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Abstract—A Sign Language Recognition (SLR) system enables 

communication between hearing disabled individuals and those 

who can hear and speak. With the prevalence of the wearable 

computers, this technology is becoming an important human 

computer interface capable of reading hand gestures and inferring 

user’s intent. In this paper, we propose a real-time American SLR 

system leveraging fusion of surface electromyography (sEMG) 

and a wrist-worn inertial sensor at the feature level. A feature 

selection is provided for 40 most commonly used words and for 

four subjects.  The experimental results show that after feature 

selection and conditioning, our system achieves 95.94% 

recognition rate. The results also illustrate the fusion of two 

modalities perform better than using only the inertial sensor. We 

observed that only one channel of sEMG (out of four) located on 

the wrist and under the wrist-watch is sufficient. 

Keywords—Sign language recognition; inertial sensor; sEMG; 

feature selection 

I.  INTRODUCTION  

Sign language enables deaf and mute persons to 
communicate with each other using their body language [1]. A 
sign language recognition (SLR) system serves as an important 
assistive tool to bridge the communication gap between this 
community and individuals who do not know sign language by 
translating the sign language into text or speech [2, 3]. SLR can 
also be used as a reference design for a gesture based human 
computer interface (HCI), which shares the same principles and 
is widely used in human daily life [4-6]. SLR is widely studied 
in the area of the computer vision and glove-based gesture 
recognition with the camera and sensing glove as the gesture 
capture modalities, respectively [7-10]. Vision based SLR can 
suffer from bad performance in poor lighting conditions and the 
videos/images captured may be considered invasive to the user’s 
privacy. The glove-based SLR requires an expensive sensing 
glove, which makes it less ideal for a broad set of applications. 

The low cost inertial measure unit (IMU), which consists of 
a 3-axis accelerometer and 3-axis gyroscope, has been widely 
studied for gesture recognition by measuring the accelerations 
and angular velocities of the hand and arm [11, 12]. At the same 
time, a surface electromyographic sensor (sEMG) measures 
electrical potentials generated by muscle activities and can be 
used to distinguish various hand and finger movements based on 
different muscle activities [13, 14]. The inertial sensor based 
system is capable of capturing hand orientations and hand and 
arm movements during the gesture while the sEMG is good at 
measuring of finger movements and the muscle activity patterns 

for the hand and arm. They can be complementary to each other 
and the fusion of these two systems will enhance the recognition 
accuracy for different signs, thus making the recognition of large 
vocabulary of signs easier [15]. 

In this paper, we propose a real-time American SLR system 
by fusing inertial sensor modalities and the sEMG modality at 
the feature level. Our work has the following contributions: 1) 
Propose an online auto segmentation technique using sEMG; 2) 
An information gain based filter feature selection method is 
applied to select the best subset of the features that will enhance 
the recognition performance; 3) Four different classification 
algorithms are tested with inter and intra-subject training-testing. 

The remainder of this paper is organized as follows. The 
related work is reviewed in Section II. Our proposed sEMG and 
inertial sensing hardware devices are introduced in Section III. 
The signal processing and fusion techniques are explained in 
Section IV, followed by the experimental results in Section V. 
Finally, the conclusion is provided in Section VI. 

II. RELATED WORK 

Sign language recognition using accelerometers and sEMG 
is studied in several investigations. The performance of the 
accelerometer based and the sEMG based system is compared in 
the detection of functional motion activities [16]. Each modality 
has its own advantages to detect specific activities and the 
potential of increasing the detection accuracy by fusing these 
two modalities is explored. It is demonstrated that 5% - 10% 
accuracy improvement is achieved in the recognition of certain 
wrist and finger gestures leveraging the fusion of the 
accelerometer and sEMG data [17]. An effective feature set 
based on sample entropy is proposed and the recognition 
accuracy of 93% is reported for 60 Greek sign words using only 
one feature set for both sEMG and accelerometer data [18]. A 
framework for Chinese sign language recognition based on 
accelerometer and EMG sensors is investigated [19]. Auto 
segmentation is performed to divide continuous sentences into 
individual words based on the intensity of the sEMG signals. 
Multi-stage decision level fusion is performed to recognize 120 
Chinese words with two hands. At the first stage, the sEMG is 
used to capture the hand shape and the accelerometer data is used 
to distinguish the hand orientation. The LDA classifier is used 
for these two tasks. The cascade sEMG and accelerometer 
features are incorporated leveraging a multi-stream hidden 
Markov model (MSHMM) to evaluate complete movements. In 
the second stage, the first stage decisions are fused with a 
Gaussian mixture model (GMM) model. Although this 
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framework achieves a 96.5% accuracy, multi-stage and multiple 
classifiers will be very computational expensive and would not 
be suitable for wearable computers with their low-power 
processors. A feature level fusion approach is introduced to 
recognize 7 German sign language words [20]. This fusion 
technique achieves 99.82% accuracy with 1-channel sEMG and 
one 3-D accelerometer. However, this work does include auto-
segmentation. Hence, it cannot be operated in real-time and on-
line. Our works differs from the previous work in the following 
aspects: 1) Propose an adaptive on-line and real-time 
segmentation technique using sEMG. This is particularly 
important as users, due to their diverse muscle strengths, exhibit 
different signal strengths on their sEMG. 2) An information gain 
filter based feature selection technique is applied and the 
gyroscope information is incorporated. 3) Our real-time system 
is evaluated with 40 most commonly used American Sign 
Language words and best sEMG channels (in our investigation 
the one located on the wrist) are highlighted. 

III. HARDWARE DESCRIPTION 

A. Motion Sensor 

Fig. 1 shows our 9-axis motion sensor with a size of 1”x1.5”. 

An InvenSense MPU9150 9-axis MEMS sensor is used to 

measure the 3-axis acceleration, 3-axis angular velocity and 3-

axis magnetic strength. A Texas Instruments (TI) 16-bit low 

power microcontroller, MSP430F5528, is used as the central 

processor.  A dual mode Bluetooth unit from Blueradios and a 

microSD module are available on-board. The user can choose to 

stream the data to a PC/tablet for real-time processing or log the 

data onto a microSD card. A charging circuit is included. 

 

Fig. 1. Motion Sensor Board. 

In this paper, the sampling frequency is set to 100 Hz and 

measurement range of accelerometer and gyro are ±2g 

and ±250
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
. This is enough to capture movements 

associated with the sign language.  

B. sEMG hardware platform 

sEMG is a non-invasive technique to measure the electrical 

potential of muscle activities. Our lab developed 16 channel 

physiological signal acquisition system, shown in Fig. 2, for 

ECG, EEG and sEMG. The system is used as a 4-channel sEMG 

in this investigation [21]. TI ADS1299 analog front end is used 

to capture 4-channel sEMG and a TI MSP430 microcontroller 

collects data and forwards it to the Bluetooth module. The data 

is transmitted to a PC via Bluetooth. A gain of 1 is used on the 

ADS1299 to support a resolution of roughly 0.4 μV. Patch-based 

electrodes are attached to the forearm to capture the sEMG 

signals. 

Generally, the sEMG signal peak-to-peak voltage ranges 

from 0 to 10mV [22]. Prior investigations have reported that the 

frequency components of sEMG is typically 0-500 Hz 

depending on the electrode spacing, the amount of fatty tissue 

and muscle type [23]. Therefore, we set the sampling frequency 

for sEMG at 1 kHz to satisfy the Nyquist sampling criterion. 

 
Fig. 2. 8-channel sEMG board. 

IV. SIGNAL PROCESSING AND FUSION 

Fig. 3 shows the block diagram of the proposed real-time 
system for the ASL recognition fusing inertial measurements 
and sEMG signals. In the training phase, the preprocessing 
incorporates filtering and noise rejection. The preprocessing 
could also include other services like time synchronization if 
needed. The automatic segmentation is applied to both streams 
to extract the period during which the sign gesture is performed. 
After the segmentation, a set of features are extracted for each 
individual modality (inertial and sEMG) separately. The two 
feature sets are cascaded into one feature vector before the 
feature selection is performed with a filter based feature 
selection technique for four classification algorithms (i.e. 
decision tree, support vector machine, NaïveBayes and nearest 
neighbor). The best feature subset is selected and the best 
classification model is determined based on the selected feature 
subset. In the testing phase, the same preprocessing and 
segmentation approaches as in the training phase are used. The 
selected features are extracted from two modalities and the 
prediction result is obtained with the trained prediction and 
classification model. 

A. Preprocessing 

It is important to synchronize the motion sensor data and 
sEMG data before fusing them. In our system, two data streams 
are sent to a PC using Bluetooth and all the samples are time 
stamped with the local PC clock. Although the delay between 
sensors and PC varies, this small error is considered to be 
negligible (a 5-20ms typical delay for Bluetooth) and the 
synchronization approach used is sufficient for our application. 
The sEMG signal is affected by several low frequency noise 
sources. The power density function of sEMG beyond the range 

of 5Hz - 450Hz is negligible and a 5Hz high pass filter is applied 

as suggested in a prior work [24]. We chose a sixth-order IIR 
filter. For the accelerometer and gyroscope data, the raw signal 
readings are used. 

B. Segmetation 

For the real-time scenario, an automatic segmentation is 

very important to define the start and the end of the sign gesture 

so that the correct features can be extracted prior to 

classification. The sEMG signals are used to perform the online 

segmentation in our paper. 

978-1-4673-7201-5/15/$31.00 ©2015 IEEE



 

Fig. 3. Diagram of proposed system.

The proposed data segmentation approach is described as 

follows. The average energy, E, of the 4-channel sEMG signals 

are calculated in a moving non-overlapping window according 

to (1). N is the total number of channels, n is the sample number 

in the window and sc(i) is the sample number i of sEMG signal 

from channel c. The window size is chosen as 128 millisecond. 

Each window contains 128 samples as the sampling frequency 

for sEMG is set at 1000Hz. 
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If the average energy of five continuous windows are all 

larger than a threshold T, the starting time of the first window is 

chosen as the beginning of the segmentation.  The ending time 

of the segmentation is determined when the average energy of 

three continuous windows are all smaller than the threshold T. 

These methods are refined and the values are determined 

empirically. It is important to choose a suitable threshold to 

perform the correct segmentation. However, different users have 

different muscle strengths, and a pre-defined threshold may not 

work well for different subjects. We use an adaptive threshold 

detection technique that will adjust the threshold for different 

users and different noise levels.  Our adaptive threshold 

detection technique is described as follows: 1) Calculate average 

energy, E, for 5 continuous windows. 2) If E < a*T, the user is 

considered to have no muscle activity and the threshold is 

updated with T = b*E. The initial value of a, b and T are chosen 

as 0.5, 4 and 0.008, respectively based on training on 4 subjects. 

The initial threshold 0.008 is much bigger than the average 

energy of all subjects when there is no muscle activity and a 

controls the rate of reducing threshold when a period with a 

smaller muscle activity is detected while b controls the rate of 

enlarging threshold in case the noise level increases.  

C. Feature Extraction 

Various features are investigated in previous works for both 

sEMG and inertial sensors for gesture and activity recognition 

tasks. In the training phase, we extract a large number features 

for both sEMG and inertial sensors [25-29]. Tables I and II list 

the features used in our investigation for sEMG and inertial 

sensors. For the sEMG, all features listed are extracted for each 

channel and the dimension of the feature vector for 4 channels 

is 76. For the inertial sensor, the features chosen are extracted 

for all 3 axes of accelerometer, 3 axes of gyroscope and the 

magnitude of the accelerometer and gyroscope, resulting a 

feature vector with the dimension 24*8 = 192. The extracted 

sEMG features and inertial sensor features are cascaded into a 

final vector with a dimension of 268.  

TABLE I.  SEMG FEATURES 

Feature name (dimension) Feature name (dimension) 

Mean Absolute Value (1) Variance (1) 

Four order Reflection 

Coefficients (4) 

Willison Amplitude in 5 amplitude 

ranges (5) 

Histogram (1) Modified Median Frequency (1) 

Root Mean Square (1) Modified Mean Frequency (1) 

Four order AR coefficients (4)  

TABLE II.  INERTIAL SENSOR FEATURES 

Feature name (dimension) Feature name (dimension) 

Mean (1) Variance (1) 

Standard Deviation (1) Integration (1) 

Root Mean Square (1) Zero Cross Rate (1) 

Mean Cross Rate (1) Skewness (1) 

Kurtosis (1) First three orders of 256-point FFT 

Coefficients (3) 

Entropy (1) Signal Magnitude Area (1) 

  AR coefficients (10)  

 

D. Feature Selection 

A feature selection technique is used to remove redundant 
and irrelevant features and determine the best subset of features. 
It is challenging to determine which features are better for a 
certain task and it is necessary to do feature selection. Reducing 
the number of features will also reduce the computational 
complexity which will be of interest for real-time signal 
processing on low-power wearable computers.  
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There are three different methods of feature selection: filter 
methods, wrapper methods, and embedded methods [30]. In this 
paper, we choose an information gain (IG)-based filter method 
along with a ranking algorithm which ranks all the features 
based on the IG criterion. Unlike the wrapper method, this 
method can operate irrespective of the choice on the 
classification algorithm and its performance is not impacted by 
the classification algorithm. 

E. Classification  

In this paper, we investigate four most commonly used 
classification algorithms: decision tree (J48) [31], support vector 
machine (LibSVM) [32], nearest neighbor and NaiveBayes. An 
open source machine learning tool called Weka is used for the 
implementation of the classification tasks [33]. The RBF kernel 
is applied for the LibSVM and the grid search algorithm is used 
to determine the best parameters for the kernel. For all other 
classification techniques, the default model of Weka is used. 

V. EXPERIMENT SETUP AND RESULTS 

A. Sensor Placement 

Fig. 4 shows the sensor placement for our experiments. Both 
sEMG and inertial sensors are placed on the right forearm to 
capture one-hand signs. The inertial sensor is placed on the wrist 
which is the common location for wrist-worn watches while 4-
channel sEMG electrodes are placed on four muscle groups on 
the forearm: (1) extensor digitorum, (2) flexor carpi radialis 
longus, (3) extensor carpi radialis longus and (4) extensor carpi 
ulnaris. Reference and bias electrodes are placed on the right 
upper arm far from 4 channel electrodes. To capture sEMG 
signals more effectively, a bi-polar configuration is used for 
each channel and the distance between two electrodes is chosen 
at 15 mm [34]. Fig. 4 shows the electrode patch positions for 
four sEMG channels. 

 

Fig. 4. Placement of sEMG electrodes.  

B. Dataset 

In this investigation, we consider 40 most commonly used 
words in daily conversations from the American Sign Language 
vocabulary. Four healthy subjects participated in the data 
collection. For each subject, the data is collected in three trials 
on different days. The subjects were asked to perform each sign 
25 times during each trial. Fig. 5 shows the system setup for the 
data collection. 

 

Fig. 5. System setup for data collection. 

C. Experiments 

To evaluate the performance of our system, three different 

scenarios are considered: 1) Self cross validation (SCV): 10-

fold cross validation is performed for dataset acquired from 

each subject. This scenario usually offers the best accuracy of 

one subject. 2) All cross validation (ACV): the data from 4 

subjects are combined and the 10-fold cross validation is 

applied. The feature selection is performed considering data for 

all subjects which offers a good generalization for the 

classification technique. 3) Leave one subject out test: the model 

is trained using data from three subjects and is tested on the data 

acquired from the fourth user. This scenario evaluates how well 

the model performs when the classifier is not (re)trained for a 

new user. Considering diverse muscle profiles in users, we 

expect to see the least ideal recognition rates in this scenario. 

D. Feature selection results 

The features are ranked using the information gain criterion. 
The features with the highest ranking are selected to form a 
feature subset. To determine the best size of the feature subset, 
the ACV is performed on four classification techniques as the 
size of the feature subset increases from 10 to 268.  

 

Fig. 6. Results of feature selection. 

TABLE III.  MAXIMUM DATA POINT OF FEATURE SELECTION 

Classifier Maximum (feature number,  accuracy) 

NaiveBayes (260, 84.11%) 

NeareastNeighbor (180, 98.56%) 

Decision Tree (150, 81.88%) 

LibSVM (130, 99.09%) 
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Fig. 6 shows the classification accuracy as the number of 
features increases and Table III shows the data points illustrating 
the highest accuracy. From the results, we can see that as the 
number of features increases, the accuracy of classification 
increases. However, when the feature size exceeds 130 and 180 
for LibSVM and Nearest Neighbor, respectively, the accuracy 
begins to decrease which is due to over-fitting. When the feature 
size reaches 30, LibSVM offers an accuracy of 95.94%. 
Considering the limited computational resources in low-power 
wearable computers, we settled for the best 30 features. Table 
IV shows the number of features selected from each sensor. 
Most features are from the accelerometer which captures the 
gravity and acceleration caused by motion. Gravity on the 
accelerometer plays a major role as it can reveal the hand 
orientation. Nine gyroscope features are selected which 
indicates the hand and arm rotation are also important. There are 
only 3 sEMG features selected which indicates for the most 
commonly used signs we considered, the sEMG is not as 
significant as the inertial sensor. 

TABLE IV.  NUMBER OF SELECTED FEATURES FROM SENSORS 

 Accelerometer Gyroscope sEMG 

Number of Features 18 9 3 

We also made an interesting observation that all selected 
sEMG features are from one electrode placed on the wrist where 
normally a wrist watch sits. This electrode measures extensor 
digitorum muscle activities near the wrist. This observation 
leads to the conclusion that only one sEMG electrode would be 
sufficient for the ultimate deployment. 

E. Classfication results 

Fig. 7 shows the SCV results of all four subjects. The figure 
shows LibSVM and nearest neighbor classifiers obtain a high 
accuracy for all four subjects while the decision tree and naïve 
Bayes classifiers achieve lower accuracy. For all subjects, the 
accuracies of different classifiers are stable and consistent. 
These results indicate that if we train the classifier for individual 
subjects, the system will achieve a high accuracy for the 40 
American Sign Language words. This performance may vary 
slightly from subject to subject which is mainly due to the fact 
that the subjects are first time leaners of the sign language and 
may not have developed necessary skills to perform the hand 
gestures very well.  

 
Fig. 7. Result of self-cross validation (SCV). 

In Fig. 8, the cross validation results for all subjects are 
presented. Various classifiers have significantly different 
performance, and the LibSVM obtains the best accuracy at 

95.14%. In this figure, the classification accuracies with sEMG 
and without sEMG are illustrated. We observe that sEMG 
enhances the classification accuracy for all scenarios.  However, 
the improvement is not significant which indicates that the 
inertial sensor plays a major role in discriminating different 
signs.  

 

 
Fig. 8. Results of all cross validation (ACV). 

Fig. 9 shows the leave one subject out test results. The X-

axis is the subject that is left out, and the Y-axis shows the 

accuracy for various classifiers. None of the classifiers can 

provide high accuracy for detection of the 40 signs. LibSVM 

still provides the highest accuracy among the four classifiers. 

There are two possible reasons for the low accuracy. 1) All 

subjects are new learners and never had prior experience with 

the sign language. Even though they followed the instructions, 

the gestures for the same words are different from subject to 

subject. 2) Various users have very different muscle strength and 

therefore, the observed signals will be impacted due to their 

physical conditions. In future, we will further investigate the 

causes for this observation. The real-time operation of our 

system may be viewed at: http://tiny.cc/6uaivx. 

 

Fig. 9. Result of leave one subject our test. 

VI. CONCLUSION 

In this paper, we proposed a real time multimodal American 
Sign Language recognition system using a feature level fusion 
scheme. A broad set of features from both sEMG and inertial 
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sensors were considered and an information gain based filter 
method is applied to the feature selection along with a ranking 
algorithm. We evaluated our system with 40 mostly common 
used signs in the daily conversation by comparing the 
performance of four different classifiers. Our system achieves 
high accuracy when it is trained for each individual subject. In 
future, we will extend the recognition for a larger number of 
signs. We will consider placing our proposed devices on two 
hands and will evaluate the signal processing performance. 
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