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Abstract— This paper presents the first attempt at fusing data
from inertial and vision depth sensors within the framework
of a hidden Markov model for the application of hand gesture
recognition. The data fusion approach introduced in this paper
is general purpose in the sense that it can be used for recognition
of various body movements. It is shown that the fusion of data
from the vision depth and inertial sensors act in a complementary
manner leading to a more robust recognition outcome compared
with the situations when each sensor is used individually on its
own. The obtained recognition rates for the single hand gestures
in the Microsoft MSR data set indicate that our fusion approach
provides improved recognition in real-time and under realistic
conditions.

Index Terms— Sensor fusion, fusion of inertial and depth
sensor data, hand gesture recognition.

I. INTRODUCTION

THE literature includes a large collection of works where
either vision sensors or inertial body sensors have

been used for measurement or recognition of human body
movements. Each of the above two sensors has been used
individually for body movement measurements and recog-
nition. However, each sensor has its own limitations when
operating under realistic conditions. The major contribution
of this paper is the fusion of data from two different modality
sensors that are captured at the same time. The two utilized
sensors of vision depth sensor and inertial body sensor are
used in a complementary manner where erroneous data that
may get generated by each individual sensor are compensated
by the other sensor. In other words, the introduced fusion
approach involves the fusion of data from a cost-effective
inertial body sensor and a cost-effective vision depth sensor
in order to achieve more robust hand gesture recognition in
real-time compared to the situations when these sensors are
used individually. The focus of this paper is on hand gesture
recognition. However, it should be noted that the introduced
approach in this paper is general purpose in the sense that it
is applicable to other body movement applications.

As far as vision sensors are concerned, comprehensive
reviews on hand pose estimation or hand gesture recognition

Manuscript received January 10, 2014; accepted February 10, 2014. Date
of publication February 12, 2014; date of current version April 16, 2014. The
associate editor coordinating the review of this paper and approving it for
publication was Dr. M. R. Yuce.

The authors are with the Department of Electrical Engineering, University
of Texas at Dallas, Dallas, TX 75080 USA (e-mail: kxl105220@utdallas.edu;
cxc123730@utdallas.edu; rjafari@utdallas.edu; nxk019000@utdallas.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2014.2306094

have previously appeared in [1]–[3]. Two major matching
techniques have been deployed for hand gesture recognition.
These techniques include Dynamic Time Warping (DTW) [4]
and Elastic Matching (EM) [5]. Statistical modeling techniques
such as particle filtering [6], [7], and hidden Markov model
(HMM) [8] have also been utilized for hand gesture recogni-
tion. The application of depth sensors, in particular Kinect [9],
has been steadily growing for body movement measurements
and recognition. Several studies utilizing the depth sensor
Kinect have been reported in the literature for hand gesture
recognition. For example, in [10], depth images captured by
Kinect were used to achieve American Sign Language (ASL)
recognition. In [11], both depth and color information captured
by Kinect were used to achieve hand detection and gesture
recognition. In [12], a HMM was trained to identify the
dynamic gesture trajectory of seven gestures using the Kinect
sensor.

As far as inertial body sensors are concerned, many body
measurement and recognition systems involving such sensors
have appeared in the literature. For example, a human body
motion capture system using wireless inertial sensors was
presented in [13]. In [14], wireless body sensors were used to
recognize the activity and position of upper trunk and lower
extremities based on a DTW-based hierarchical classifier.
In [15], a customizable wearable body sensor system was
introduced for medical monitoring and physical rehabilitation.
In [16], a support vector machine (SVM) classifier was used
as part of a body sensor network to estimate the severity of
Parkinsonian symptoms. In [17], Kalman filtering in a body
sensor network was used to obtain orientations and positions
of body limbs.

The simultaneous utilization of both inertial body sensor
and depth sensor that have appeared in the literature have
been studied for the registration of images [18], [19], the
estimation of the position and orientation of a camera [20],
and the use of gravity to recover the focal distance of a
camera [21]. In [22], an angle estimation approach involving
both an inertial sensor and a Kinect sensor was discussed
where Kalman filtering was applied to correct or calibrate
the data drifting of the inertial sensor. Our fusion approach
presented in this paper differs from all the previous works in
the sense that both inertial and depth sensor data are used
at the same time and together as the input to a probabilistic
classifier in order to increase the robustness of recognition.
Another attribute of our approach is that the computational
complexity is kept low so that its real-time implementation
is made possible. Furthermore, it is worth noting that these
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Fig. 1. Wireless inertial sensor.

two differing modality sensors that are deployed are both cost-
effective which makes their joint utilization practical in various
applications. Our approach uses the HMM classification as
this classifier has been proven effective in various recognition
applications due to its probabilistic framework.

In section II, a brief overview of the Kinect and inertial
sensor used is mentioned. In section III, the details of our
fusion approach are presented. The results obtained are then
reported in section IV. This section also includes a comparison
with the situations when the sensors were used individually.
Finally, the conclusion is stated in section V.

II. OVERVIEW OF KINECT AND INERTIAL SENSOR

Kinect is a low-cost RGB-Depth sensor introduced by
Microsoft for human-computer interface applications. Two
software packages are publically available for this sensor
(OpenNi/NITE and Kinect SDK) that allow gesture and
movement recognition. The introduction of Kinect has led to
successful recognition in many applications including video
games, virtual reality and gesture recognition.

Fig. 1 shows a 9-axis wireless body sensor having a size of
1′′ × 1.5′′ that was designed and built in the ESSP Laboratory
at the University of Texas at Dallas [23]. It consists of (i) an
InvenSense 9-axis MEMS (micro-electro-mechanical system)
sensor MPU9150 which captures 3-axis acceleration, 3-axis
angular velocity and 3-axis magnetic strength data, (ii) a
Texas Instruments 16-bit low power microcontroller MSP430
which provides data control, (iii) a dual mode Bluetooth low
energy unit which streams data wirelessly to a laptop/PC, and
(iv) a serial interface between MSP430 and MPU9150
enabling control commands from the microcontroller to the
MEMS sensor and data transmission from the MEMS sensor
to the microcontroller. For the magnetometer to provide an
accurate reference, a controlled magnetic field without any
distortion is required. Thus, for the application reported here,
the data consisting of the accelerometer and the gyroscope
were used since a controlled magnetic field is not normally
available in practice.

III. DEVELOPED FUSION APPROACH

A. Resampling and Filtering

The sampling rates of the Kinect and inertial sensor used
are 30 Hz and 200 Hz, respectively. Thus, in order to fuse
the data from these two sensors, the inertial sensor data is

Fig. 2. Raw signal versus filtered signal: (top) Kinect normalized
Y -coordinate signal and (bottom) inertial sensor normalized Z -gyro signal.

Fig. 3. Left-right HMM topology.

downsampled to match the sampling frequency of the Kinect.
The downsampling is performed as follows. The Kinect signal
samples are collected through the Kinect SDK software at the
rate of 30Hz. Whenever this software indicates the presence
of a Kinect signal sample, a signal sample from the inertial
sensor gets collected at that time. This approach allows the
synchronization of the signals from the Kinect and the inertial
sensor. In other words, inertial samples at the rate of 200HZ
closest to Kinect samples at the rate of 30Hz are considered
to form the inertial sensor signals.

Because of the presence of various noise sources in an
actual operating environment, jitters often appear in the Kinect
skeleton signals as well as in the inertial signals. A moving
average window is thus used in order to reduce jitters in the
signals. Based on experimentations, it was found that a moving
window of size between 9 and 19 generated high recognition
rates by adequately reducing jitters in the signals. Fig. 2 shows
an example of the raw and filtered signals from the Kinect and
inertial sensor.

B. HMM Classifier

HMM has been used extensively to model random
processes. The HMM model characterizes a state transfer
probability matrix A and an observation symbols probability
matrix B . Given an initial state matrix π , an HMM is
described by the triplet λ = {π, A, B}. Since hand gesture
recognition involves temporal signal sequences, a left-right
HMM topology is adopted here, see Fig. 3.

An overview of the HMM equations are provided in
this section. More details on HMM can be found in many
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references, see [24]. Suppose a random sequence O =
{O1, O2, . . . , OT } is observed; let V = {v1, v2, . . . , vT }
denote all possible outcomes and let S = {S1, S2, . . . , SM }
denote all HMM states with qt representing the state at time t ,
where T indicates the number of time samples. The three
components of the HMM model π, A, B are computed by the
following equations:

π = {pi = P(Q1 = Si )}, 1 ≤ i ≤ M; (1)

A = {ai j = P(qt = Sj |qt−1 = Si )}, 1 ≤ i, j ≤ M; (2)

B = {b j (k) = P(Ot = vk |qt = Sj )},
1 ≤ j ≤ M, 1 ≤ k ≤ T ; (3)

where
M∑

i=1

πi = 1,

M∑

j=1

ai j = 1 and
T∑

k=1

b j (k) = 1 (4)

For HMM training, the above components need to be ini-
tialized. Among all the initialization matrices, the initialization
of the transition matrix A is of importance here. By zeroing
out all the non-adjacent probabilities in this matrix, the state
transitions are made limited to the sequence of adjacent states,
thus representing a hand gesture. That is to say, for our hand
gesture recognition application, all possible state transitions
are constrained to only occur from left-to-right and between
two adjacent states. The initial transition matrix A is thus
considered to be

A =

⎡

⎢⎢⎢⎢⎣

0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
(5)

Let O = {O1, O2, . . . , OT } be the observation sequence
of a hand gesture, Q = {q1, q2, . . . , qT } be the corresponding
state sequence with the probability of the observation sequence
O obtained by this equation

P (O|Q, λ) =
T∏

t=1

P(Ot |qt , λ) (6)

According to the Baum-Welch algorithm [24], the equation
below represents the probability of the observation O at time t ,
where π denotes the initial state probabilities,

P (O|λ) = πq1aq1q2aq2q3aq3q4 · · · aqT −1qT (7)

In every time step 1 through T , this probability is updated as
follows:

P (O|λ) =
∑

Q

P (O|Q,λ) P (Q,λ)

=
∑

q1,q2,...,qT

πq1bq1 (O1) aq1q2bq2 (O2) . . .

aqT−1qT bqT (OT ) (8)

Let the updated HMM model be λ̄ = {π, A, B} and let the
probability of the joint event that the sequence O1, O2, . . . , Ot

is observed be αt (i), thus

αt (i) = P(O1, O2, . . . , OT , qT = Si |λ) (9)

Fig. 4. HMM training algorithm.

In a backward way, let

βt (i) = P(Ot+1, Ot+2, . . . , OT , qT = Si |λ) (10)

The probability being in state Si at time t and state Sj at
time t + 1 is thus given by

ξt (i, j) = P
(
qt = Si , qt+1 = Sj |O, λ

)

= αt (i)ai j b j (Ot+1)βt+1( j)

P(O|λ)
(11)

By letting γt (i) be the probability of being in state Si at time t ,
one gets γt (i)= ∑N

j=1 ξt (i, j), and the updated model λ̄ =
{π, A, B} is expressed as follows:

π i = γt (i) (12)

ai j =

T −1∑
t=1

ξt (i, j)

T −1∑
t=1

γt (i)

(13)

b j (k) =

T −1∑
t=1,Ot=vk

γt ( j)

T −1∑
t=1

γt (i)

(14)

By considering a very small threshold value, e.g. ε = 10−6,
when log{P(O|λ)} − log{P(O|λ)} < ε, the training is
terminated. An algorithmic description of the training process
is shown in Fig. 4.

A test or validation sequence is then fed into five trained
HMM models each corresponding to a hand gesture in order to
calculate the probabilities. Then, a high (e.g., 95%) confidence
interval is applied to the five probabilities to classify the
sequence. Let μ and σ represent the mean and variance of
the probabilities. For the 95% confidence interval, whenever
none of the five probabilities is larger than μ+1.96 σ√

n
, where

n denotes the number of gestures, the sequence is rejected
and the gesture is considered to be a not-done-right gesture.
If the sequence is not rejected, the gesture with the maximum
probability is considered to be the recognized gesture. The
testing process is illustrated in Fig. 5.
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Fig. 5. Flowchart of HMM testing or recognition.

IV. RECOGNITION RESULTS AND DISCUSSION

Extensive experimentations were carried out to show the
increase in robustness when the data from the two differing
modality sensors were used together as the input to the HMM
classifier compared to when using a single sensor individually.
The code is written in C running in real-time on a PC platform
with a quad core 1.7GHz processor and 4G memory. The input
signals were captured with a Microsoft Kinect sensor and the
wireless sensor described in section II. The wireless sensor was
placed and tied to a subject’s wrist with the subject staying
within the operating distance of the Kinect, that is within a
distance of 1.2m-3.5m from the Kinect sensor, see Fig. 6.

We considered the five single hand gestures present in the
Microsoft MSR dataset [25]. These gestures are illustrated
in Fig. 7. Ten subjects were asked to perform these five
gestures 30 times in front of different backgrounds. Different
backgrounds included different scenes appearing in different
lighting conditions including outdoor day light, indoor flores-
cent and indoor incandescent lights. Each subject performed
the gestures at different speeds which were timed to last
between 1 to 3 seconds. The number of the HMM states were
considered to be between 8 to 12 as this range of states allowed
covering all the major transitions in the training sequences.

The 3-axis accelerometer and the 3-axis gyroscope signals
from the wireless inertial sensor and the 3-axis {X , Y , Z}
coordinates signals from the Kinect sensor were captured in
real-time and simultaneously to form the observation sequence
O = {O1, O2, . . . , OT } of the HMM classifier. The signals
from the accelerometers denoted speed changes associated
with linear motions along the three directions X, Y , and Z
and the signals from the gyroscopes denoted rotational motion

Fig. 6. Experimental setup.

TABLE I

HAND GESTURE RECOGNITION RATES (%) WHEN

USING DATA FROM KINECT ONLY

speeds about the three axes X, Y , and Z while the signals from
the Kinect denoted the 3-D coordinates X, Y , and Z of the
centroid of the hand depth blob. Each hand gesture training
sample can be viewed as a 9-dimensional feature vector where
all the above components are fused together (3 dimensions for
gyroscope, 3 dimensions for accelerometers and 3 dimensions
for Kinect position coordinates). 30 variations of a hand
gesture made by each subject were considered. The data
from 9 subjects were used for training and the data form
the remaining subject was used for testing. The recognition
process was repeated 10 times, each time choosing a different
set of 9 training subjects. The testing outcomes were then
averaged. In other words, the training data consisted of a
3-dimensional matrix of size T *270*9. For the incom-
plete/other gesture category, 100 gestures were performed by
different subjects with 50 of them done in an incomplete way
and with the other 50 done differently than the five gestures.
The similarity between a test or validation feature vector with
all the training classes or gestures was then obtained via the
HMM probabilistic classification.

The recognition rates obtained are shown in the form of
three confusion matrices in Tables I through III for the five
gestures of “wave,” “hammer,” “punch,” “drawX,” “circle”.
Table I corresponds to the situation when using just the
Kinect sensor, Table II when using just the inertial sensor,
and Table III when using both of the sensors together.
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TABLE II

HAND GESTURE RECOGNITION RATES (%) WHEN

USING DATA FROM INERTIAL SENSOR ONLY

TABLE III

HAND GESTURE RECOGNITION RATES (%) WHEN FUSING

DATA FROM KINECT AND INERTIAL SENSOR

TABLE IV

AVERAGE RECOGNITION RATES (%) FOR HMM AND DTW

Fig. 7. Five hand gestures examined: “wave,” “hammer,” “punch,” “drawX,”
and “circle.”

As can be seen from Table I, a relatively low recognition rate
(83%) was obtained for the gesture “punch”. This was caused
due to the low depth resolution of the Kinect sensor for this
gesture. While for the gesture “drawX,” a lower recognition
rate (69%) was obtained. The errors were traced back to
the hand blobs crossing the face area creating an overlap of
the face and hands in the depth map, thus leading to severe
jitters in the wrist and hand joints. In Table II, it is seen that

Fig. 8. Examples illustrating the complementary nature of the signals from
the two sensors: (top) Kinect Y -coordinate position signal expressed in meters,
(middle) inertial sensor Z -gyro signal expressed in g (9.8m/s2), and (bottom)
reference Kinect and inertial signals.

although the inertial sensor provided higher recognition rate
for this gesture, the recognition rate was still not high (76%).
However, as seen from Table III, by combing the data from
the Kinect and the inertial sensor, in particular for the two
gestures of “wave” and “drawX,” the overall recognition rate
was improved by 15% over the Kinect sensor alone and by
10% over the inertial sensor alone. This clearly demonstrated
the complementary nature of data from these two differing
modality sensors.

Essentially, jitters in the signals from the two sensors are
caused by different sources. For example, the Kinect sensor
exhibits difficulty when the tracking is lost and the inertial
sensor exhibits difficulty when it is worn differently on the
wrist and due to signal drifts. Examples are shown in Fig. 8
to illustrate the complementary aspect of the data from the
two sensors. The expected punch signal is exhibited on the
bottom pane of the figure (thick curve), which was created
by taking the average of the training signals. In the example
punch A, the test signals (thin curves) from both the Kinect
and the inertial sensor exhibited a good match to the expected
signals. While in the example punch B, the inertial sensor
signal produced no significant orientation information, leading
to a failure when using this sensor alone. However, with the
HMM getting its input from the Kinect sensor, a correctly
recognized probability could still be achieved. In the example
punch C, the Kinect signal suffered from skeleton or joint
jitters while the signal from the inertial sensor still allowed
achieving a correctly recognized probability. In the example
punch D, both the Kinect and the inertial sensor signals failed
to provide a correctly recognized probability.

In another experimentation, the HMM classifier was
replaced by a Dynamic Time Warping (DTW) classifier noting
that DTW has been widely used for human body movement
recognition. Table IV provides the comparison between HMM
and DTW. As can be seen from this table, the HMM classifier
provided higher recognition rates compared to the DTW
classifier primarily due to the DTW not being able to



LIU et al.: FUSION OF INERTIAL AND DEPTH SENSOR DATA 1903

adequately cope with scale invariance. However, still in this
classification, the fusion of the data from the two sensors
provided a higher recognition rate compared to the individual
sensor cases.

V. CONCLUSION

In this paper, a data fusion approach to hand gesture
recognition based on the probabilistic HMM classification was
introduced. It was shown that fusing or merging the data
from two differing modality sensors, consisting of an inertial
sensor and a vision depth sensor, led to an overall recognition
rate of 93% for five motional hand gestures under realistic
conditions such as different gesture speeds and backgrounds.
This recognition rate was higher than when using each sensor
individually on its own. For future works, considering that
the introduced fusion framework involving the two sensors
of inertial body sensor and Kinect depth sensor is general
purpose, this framework will be applied to other human body
movement applications.
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