
the Cooperating Objects Network of Excellence (CONET), funded by the Eu-
ropean Commission under FP7 under Contract FP7-2007-2-224053, and in part
by Telecom Italia. The associate editor coordinating the review of this manu-
script and approving it for publication was Prof. Aime Lay-Ekakille.

N. Raveendranathan and V. Loseu are with the Embedded Systems and Signal
Processing Lab, University of Texas at Dallas, Dallas, TX 75080 USA.

S. Galzarano, R. Gravina and G. Fortino are with the Department of Elec-
tronics, Informatics, and Systems, University of Calabria, Rende 87036, Italy
(e-mail: g.fortino@unical.it).

R. Giannantonio is with the Telecom Italia, Turin 112, Italy.

M. Sgroi is with the So.Tel, Rome, Italy.

Digital Object Identifier 10.1109/JSEN.2011.2121059

communication and process scheduling. For problems which
share common structure, the abstraction provided by a software
framework can enhance developer productivity and exploit
problem- or domain-specific optimizations.

Middleware exploiting such structure for conventional wire-
less sensor networks includes TinyLIME [3], GSN (Global
Sensor Network) [4], and ATAG (Abstract Task Graph) [5].
In the context of the wireless networks the idea has been ex-
plored in several works [4]-[6]. Authors in these works propose
generic abstractions for all system components, which allow for
easier integration of new components and functionality on the
system. However, in specific application domains they usually
are not so effective in providing efficient and optimized support
to specific tasks at communication, sensor and processing
levels. In fact, they aim at programming general-purpose WSN
applications and not domain-specific WSN applications so that
customization and tailoring need to be carried out by program-
mers which not only increases programming efforts but also
likely introduces not optimized components.

Body Sensor Networks (BSNs) represent a new application
domain which has received much attention recently due to
potential benefits for health-care, entertainment, fitness, sport,
social interaction. There are several properties of BSNs not
present in standard WSN deployments, including single-hop
networking, a significantly more powerful node called base
station (usually a PC or a smartphone/PDA), and applications
requiring extensive signal processing and pattern recognition.
These properties offer considerable potential for optimization
and simplification. Among the domain-specific frameworks
(Codeblue [7], Titan [8], SPINE [9]-[11] and RehabSpot
[12]) available for the development of BSN applications, the
SPINE framework [9], [10] has distinctive features in terms of
effectiveness, efficiency and usability that allows for a more
rapid prototyping of efficient solutions of signal processing on
BSN sensor nodes. In particular, the SPINE framework allows
for implementation of multiple signal processing functions,
either on top of each other or running independently on top of
the sampled sensor data. Furthermore, SPINE also facilitates
selective activation of these functions at run-time offering the
flexibility to vary the complexity at the node side. Although
frameworks such as SPINE provide effective and efficient
abstractions for BSN application development, the exploitation
of the concept of virtual sensor, recently introduced also in the
context of wireless sensor networks [6], could further enhance
the modeling effectiveness of the solutions provided.

In this paper, we present a task abstraction layer specifi-
cally conceived for BSNs, called BSN-oriented Virtual Sensors

1530-437X/$26.00 © 2011 IEEE

584

(BVS), which allows for multiple layers or stages of processing.
We describe the implementation of BVS through SPINE2 [13],
a new version of SPINE based on a task-oriented model.
Specifically, the application of BVS is explained by developing
a module based on Hidden Markov Model (HMM) to extract
temporal parameters from gait with the final aim to define a
Gait Virtual Sensor useful for continuous and real-time postural
analysis of assisted livings.

The rest of this paper is organized as follows. In Section II,
middleware approaches similar to virtual sensors in the field of
WSN are discussed. Section III describes the BSN-oriented Vir-
tual Sensor Architecture in detail. Section IV covers the SPINE2
framework highlighting its architecture, the main task-oriented
programming abstractions that it offers and the Virtual Sensor
implementation through SPINE2 tasks. Section V introduces
the application context, details the Gait Virtual Sensor modeling
and implementation and discusses the results obtained. Finally
concluding remarks are provided and directions of future work
delineated.

II. RELATED WORK

The concept of Virtual Sensor has been investigated in a few
research works [6], [14]-[16] in the context of WSNs.

In [6], authors define Virtual Sensors as software sensors that
provide indirect measurements of abstract conditions by com-
bining sensed data from a group of heterogeneous physical sen-
sors. In particular, a virtual sensor is specified through four pa-
rameters: (i) input data types, which are physical (low-level)
data types required to compute the desired abstract measure-
ment; (ii) aggregator, which is a generic function defined to op-
erate over the specific (possibly heterogeneous) input data types
to calculate the desired measurement; (iii) resulting data type,
which is the abstract measurement type that is a result of the
aggregation; (iv) aggregation frequency, namely the frequency
with which this aggregation should be made. This frequency de-
termines how consistent the aggregated value is with actual con-
ditions (i.e., more frequently updated aggregations reflect the
environment more accurately but generate more communica-
tion overhead). Authors also present a middleware for program-
ming WSN applications designed around the defined virtual
sensor abstraction. Specifically, the middleware, implemented
in nesC on TinyOS, provides an API for programming virtual
sensors, services for sensor discovery and communication with
data sources, and facilities for the virtual sensor deployment.
Although the proposed approach is well suited for general-pur-
pose WSN applications, it should be further customized to actu-
ally support the characteristic abstractions of BSN applications.
In fact, the approach does not consider fine-grained, signal-pro-
cessing-oriented virtual sensors and is mainly based on query-
driven virtual sensors (based on a pull model) instead of data-
driven virtual sensors (based on a push model) that would have
higher performance in BSNs.

In [14] a framework for building virtual sensors and actu-
ators in wireless sensors and actuators networks is presented.
In particular, authors propose virtual nodes as a programming
abstraction simplifying the development of decentralized WSN
applications. The data acquired by a set of sensors can be

IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012

collected, processed according to an application-provided ag-
gregation function, and then perceived as the reading of a single
virtual sensor. On the other hand, a virtual actuator provides
a single entry point for distributing commands to a set of real
actuator nodes. The set of physical nodes to be abstracted into
a virtual one is specified using logical neighborhoods [17]. In
particular, a virtual sensor is specified as a set of inputs from
neighbor sensors or virtual sensors and an aggregation function
processing the received inputs and producing an output. Vir-
tual sensor and actuators are programmed using a high-level
programming language (an extension of SPIDEY) and then
translated into nesC/TinyOS through the SPIDEY translator
purposely extended. Although the approach allows for hier-
archical composition of virtual sensors, it is more suitable
for environmental monitoring or building automation rather
than for BSN as it does not provide BSN-oriented signal-pro-
cessing-intensive abstractions and optimized fine-grain virtual
Sensors.

Authors in [16] present SenQ, a multilayer embedded query
system, which enables user-driven and peer-to-peer in-network
query submitted by wearable interfaces and other resource-con-
strained devices. Complex virtual sensors and user-created
streams can be dynamically discovered and shared, and SenQ
is extensible to new sensors and processing algorithms. In
particular, SenQ enables a developer to use its embedded query
submission capabilities to collect data streams from local and
remote sensors for custom processing, and export the results
as a virtual sensor. This encapsulates the complex, hierarchical
stream processing as a low-level sensor type that can be dis-
covered, queried, and viewed as any other. Although SenQ
provides mechanisms for defining low-level virtual sensors,
and was used to monitor assisted livings through BSNs, a
well-defined virtual sensor programming abstraction is not
offered.

The concept of Virtual Sensor Networks (VSNs) has also
been described in multiple works [15], [18], [19]. In [18], au-
thors present VIP Bridge that aims at connecting heterogeneous
sensor networks with IP based wired/wireless networks, and in-
tegrate these sensor networks into one VSN. This allows for dis-
covering and querying of sensor nodes located in different and
heterogeneous sensor networks. Jayasumana et al. [19] present
another approach to the definition and implementation of VSNs
that provides protocol support for the formation, usage, adapta-
tion and maintenance of subsets of sensors collaborating on spe-
cific tasks. VSNs can also enable applications that involve dy-
namically varying subsets of sensor nodes collaborating tightly
to achieve the desired outcomes, while relying on the remaining
nodes to achieve connectivity and overcome the deployment and
resource constraints. In [15], an agent-based approach for VSNs
is proposed. Agents support VSN connectivity, coverage, mem-
bership, formation as well as power management. The latter is
conducted at a finer level than simply a binary sleep-active de-
cision through dynamic coordination among agents resident on
different nodes.

In the context of our paper, such proposals can be customized
for enabling the integration of BSNs to have networks of BSNs
on which Virtual Sensors can be created for monitoring not only
a given person but also an even large group of people wearing

RAVEENDRANATHAN et al.: VIRTUAL SENSORS IN BODY SENSOR NETWORKS

<~---- Levels of Data
Abstraction

Computational _ _ _y f
Components ,. 1'
LN | | ¢] !
N G G e O
Y t Tt i v
— 1l
L) L]
ttt Tt f Y
- Raw Data

Fig. 1. Multi-layer signal processing.

Virtual Sensor
Manager

Buffer Allocation

Manager

Fig. 2. BVS architecture.

heterogeneous BSNs and, notably, their gesture-initiated inter-
actions [20].

III. BSN-ORIENTED VIRTUAL SENSOR ARCHITECTURE

Physical sensors map an observed physical quantity, such as
temperature, acceleration, or sound, onto a data value and pro-
duce an output. The output is generated when inputs change, as
the result of an event, or in response to a (timed) request. Phys-
ical sensors are transducers converting values from one form to
another using physical processes. Signal processing algorithms
convert values using digital processes. This observed similarity
is the motivation behind the virtual sensor abstraction. Every
processing task can be represented as a virtual sensor. There-
fore, if we consider a complete BSN system, we can model its
data processing part as a multi-level hierarchy of virtual sensors
as shown in Fig. 1. Moreover, virtual sensors may be imple-
mented directly in a programming language, or as networks of
already existing virtual sensors.

Fig. 2 shows the defined BSN-oriented virtual sensor system
architecture. A user requests certain outputs given specified in-
puts. This request is handled by the Virtual Sensor Manager,
which configures a set of virtual sensors to handle the compu-
tational task. Virtual sensors use the Buffer Manager to setup
communication through the use of efficient buffers. Once con-
figured, the system is activated, and virtual sensors cooperate to
produce the final outputs.

585

Virtual sensors are defined in Section III-A. Details of the
virtual sensor manager operation are described in Section III-B.
Finally, buffer manager operation is described in Section III-C.

A. Virtual Sensor Definition

Software frameworks are usually introduced to provide
programmers with abstractions to isolate them from low-level
implementation details. Virtual sensors provide a new level of
abstraction at the software level by allowing signal processing
tasks to be defined and composed easily. Furthermore, VS
abstractions allow signal processing tasks to be modified or
changed at design or runtime without affecting the rest of the
system. In Fig. 1 every component represents a processing task
applied to a stream of data originated from physical sensors and
can be modeled as a virtual sensor. The output of each virtual
sensor is defined by a set of inputs and its configuration. More
formally, a virtual sensor ¢, denoted as VS, is defined as

VS, ={I;,0;,C;} (1)
where I; denotes the set of inputs, O; denotes the set of outputs,
and C; denotes the configuration of VS;. The configuration of
each virtual sensor defines the type of its inputs and outputs, the
particular implementation used for a given computational task,
and a set of parameters required for a particular implementation.
In particular, C; is defined as

Cz’ = {E;m a)utv d;P} (2)

where ﬂn is a vector that describes the types of inputs /;, ﬁ,ut is
defined similarly for the outputs O;, d represents the specific VS
implementation, and p denotes the VS configuration parameters.
In particular, if the user does not specify d, the Virtual Sensor
Manager (described below) will select the implementation.

This definition provides high modularity for application de-
sign. In fact, different configurations of the same virtual sensor
can be easily substituted without requiring changes in the rest of
the design. This property therefore enables a component-based
approach for application development in which an application is
assembled out of well defined components appositely intercon-
nected. Moreover, it can be used when environmental changes
require a new implementation of a particular signal processing
component for a given application. Alternative implementations
do not need to be loaded into main memory at all times. They
can be stored in flash memory, or transferred over the air upon
request.

VS can be further composed to create higher-level VS. This
allows to define multiple abstraction levels that capture the
successive processing and interpretation of sensor data and
system components that perform data fusion. High-level VS
identify abstractions that are useful to support code modularity
and reusability. In fact, if an implementation of a VS is re-
placed with another one, where one or more VS components
are changed but the interface is the same, there is no need to
change the rest of the system.

More formally, the composition of n Virtual Sensors to form
an higher-level VS can be defined as follows:

VS* = (VS;,VS,,...VS,) = {I*,0*,C*,L} (3)

586

Temperature Heartbeat Temperature Heartbeat
(F) (bpm) (©) (opm)

(a) (b)

Fig. 3. Example of input modification in virtual sensors.

where I* C I UIQ"‘UIn7O* C O UOQ"'UOn7C* =
{C1,C4,...Cy,}, and L is the set of links connecting outputs
and inputs of {VSy,..., VS,.}

’ ’

B. Virtual Sensor Manager

Once all virtual sensors are configured, no additional control
is required during execution. However, configuration requires
significant support from the Virtual Sensor Manager (VSM).
The VSM is responsible for creating and configuring virtual
sensors and connections among virtual sensors. The following
subsections will describe the main functionalities of the VSM
(virtual sensor configuration and overall system configuration).

1) Virtual Sensor Configuration: the current configuration
of a virtual sensor may be invalidated by changes in its inputs
or connections with other virtual sensors, therefore reinitializa-
tion could happen at any time. For example, Fig. 3(a) describes
a system that takes a temperature reading in Fahrenheit, and a
heart rate in beats per minute. In Fig. 3(b) a new thermometer,
that produces output in Celsius, is introduced. VS; has to be
reconfigured to handle such change. To be able to configure/re-
configure the system at run time, the VSM manages a table that
maps each available combination of possible inputs and outputs
to the appropriate virtual sensor implementation. This can be
represented by the set A. Each entry a € A is defined as:

a = {t_;na {;)uh 1,/1} (4)

where 1 is a particular virtual sensor implementation.

If the modification is not drastic enough to require changing
the virtual sensor implementation, reconfiguration can alter pa-
rameters of a given implementation. During the configuration
of a virtual sensor, VSM includes the address of the selected
virtual sensor implementation and the required configuration
parameters.

2) Overall System Configuration: while individual virtual
sensors do not hold any information about other virtual sen-
sors, the overall system relies on their cooperation. At the begin-
ning of the system execution, the VSM receives the VS topology
configuration graph. Based on the requirements of the topology
configuration, the VSM initializes the appropriate VSs and con-
nects them as required. Input and output types are a property
of each virtual sensor. An output of one of the virtual sensors
can also be an input of another virtual sensor. For example, in
Fig. 4, configuration of VS3 and VSy depends on the input they
receive from VS;. To simplify the configuration and reconfig-
uration process, the VSM initializes VSs in a specific order, to
meet the requirement that each virtual sensor cannot be created

IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012

Fig. 4. Example of input/output dependency in virtual sensors.

> Ry
y

R
'
euter, | | [[{11]]

w
4
]

Buffer
Manager

Fig. 5. Buffer manager overview.

Buffer,,

until all inputs are configured. This ordering can be determined
with a topographical sort of the topology configuration graph.

C. Buffer Manager

Signal processing for BSNs often relies on combining data
from multiple sources and locations. As a result, virtual sensors
can have multiple inputs from different sensor nodes. To avoid
synchronization issues, virtual sensors implicitly use buffers for
communication. The Buffer Manager (BM) controls dynamic
buffer allocation and manages data flow in the system.

When a virtual sensor is created and configured, it initiates
a data buffer for its output. The virtual sensor contacts the BM
and requests the creation of a buffer sufficient to hold its output.
The BM allocates a circular buffer of the required size and re-
turns the bufferID. This bufferID is propagated by the VSM
to other virtual sensors that are interested in data of this partic-
ular buffer. To read from a buffer, a virtual sensor must register
with the buffer as a reader, specifying the number of samples
it can consume at a time. Every time the producer writes to the
buffer, the BM checks if the buffer has enough information for
any of the readers, and signals them when they can access the
data. Fig. 5 shows an overview of the BM operation. In partic-
ular, it shows that BM keeps track of buffers by ID, tracking the
point where the producer (e.g., W) is writing to, and where each
individual reader (e.g., Ry, R») is reading from. If the producer
VS is reconfigured, and its output is changed, the BM removes
the buffer that is associated with the previous output and initi-
ates a new buffer, based on the new configuration information.

IV. IMPLEMENTING VIRTUAL SENSORS IN SPINE2

A. The SPINE2 Framework: An Overview

SPINE2 [13], [21] is a novel framework specifically designed
for the development of signal processing applications on WSNs
through a programming abstraction based on the fask-oriented
paradigm. The framework provides a set of graphical constructs
allowing for the representation of the application behavior by

RAVEENDRANATHAN et al.: VIRTUAL SENSORS IN BODY SENSOR NETWORKS

computing

"_ NODE 2
1(more processing
! capabilities)

Intensive-

task

Fig. 6. Example of SPINE2 task-oriented distributed application.

abstracting away low-level details. According to the task-ori-
ented paradigm, an application can be effectively specified as
a set of interconnected tasks. Each task represents a particular
activity, such as a sensing operation, a processing function or a
radio data transmission. A task connection represents a relation-
ship between tasks which generally consists of a temporal or a
data dependency. Designing an application as a composition of
elementary blocks with well-defined interfaces enables a more
rapid application development, run-time reconfiguration and a
simplified software maintenance.

The main characteristics of the SPINE2 framework are:

e Platform independence and quick portability: the frame-
work lends itself to be rapidly and simply portable onto
different C-like sensor architectures. Specifically, only
the components constituting the platform-dependent part
of the framework architecture (such as sensors and radio
drivers) have to be provided for supporting a new target
sensor platform.

» Extensibility: the defined task-oriented paradigm makes it
possible to a straightforward addition of new functionali-
ties beside the already existing ones. This is carried out by
defining new tasks, which represent further computing ca-
pabilities, without any change to the underlying run-time
logic or to the other task definitions.

* Modularity: the framework architecture composed of sev-
eral and independent functional modules allows for a more
rapid implementation time and a more effective software
maintenance and improvement. For example, it may be
possible that future requirements need a different way for
managing the tasks execution. Thanks to modularity, the
modifications made by the framework developers affects
only the correspondent modules without the risk of causing
damages to the rest of the architecture.

An example of SPINE2 task-oriented application description

is depicted in Fig. 6. The set of interconnected tasks forms a di-
rect graph representing chains of operations that include sensor
data acquisition, data processing and merged result transmis-
sion. It is worth noting that, as the framework manages the de-
ployment phase of a distributed application, users can decide
which node of the wireless sensor network each task is allocated
on. Therefore, as shown in the example, the user can allocate a
task requiring more resources onto nodes providing more com-
putational capabilities.

The SPINE2 task-oriented definition language consists of
three main task categories: data-processing tasks, data-routing
tasks, and time-driven tasks. The first category makes it avail-
able functions related to data processing and archiving, the
second one provides store-and-forward and data replication
functionalities, whereas the latter offers a mechanism for
time-driven tasks. Every task is coupled with a description
consisting of a set of configuration parameters defining the
behavioral characteristics of a given instance of a task type.
The defined task types are the following.

* TimingTask: allows to define timers for timing the execu-

tion of other tasks.

» SensingTask: defines sensing operations on a sensor node
and includes a timer for setting the sensor sampling time.

* Processinglask: performs data processing functions and
algorithms; particular operations are the so called “feature
extractions” which are mathematical function applied to a
data stream, such as mean, variance, etc.

* TransmissionTask: allows the transmission of data gener-
ated by other tasks, sending them to a specific addressee
node. Generally, it is used for sending data and informa-
tion to the coordinator whereas, implicit data transmission
takes place in the case of connected tasks allocated onto
different nodes.

» StoringTask: stores data into the flash memory.

* LoadingTask: retrieves data from the flash memory to be
used by other tasks of the application.

» SplitTask: duplicates incoming data to every output links
to make them available to other tasks.

* MergeTask: merge data coming from its multiple inputs
into its single output.

* HistoricalMergeTask: is similar to the MergeTask but it
supports a sequence of merge operations over the time,
before outputting them.

The architecture of the framework is split into two compo-
nents: one component runs on the coordinator of the WSN, the
other one is executed on the sensor nodes. The coordinator side
of the framework is a Java application through which the sensor
network is managed and the task-oriented application defined.
Moreover, it gathers pre-elaborated data coming from sensor
nodes and eventually passes them to a specific application for
more complex data processing and visualization. The sensor
node side is adapted on top of the sensor node operating system.

588

TASKs-MODULE
TimingTask

SensingTask E

IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012

ProcessingTask

TrasmissionTask

RadioController

TaskScheduler

StoringTask
LoadingTask
SplitTask

|| TaskGraphManager

MergeTask
HMergeTask

CommunicationManager

............................

FLASH-MODULE

ApplicationManager

FlashManager

BuffersManager MemoryManager /

MEMORY-MODULE

: ACTUATING-MODULE
Actuator_1

ActuatorManager

Actuator_m

FlashController

Sensor_1

Sensor_n

Fig. 7. SPINE2 node-side software architecture.

In particular, it carries out two main functions: (i) handling of
the messages coming from the coordinator, such as the ones
used for configuring the subset of tasks assigned to the node,
and coming from other nodes; (ii) interpretation and execution
of the task specifications.

According to a component-based approach, the node-side
software architecture (see Fig. 7) is structured as a set of
independent but interacting components, each of which has
been carefully designed to provide a well-defined function-
ality. In particular, a subset of these components (the colorless
ones) represents the core framework of the node-side system.
They are implemented in the C language, so that they can be
easily ported to practically every “C-like” compatible sensor
platforms, without the need for changing their code. However,
the very high portability of the framework is not only enabled
by the use of the C language, but mainly by supporting a
strong software decoupling between the platform-independent
runtime execution logic (such as task management, applica-
tion-level message handling and on-board sensor abstraction
management) and the platform-dependent components (the
gray colored ones) needed for accessing the services and the
resources provided by the specific platform on which the
software architecture is running. The platform-dependent com-
ponents have to be specifically provided for each further new
sensor platform and cannot be therefore reused for different
hardware/software technologies. In practice, they represent
adaptation components (or platform-specific drivers) which
have the function of bridging the core with a particular oper-
ating system/environment through well-defined interfaces.

Currently, the adaptation components are available for sup-
porting the development of SPINE2 task-oriented applications
on TinyOS-based platforms [2] and the Z-Stack architecture
[22], namely the ZigBee-compliant implementation provided by
Texas Instruments.

B. SPINE2-Based Virtual Sensors

The Virtual Sensor architecture described in Section III is
straightforwardly implemented through the SPINE2 frame-
work. In Fig. 8 basic conversion schemas for the translation
of Virtual Sensors into SPINE2 task-oriented applications are
shown. In particular, only simple (flat) virtual sensors have
been taken into consideration as it is quite intuitive to translate
a virtual sensor defined as composition of flat virtual sensors.

In the most simple case, a virtual sensor defined as a basic
functional block incorporating some kind of operation on its
single input can be translated into a SPINE2 data-processing
task (see Fig. 8(a)). In fact, a generic SPINE2 data-processing
task (such as dpTask) is defined as a functional component
having a single input and a single output, differently from the
data-routing task. Obviously, the operations that have to be
performed by the task (specified by its configuration) depend
on the actual functionalities of the virtual sensor. If the virtual
sensor does not have a generic input but raw data (such as
data coming form an hardware sensor on a wireless node), the
corresponding translation includes the introduction of a Sens-
ingTask, specifically configured for representing the digital data
source (see Fig. 8(b)). Finally, Fig. 8(c) shows the translation
of a simple virtual sensor having multiple inputs and outputs.

RAVEENDRANATHAN et al.: VIRTUAL SENSORS IN BODY SENSOR NETWORKS

589

=)= (=)
(a)

Raw Data
ﬁ {Sensing H dpTask]—'
(b)

i o, %’
o VSt :
n Om N

(©)

) s
o dpTask [—i» oo
" | Task !

. . Graph
) :
I —» dpTask 4&’ s4> O,
\) \ J
04
Task !
Graph
o,

Fig. 8. Translation of Virtual Sensors into SPINE2 task-oriented models.

In this case, the corresponding SPINE2 tasks can be configured
in several ways on the basis of the actual definition of the
virtual sensor and of the type description of its inputs/outputs.
In particular, two different translations are shown. In the first
one, we have a single data-processing task for each input.
These tasks, along with the not-specified Task Graph, carry
out the overall computational operation performed by the
virtual sensor. Conversely, in the other translation, inputs are
merged by a single data-routing task (namely, the MergeTask)
and provided to a generic task graph. In either case, the more
complex the function defined for the virtual sensor gets, the
more complex the set of actual interconnected tasks would be.
Of course, there could exist a more generic SPINE2 translation
in which some of the inputs merge on an AggregationTask, the
other ones become inputs of data-processing tasks.

It is worth noting that the two application modeling abstrac-
tions, virtual sensors and tasks, have strong similarities. In fact,
both of them enables creation of applications in a modular
and easily reconfigurable way by using elementary functional
blocks (virtual sensors or tasks) which do not have any func-
tional couplings with each others. This is due to the fact that
they have no knowledge of the provenance of their inputs nor
the destination of their outputs.

V. A GAIT VIRTUAL SENSOR

As atest application for virtual sensors in SPINE2, we imple-
mented a virtual sensor-based system for automatic event anno-
tation based on a left-right Hidden Markov Model (HMM) [23].
The HMM associates each data sample with a state. States typi-
cally consist of multiple data samples and the transition from

one state to another starts with an event which consists of a
single sample. By training the model, we can identify these key
events within a movement. Walking being a cyclical activity,
events and states repeat over a period of time.

The HMM annotation system consists of four parts:

1) Sampling of acceleration data from physical sensors. We
used LIS3LV02DQ MEMS based accelerometer from ST
Microelectronics for the data collection. The data is col-
lected at a sampling frequency of 20 Hz which is sufficient
for slow movements like walking. The data is copied into
the buffer pool allocated by the Buffer Manager as it gets
collected.

2) Pre-filtering of sampled data. The main purpose of pre-
filtering is to remove any noise from the original data. The
first stage of pre-filtering involves calculating the 5-point
moving average for removing high frequency noise. This
data is then normalized by subtracting 100-point mean and
dividing by 100-point standard deviation to get the final
pre-filtered data.

3) Extraction of features from filtered data. The pre-filtered
data stream is processed by the feature extractor and the
first derivative, second derivative and the existence of any
peaks is calculated [23]. These three features, along with
the prefiltered data sample is passed on to the next virtual
sensor.

4) HMM-based annotation of events from the extracted fea-
tures. The annotation is done based on the probability of
occurrence of a state. This requires training of the model
to create the tables for mapping the features to the proba-
bility of observing a state. In addition, we also consider the

590

Accelerometer Preprocessing
Virtual Sensor Virtual Sensor

SensingTask
(Accelerometer)

ProcessingTask
(Moving average)

IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012

Feature Extract
Virtual Sensor

HMM
Virtual Sensor

ProcessingTask
(Normalization)

ProcessingTask
(First derivative)

ProcessingTask
(Second derivative)

ProcessingTask
(Peaks existence)

ProcessingTask
(HMM)

Fig. 9. GAIT analysis application.

probability of a state transition. These two tables are gen-

erated based on training which was done in MATLAB.
The system uses a single sensor node, and only one implemen-
tation was created for each virtual sensor.

The Gait Virtual Sensor is defined as a linear interconnec-
tion of four virtual sensors as described in Fig. 9. Arrows con-
necting virtual sensors denote the data flow from the producer
to the consumer. The initial request is generated by the SPINE
coordinator running on a PC. This request initiates the configu-
ration of each of the four virtual sensors. Virtual sensors are cre-
ated as described in Section III-B.1. Once all the virtual sensors
have been initialized, the HMM virtual sensor starts producing
output every sample. The sampling interval is defined for the
Accelerometer VS, which acts as the data source for the whole
system.

As described in Section IV-B, each Virtual Sensor can be im-
plemented through one or more SPINE2 tasks, on the basis of
its actual complexity. First of all, the presence of a Data Raw
source, namely the accelerometer, requires the use of a Sens-
ingTask configured to acquire data from a real onboard sensor
with proper settings (like the sampling rate). The Preprocessing
VS, which performs preliminary computational functions can
be translated into two ProcessingTasks sequentially intercon-
nected with each of them in charge of carrying out a specific
elementary operation. In a similar way, the Feature Extract VS

can be decomposed into three further ProcessingTasks, individ-
ually devoted to compute a specific feature extraction function
on the data coming from the previous preprocessing step. Since
all these tasks require the same data, a Split data-routing task
has to be used. As soon as all the features are computed, they
have to be made available to the HMM ProcessingTask. This
task, representing the actual implementation of the HMM VS,
receives its input data from the Merge data-routing task, which
is in charge of collecting the feature extraction results.

In the following subsections, we first describe some imple-
mentation details about GVS and other software modules imple-
menting the same gait analysis functionality but developed in C
and Matlab; we then analyze the obtained results and compare
them with the results obtained with the C and Matab software
modules.

A. Implementation

Fig. 9 shows the schemas of the GVS according to the higher
level model and its translation based on SPINE2. In particular,
as described in Section IV-B, each Virtual Sensor can be im-
plemented using one or more SPINE2 tasks, on the basis of its
actual complexity.

We started with a MATLAB model described in [23]. The
code was simplified to match sensor node capabilities, e.g.,
using fixed-point math with limited precision. Based on this

RAVEENDRANATHAN et al.: VIRTUAL SENSORS IN BODY SENSOR NETWORKS

10 | | {

——MATLAB Computation
- ——Mote Computation T T T T
——C Computation

=—d

e

[

HMM State

e e o o o am o o e om om on = = =

0 | |] I} l

-~—

B
1
-~z
|

360 380

400 420 500

Time (in number of samples)

Fig. 10. Comparison of Matlab, C, and SPINE2 implementations of the Gait Virtual Sensor.

code, a version of the code was developed in C, and the outputs
were compared. The model was retrained based on the updated
code. After making changes to assure matching output between
the C and MATLAB code, the C code was adapted to SPINE2
and ported to nesC for an ad hoc implementation on the sensor
nodes. This allowed us to compare the effectiveness of using
SPINE2 in the development of the virtual sensor with respect
to the use of a lower level programming language like nesC.
The main challenge of adapting MATLAB models to SPINE
and C implementation was the lack of hardware floating point
multipliers in the microcontrollers of the wearable units, partic-
ularly MSP430 in our platform. Floating point operations are
handled in software and are computationally expensive. Hence,
we chose to approximate floating point operations in the orig-
inal model with integer operations for our implementation. This
technique appeared to be effective while from time to time gen-
erated inconsistencies due to the conversion error. Furthermore,
when the range of floating point numbers were large, this tech-
nique would be less effective as it has to represent numbers with
a large number of integer bits. To reduce the occurrence of these
cases, we had to perform further optimization on the signal pro-
cessing algorithm to reduce the ranges or reduce the effect of
error due to conversion on the outcome of the algorithm.
Although the layered model of the defined virtual sensors al-
lowed us to develop and verify one component at a time, one of
the major limitation that we faced during the development was
debugging. The development platforms available for TinyOS
offer limited support for debugging. Due to this reason, the
functionality testing and debugging was done using the C ver-
sion. However, problems that we faced after porting the code
on to the mote were much more serious and hard to debug.
Problems like stack overflow due to excessive memory usage

were extremely difficult to detect. We also faced issues due to
high packet loss hindering the basestation-mote communica-
tion. Another major problem was the freezing of system due to
higher processing overhead of one component over the others.
This also caused interruptions in the communication. Another
problem was the occurrence of “impossible” state transitions in
the HMM. The root cause of the problem was determined as
overflows. The HMM involved a large number of summations
which periodically overflowed, leading to unpredictable results.
Figuring out these problems required in-depth analysis of the
code and careful optimizations and corrections on appropriate
components. Reducing the memory footprint of the application
was one of the major challenges that we faced during the whole
development.

B. Analysis of Results

For our test case, we used this system to extract heel-down
and heel-lift events from a walking subject. The sensor node
contained a single tri-axial accelerometer sampling at 20 Hz
(the highest sampling rate achievable while performing the pro-
cessing steps). The event annotation was initially quite sensitive
to sensor node misplacement, so we trained it with data from one
subject with ten different trials. Each trial contained approxi-
mately 50 steps and had a slightly different sensor placement.
This significantly increased the accuracy. The sensor node per-
formed annotation and broadcast the raw samples so results be-
tween different implementations could be compared.

As can be seen in Fig. 10, the versions produce similar re-
sults. Most of the events were accurately predicted by our im-
plementation barring the slight offsets occurring at times. There
is a drastic difference observed between the sensor node output
and the others on the far right side of Fig. 10. Also, the state

592

TABLE 1
EVENT ANNOTATION RESULTS FOR DIFFERENT IMPLEMENTATIONS

Implementation Stride Time (Smpl) Stride Time (s)
MATLAB 28.21 1.41
C (PC) 28.04 1.40
SPINE2 28.04 1.40

transitions were not completely synchronized. For example, in
the actual MATLAB implementation, state marked 6 is always
momentary where as this does not happen in the other imple-
mentations. This is due to the fact that the model tries to catch
up after a wrong state calculation. Consequently, the total time
taken for a complete sequence of transitions remained almost
the same for the whole experiment (on average, the difference
is less than 10 ms). This time, which can also be defined as the
time taken to reach the same state in the next cycle is termed as
the stride time. Table I shows the average stride time measured
for the three implementations.

VI. CONCLUSION

This paper describes a new approach to design of BSN ap-
plications that is based on the concept of virtual sensors and
relies on the SPINE2 framework. The intuition behind the work
is that in BSN applications there is need of new abstractions that
capture the successive stages of the data processing and classi-
fication, including sensor data fusion. Virtual sensors allow ab-
stracting even complex systems that behave like sensors, thus
favoring code modularity and reuse. If a programmer needs to
update an implementation of a virtual sensor or changing en-
vironmental conditions require that a different implementation
strategy is adopted, it is sufficient to replace that portion of
code without changing the rest of the system implementation.
Virtual sensors also allow for the adoption of a simple coding
style, where local sensors, remote sensors, or network abstrac-
tions can be treated in a uniform manner. The paper has pre-
sented an application of the concept of virtual sensors in the
gait analysis domain aiming at enabling real-time activity and
posture recognition. Results are twofold: (i) the exploitation of
the SPINE2-based virtual sensor approach allowed to obtain a
more rapid implementation of the gait system that by means of
direct nesC programming; (ii) the efficiency and accuracy of the
system is retained and is comparable with the C and Matlab im-
plementations. More work is on-going to make the virtual sensor
framework more powerful and flexible. In particular, over the
air configuration is being added to allow reconfiguration of vir-
tual sensors even at run-time. Moreover, other virtual sensors
spanning from activity recognizers to human stress detectors are
being developed.

ACKNOWLEDGMENT

This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number
FP7-2007-2- 224053. This work is also supported by Telecom
Italia through technical and financial contributions.

(1]

(2]
(3]

[4

[inar)

[5

—

[6

[t}

[7

—

(8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

IEEE SENSORS JOURNAL, VOL. 12, NO. 3, MARCH 2012

REFERENCES

F. Lewis, “Wireless sensor networks,” in Smart Environments: Tech-
nologies, Protocols, and Applications,D.J. Cook and S. K. Das, Eds.
New York: Wiley, 2004, pp. 19-24.

P. Levis et al., “TinyOS: An operating system for sensor networks,”
Ambient Intell., pp. 115-148, 2005.

C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy, G. Picco,
and D. E. Informazione, “TinyLIME: Bridging mobile and sensor net-
works through middleware,” in Proc. 3rd IEEE Int. Conf. Pervasive
Computing and Communications (PerCom), 2005, pp. 61-72.

K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and
flexible sensor network deployment,” in Proc. 32nd Int. Conf. Very
Large Data Bases. VLDB Endowment, 2006, pp. 1199-1202.

A. Bakshi, V. Prasanna, J. Reich, and D. Larner, “The abstract task
graph: A methodology for architecture-independent programming of
networked sensor systems,” in Proc. Workshop on End-to-End Sense-
Andrespond Systems (EESR), in Conjunction With MobiSys, Jun. 5,
2005, pp. 19-24.

S. Kabadayi, A. Pridgen, and C. Julien, “Virtual sensors: Abstracting
data from physical sensors,” in Proc. Int. Symp. World of Wireless, Mo-
bile and Multimedia Networks, 2006, pp. 587-592.

K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V.
Shnayder, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks
for emergency response: Challenges and opportunities,” IEEE Perva-
sive Comput., vol. 3, no. 4, pp. 16-23, Oct. 2004.

C. Lombriser, D. Roggen, M. Stiger, and G. Troster, “Titan: A tiny
task network for dynamically reconfigurable heterogeneous sensor
networks,” in 15. Fachtagung Kommunikation in Verteilten Systemen
(KiVS), ser. Informatik aktuell. Berlin, Germany: Springer, 2007,
pp. 127-138.

F. Bellifemine, G. Fortino, R. Giannatonio, R. Gravina, A. Guerrieri,
and M. Sgroi, “Spine: A domain-specific framework for rapid proto-
typing of wbsn applications,” Software: Practice and Experience Sep.
7, 2010.

R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R. Giannantonio,
and M. Sgroi, “Development of body sensor network applications using
spine,” in Proc. IEEE Int. Conf. Systems, Man Cybern., Oct. 2008, pp.
2810-2815.

S. Iyengar, F. T. Bonda, R. Gravina, A. Guerrieri, G. Fortino, and A.
Sangiovanni-Vincentelli, “A framework for creating healthcare mon-
itoring applications using wireless body sensor networks,” in Proc.
ICST 3rd Int. Conf. Body Area Networks, Ser. Bodynets’08, 2008, pp.
8:1-8:2.

M. Zhang and A. Sawchuk, “A customizable framework of body area
sensor network for rehabilitation,” in Proc. 2nd Int. Symp. Appl. Sci.
Biomed. Commun. Technol. ISABEL 2009, Nov. 24-27, 2009, pp. 1-6.
G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio, ‘“Plat-
formindependent development of collaborative wireless body sensor
network applications: Spine2,” in Proc. IEEE Int. Conf. Syst., Man Cy-
bern. SMC 2009, Oct. 2009, pp. 3144-3150.

P. Ciciriello, L. Mottola, and G. P. Picco, “Building virtual sensors
and actuators over logical neighborhoods,” in Proc. Proc. MidSens’06:
Int. Workshop Middleware for Sensor Netw., New York, N, 2006, pp.
19-24, ACM.

R. Tynan, G. O’Hare, M. J. O’Grady, and C. Muldoon, “Virtual sensor
networks: An embedded agent approach,” in Proc. Int. Symp. Parallel
and Distributed Process. Appl., 2008, pp. 926-932.

A. Wood, L. Selavo, and J. Stankovic, “Senq: An embedded query
system for streaming data in heterogeneous interactive wireless sensor
networks,” in Distributed Computing in Sensor Systems, S. Nikolet-
seas, B. Chlebus, D. Johnson, and B. Krishnamachari, Eds. Berlin/
Heidelberg, Germany: Springer, 2008, pp. 531-543, LNCS 5067.

L. Mottola and G. P. Picco, “Programming wireless sensor networks
with logical neighborhoods,” presented at the 1st Int. Conf. Integr. In-
ternet Ad Hoc and Sensor Networks, Ser. InterSense’06, New York,
2006, ACM.

S. Lei, H. Xu, W. Xiaoling, Z. Lin, J. Cho, and S. Lee, “Vip bridge:
Integrating several sensor networks into one virtual sensor network,”
Aug. 2006, pp. 2-2.

A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual sensor
networks—A resource efficient approach for concurrent applications,”
in Proc. 3rd Int. Conf. Inf. Technology: New Generations, 2007, pp.
111-115.

RAVEENDRANATHAN et al.: VIRTUAL SENSORS IN BODY SENSOR NETWORKS

[20] A. Augimeri, G. Fortino, M. Rege, V. Handziski, and A. Wolisz, “A
cooperative approach for handshake detection based on body sensor
networks,” in Proc. IEEE Int. Conf. Systems, Man Cybern. SMC 2010,
Oct. 2010, pp. 281-288.

[21] G.Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio, “Spine2:
Developing bsn applications on heterogeneous sensor nodes,” in Proc.
IEEE Int. Symp. Industrial Embedded Syst. SIES’09, Jul. 2009, pp.
128-131.

[22] 2010, “The z-stack website,” [Online]. Available: http://focus.ti.com/
docs/toolsw/folders/print/z-stack.html

[23] E. Guenterberg, H. Ghasemezadeh, and R. Jafari, “A distributed hidden
markov model for fine-grained annotation in body sensor networks,”
in Proc. 6th Int. Workshop on Body Sensor Networks (BSN), 2009, pp.
339-344.

Nikhil Raveendranathan received the B.Tech. de-
gree in electrical and electronics engineering from
College of Engineering, Trivandrum affiliated to the
University of Kerala, India, in 2006, and the M.S. de-
gree in computer engineering from the University of
Texas at Dallas in 2010.

He is currently a Software Developer at Research
in Motion Ltd, Dallas, TX. His research interest is
mainly on software architecture and optimization for
Embedded Systems.

Stefano Galzarano received the B.S. and M.S. de-
grees both in computer engineering from the Univer-
sity of Calabria, Rende, Italy, in 2006 and 2009, re-
spectively, where he is currently pursuing the Ph.D.
degree in computer engineering.

His research interests are focused on high-level
programming methods for wireless sensor networks.

Vitali Loseu received the B.S. and M.S. degrees both
in computer science from the University of Texas at
Dallas in 2007 and 2008, respectively, where he is
currently pursuing the Ph.D. degree in computer en-
gineering in the Embedded Systems and Signal Pro-
cessing Lab (ESSP).

His research interests lie in system optimization
for reconfigurable computing and biomedical data or-
ganization and mining.

Raffaele Gravina received the B.S. and M.S.
degrees both in computer engineering from the
University of Calabria, Rende, Italy, in 2004 and
2007, respectively, where he is currently pursuing
the Ph.D. degree in computer engineering.

His research interests are focused on high-level
programming methods for wireless sensor networks.

593

Roberta Giannantonio graduated in telecommuni-
cation engineering at Politecnico di Torino, Torino,
Ttaly, with a master thesis about multicast in ad hoc
wireless networks carried out at Trinity College in
Dublin, Ireland.

Then, she joined Telecom Italia and since then
she has been involved in research projects about
Wireless Technologies. She has been active into the
ZigBee Alliance and she has been visiting the WSN
Lab under sponsorship of Telecom Italia, Berkeley,
CA. She is now responsible for the SPINE open
source project for distributed signal processing in Wireless Sensor Networks.
She is coauthor of patents and papers about wireless technologies.

Marco Sgroi received the Laurea degree in electronic
engineering (summa cum laude) from the Universita’
di Roma La Sapienza, Rome, Italy, in 1994, and the
M.S. and Ph.D. degrees in electrical engineering and
computer sciences from the University of California
at Berkeley in 1998 and 2002, respectively.

From 2003 to 2005 he was Researcher at DoCoMo
Communications Laboratories Europe. From 2006 to
2009 he was Director of the WSN Lab sponsored by
Pirelli and Telecom Italia in Berkeley. His main re-
search interests are related to wireless sensors and
embedded systems technologies. He is coauthor of over 30 technical papers and
3 patents.

Roozbeh Jafari received the B.Sc. degree in
electrical engineering from Sharif University of
Technology, Sharif, India, in 2000, the M.S. degree
in electrical engineering from SUNY at Buffalo,
and the M.S. and Ph.D. degrees in computer science
from the University of California at Los Angeles,
La Jolla, in 2002, 2004, and 2006 respectively.

He spent 2006-2007 in EECS department at
UC Berkeley as a Postdoctoral Researcher. He
is currently an Assistant Professor in Electrical
Engineering at the University of Texas at Dallas. His
research is primarily in the area of networked embedded system design and
reconfigurable computing with emphasis on medical/biological applications,
their signal processing and algorithm design. He is the director of ESSP Lab.

Giancarlo Fortino received the Ph.D. degree in com-
puter engineering from the University of Calabria,
Rende, Italy, in 2000.

He is an Associate Professor of Computer Science
at the Department of Electronics, Computer Science
and Systems of the University of Calabria, Cosenza,
Italy. He has been a visiting researcher at the Interna-
tional Computer Science Institute (ICSI), Berkeley,
CA, in 1997 and 1999. His research interests include
distributed computing and networks, agent systems,
agent oriented software engineering, wireless sensor
networks, and streaming content distribution networks. He is author of more
than 130 papers in international journals, conferences and books. He is also
co-founder and president of SenSysCal S.r.l, a spin-off of University of
Calabria, whose mission is the development of innovative systems and services
based on wireless sensor networks for health care, energy management and
structural health.

Dr. Fortino currently serves in the editorial board of the Journal of Networks
and Computer Applications (Elsevier).

