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Abstract—Electroencephalography (EEG) is the recording of
electrical activity produced by the firing of neurons within the
brain. These activities can be decoded by signal processing tech-
niques. However, EEG recordings are always contaminated with
artifacts which hinder the decoding process. Therefore, identify-
ing and removing artifacts is an important step. Researchers often
clean EEG recordings with assistance from independent compo-
nent analysis (ICA), since it can decompose EEG recordings into
a number of artifact-related and event-related potential (ERP)-
related independent components. However, existing ICA-based
artifact identification strategies mostly restrict themselves to a sub-
set of artifacts, e.g., identifying eye movement artifacts only, and
have not been shown to reliably identify artifacts caused by non-
biological origins like high-impedance electrodes. In this paper,
we propose an automatic algorithm for the identification of gen-
eral artifacts. The proposed algorithm consists of two parts: 1) an
event-related feature-based clustering algorithm used to identify
artifacts which have physiological origins; and 2) the electrode-
scalp impedance information employed for identifying nonbiolog-
ical artifacts. The results on EEG data collected from ten subjects
show that our algorithm can effectively detect, separate, and re-
move both physiological and nonbiological artifacts. Qualitative
evaluation of the reconstructed EEG signals demonstrates that our
proposed method can effectively enhance the signal quality, espe-
cially the quality of ERPs, even for those that barely display ERPs
in the raw EEG. The performance results also show that our pro-
posed method can effectively identify artifacts and subsequently
enhance the classification accuracies compared to four commonly
used automatic artifact removal methods.

Index Terms—Electrode-scalp impedance, electroencephalogra-
phy (EEG), event-related potential (ERP), hierarchical clustering,
independent component analysis (ICA).

1. INTRODUCTION

ECAUSE of its high temporal resolution, electroen-
B cephalographic (EEG) recordings have been widely used
to measure background activities of the brain as well as the
specific activity for a cognitive task in brain—computer interface

Manuscript received April 9, 2014; revised October 14, 2014 and September
2, 2014; accepted November 4, 2014. Date of publication November 13, 2014;
date of current version December 31, 2015. This work was supported by
the Semiconductor Research Corporation, task # 1836.103 through the Texas
Analog Center of Excellence (TXACE).

The authors are with the Department of Electrical Engineering, University
of Texas at Dallas, Richardson, TX 75080 USA (e-mail: zouy @utdallas.edu;
viswamnathan @utdallas.edu; rjafari@utdallas.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JBHI.2014.2370646

(BCI) [1]. However, a major problem of EEG recordings is that
they are highly susceptible to various artifacts. In other words,
it is almost impossible to see any event-related potential (ERP),
the typical electrophysiological response to an internal or exter-
nal stimulus, in the raw EEG recordings due to the presence of
artifacts. However, neuroscientists are often interested in visu-
alizing the signals and their time-domain ERPs such as N200
(a negative peak around 200 ms after the excitation due to the
stimuli) or P300 (a positive peak around 300 ms after the excita-
tion due to the stimuli) [2], [3]. Therefore, artifact identification
and rejection is a crucial step in the ERP-related EEG-based
BCIL.

The artifacts can be divided into two categories: physiological
and nonbiological artifacts, based on their origins. Physiological
artifacts arise from biological sources other than the brain such
as eye blinking, eye movements or muscle movements, etc.
Nonbiological artifacts originate from outside the body due to
factors such as high-impedance electrodes [4].

Over past decades, several approaches have been proposed to
identify and remove these artifacts, especially for the physio-
logical artifacts. The most trivial of these approaches involves
simply deleting the portions of the data in which the EEG ac-
tivity exceeds some predefined thresholds. However, this may
lead to a large loss of data, which in turn could mean the loss
of relevant recorded ERP signals [5]. Alternatively, regression
methods have been implemented for artifact removal either in
the time domain or frequency domain, particularly for the ar-
tifacts caused by eye blinks and eye movements. However, the
performance of the regression methods depends on having a
good reference signal [6]. Moreover, for muscle artifacts and
nonbiological artifacts, for which it is difficult to find a suitable
reference signal, regression methods are not applicable [7].

Recently, independent component analysis (ICA) has been a
successful approach for artifact identification and removal. ICA
is a statistical tool that decomposes a multichannel EEG record-
ing into a set of independent components (ICs), which represent
a statistical estimate of the maximally independent source sig-
nals [8]. Previous investigations have successfully demonstrated
that ICA can separate multichannel EEG signals into brain-
related and artifact-related ICs [6], [9], [10]. The key issue is
efficient identification of artifact-related ICs. A number of dif-
ferent approaches have been proposed to guide this process, such
as visual inspection based on researcher’s prior knowledge of to-
pographic patterns [6] and time-domain patterns [11]. However,
these manual inspections require expert and well-trained staff.
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Fig. 1. (a) (Left) EEG data acquisition system B. (Right) P300 speller matrix
with one row intensified.

Moreover, they are not applicable for online BCI applications.
Therefore, automatic identification has become an attractive al-
ternative. Clustering techniques have been mostly employed to
automatically separate brain-related ICs from artifact-related
ones based on some specific features extracted from each IC. Qi
et al. presented a K-means clustering based on the similarity be-
tween every two components in a multitrial EEG analysis [12].
Patidar and Zouridakis [13] and Ashtiyani et al. [14] presented
an automatic artifacts identification method based on fuzzy C-
means clustering. Both K-means and fuzzy C-means clustering
are iterative methods. They both require the target number of
clusters a priori to terminate the clustering iterations. However,
the target number of clusters is often unknown; therefore, for
the sake of a fully automatic solution, hierarchical clustering is
a better approach and is employed in our proposed approach.
Based on the hierarchical clustering method, several different
features used to distinguish artifacts from real brain signal have
also been presented in the previous works. Nicolaou and Nasuto
propose an artifact removal algorithm via hierarchical clustering
based on automutual information [15]. Milanesi et al. utilize the
pair-wise mutual information as a hierarchical clustering fea-
ture for EEG late potential selection [16], [17]. However, they
do not consider features that would highlight target ERPs (e.g.,
the latency of the ERP patterns or the specific electrodes con-
tributing to the ERPs) in the artifacts removal framework. For
this reason, in our proposed approach, utilization of features that
contribute to the desired ERPs will enhance the quality of the
extracted ERP and facilitate the eventual classification process.
A preliminary result of using ERP-related features and hierar-
chical clustering for physiological artifact removal in Go/Nogo
task with a wet electrode recording system has been reported
in [18].

A review of the existing literature did not reveal a systematic
approach for general artifact identification. Most approaches
have been shown to recognize and reject major physiological
artifacts like eye movements or muscle movement, while the
detection of nonbiological artifacts has been reported only in a
few studies and none of them constitute a robust approach for a
portable recording system.

Similar to physiological artifacts, nonbiological artifacts
caused by high-impedance electrodes are also a significant
source of artifacts in the EEG recordings. High electrode-scalp
impedance can lead to distortions that are difficult to separate
from the actual EEG recordings [19]. Therefore, in many exist-
ing EEG systems, electrode-scalp impedance is measured prior

to data acquisition. In order to prevent signal distortions, the
impedance at each electrode in contact with the scalp should be
below 5 kS2 for wet electrodes and 500 k€2 for dry electrodes
[19]. When the impedance is above these limits, it is an indica-
tion that there is poor connectivity between the electrode and the
scalp. Currently, researchers reduce the impedance of the elec-
trodes by injecting more gel in wet-electrode systems, for in-
stance, or providing more pressure and adjusting the placement
of the electrodes in dry-electrode systems. These adjustments
are typically made prior to (or during) the data acquisition stage
and can be very time consuming. Therefore, a time-efficient ap-
proach for high-impedance artifact removal is desired. Mognon
et al. [7] and Nolan et al. [5] both developed an EEG artifact
removal framework, which can identify multiple artifacts in-
cluding nonbiological artifacts caused by high-impedance elec-
trodes. They identified high-impedance artifacts using spatial
features such as the channel’s correlation coefficients based on
the assumption that in a high-density electrode recording sys-
tem (number of electrodes larger than 100), most electrodes
should correlate highly with neighboring electrodes. Therefore,
an electrode with high impedance value will likely have a low
correlation with other electrodes. Both methods showed their
results on a 128-electrode system. However, these features are
not applicable for a portable low-density electrode recording
system, which is more and more prominent in recent BCI appli-
cations. Previous studies [20], [21] have demonstrated a corre-
lation between the electrode-scalp impedance and EEG signal
quality. In [20], Ferree ef al. showed that lower impedance be-
tween the electrodes and the scalp improves the quality of EEG
signals and mitigates the noise. In another study, Kappenman
and Luck showed that the electrode-scalp impedance measure
enables the characterization of the ERP signal quality. They
found that the low-frequency noise in the ERP signal increases
at electrodes with a higher impedance compared to those with
low impedance [21]. Inspired by the aforementioned works, the
impedance information is utilized to identify the nonbiological
artifacts in our proposed approach. A preliminary study that
shows the relationship between the electrode-scalp impedance
information and the artifact signals has been reported in [22].
Our proposed solution for identification and removal of gen-
eral artifacts would be valuable for EEG researchers and BCI
users. First, the methods proposed represent a unified solution
for all types of artifacts and not just ones caused by physio-
logical phenomena. Second, a practical method must be appli-
cable without the need of time-consuming preparations at the
time of the experiment. Third, there have been several recent
advancements in circuit techniques for an EEG acquisition sys-
tem, and this is a good opportunity to use these techniques in the
signal processing stage for artifact identification and removal.
Therefore, a generalized automatic ICA-based algorithm for
identification of all artifact-related ICs in the EEG recordings
is proposed here. The first step consists of decomposing the
EEG recordings into ICs. Two types of artifact are then consid-
ered: First, electrode-scalp impedance information is utilized
to distinguish the nonbiological artifact-related ICs from brain-
related ones. Second, the ERP-related temporal, spatial, and
spectral features are utilized to identify physiological artifacts.
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Fig. 2.

This paper is organized as follows: Section II describes the
experimental setup and Section III introduces the proposed auto-
matic artifact-related ICs identification algorithm in detail. The
experimental results are presented in Section IV. Finally, some
conclusions are given in Section V.

II. EXPERIMENTAL SETUP
A. Data Acquisition System

The data acquisition system is a custom platform designed and
developed by our laboratory, shown in Fig. 1(a). It incorporates
two daisy-chained TI ADS1299 analog front ends for EEG,
a TI MSP430 microcontroller, and a BlueRadios dual mode
Bluetooth radio for wireless communication of the data to a PC
or any mobile device [23].

In order to measure the electrode-scalp impedance for each
individual electrode, we use the “lead-off detection” feature of
the TT ADS1299. A 24-nA sinusoidal ac current at a known
frequency of 30.5 Hz is injected into each electrode (the lead-
off detection technique is described in more detail in Section
IIT). The sampling rate of our acquisition system is 250 Hz.

B. P300-Based BCI Task

The BCI application implemented in our study is the P300
speller introduced in [24]. It enables users to spell a word from a
6 x 6 matrix that includes all the letters of the alphabet as well as
other useful symbols [see Fig. 1(b)]. The rows or columns inten-
sify sequentially in a random order. To spell a word, the subjects
are instructed to focus on the letter they wish to communicate
by counting the number of times it intensifies. In response, a
P300 evoked potential is elicited in the brain. This is a posi-
tive deflection in the EEG 300 ms after th stimulus is presented
[24]. By identifying this P300 pattern, it is possible to infer the
attended letter.

Ten healthy subjects participated in the experiment. They had
no previous experience with the P300 speller task. Eight dry
electrodes were placed at Fz, Cz, P3, Pz, P4, Oz, PO7, and POS8
using the international 10-20 system and a wet patch electrode
was placed at the right mastoid and used as the reference. For
each subject, two to five sessions of data were recorded. In
each session, the subject was instructed to choose between 20
and 30 letters. Before each P300 session, a 30-s electrode-scalp
impedance measurement was recorded. In order to emulate real-

C. Artifact-related ICs

; Artifact-free
Identification

EEG

Block diagram of the proposed automatic artifact identification and removal system.

life scenarios of different impedances between each electrode
and the scalp, no extra efforts were made to adjust the locations
and connectivity of the cap and electrodes in the initial setup.

III. METHOD

The main steps in our proposed automatic artifact identifi-
cation algorithm are illustrated in the scheme of Fig. 2 and
described as follows:

A. EEG Data Preprocessing

Raw EEG recordings were bandpass filtered from 0.5 to
50 Hz. Epochs of 800-ms duration were extracted starting from
the onset of the first row/column intensification.

B. Independent Component Analysis

ICA is a well-known statistical technique in signal processing
literature that aims at finding linear projections of the data that
maximize their mutual independence [25]. It is assumed that
we observe an array of electrodes that provide a vector of N
electrode recordings v = [vy,va, ..., vy ]’ that are linear com-
binations of M unknown and statistically independent sources
s = [s1,592,...,5v]". The objective of the ICA algorithm is to
find a separating matrix W, such that

s=W xwv. €))

When applying the ICA to the EEG recordings, the resulting
ICs represent the brain-related sources as well as artifact-related
sources. This makes the ICA an effective solution for identify-
ing the artifacts. Several ICA algorithms have been implemented
and are publicly available. In this paper, we used the FastICA
module of the EEGLAB toolbox [26] to decompose each EEG
epoch into ICs. Each epoch consisted of eight components (cor-
responding to the eight EEG electrodes).

C. Artifact-Related IC Identification

After the ICA decomposition, we chose to leverage some
well-known features in order to best capture the behavior of the
ICs associated with the two different artifact classes. Here, we
describe the features used for each artifact class.

1) Physiological Artifact-Related ICs:
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a) Feature extraction: Eye blinks, eye movements and
muscle movements are the major sources of physiological ar-
tifacts. In order to distinguish these artifacts from real brain
signals, four kinds of features are extracted here:

1) Temporal features: Due to the presence of physiologi-
cal artifacts like eye blinks, the amplitude of the artifact-
related ICs will abruptly jump and show different tem-
poral patterns compared to the normal brain-related ICs.
This jump can be well captured by the kurtosis [27], which
characterizes the relative peakedness of the amplitude dis-
tribution [28]. For example, ICs with eye blink artifacts
exhibit relatively high kurtosis [27]. However, the slow
amplitude drifts on the entire signal will also generate high
kurtosis and hamper the detection of artifacts. Therefore,
the whole IC is normalized to have zero mean before the
calculation of kurtosis as in [7]

avg_ep(s})
avg-ep((s;)?)
where s; indicates the time course of IC as defined in (1)
of epoch i. avg_ep indicates the average within epoch i
after mean removal.

2) Spatial features: The artifact-related ICs and the brain-
related ICs are projected on different groups of electrodes.
For instance, in our P300 experiment, the brain-related
ICs are concentrated on the frontal and central electrodes
(around Fz channel), while the eye blinks project most
strongly on the far frontal site on the scalp [2]. To capture
the spatial topography of artifact-related ICs, the median
of each IC’s topography weight is utilized here

sa(n)])  G)

where a (n) is the IC topography weight matrix A (A =
W1y at column n (for electrode 7). In order to scale
the topography weight for each electrode to the same
range, a normalization process is implemented on a (n)
by dividing the square root of the sum of squares of a (n)
for all electrodes [7].

3) Spectral features: The normal power of EEG signals are
in delta band (0—4 Hz), theta band (4-8 Hz), alpha band
(8-13 Hz), and beta band (13-30 Hz) and most of it falls
in the range of 1-20 Hz [29]. However, the artifacts show
dissimilar power distribution. For example, the spectrum
of muscle artifacts is characterized usually by a high value
in the 20-50 Hz range [30]. These differences can be
highlighted by the average band power of delta, theta,
alpha, beta and gamma bands (gamma is 30-50 Hz)

fspectral = [F' (delta) F (theta) F' (alpha)
F (beta) F' (gamma))] “4)

-3 @)

f temporal —

fspatial = median([a (1); ,a (2); ...

where F() is the average band power which is calculated
using MATLAB’s pwelch function.

4) Similarity over epochs: The artifacts are random, unex-
pected, and usually only occur in some epochs. Thus,
the epochs that contain artifacts have no common pat-
tern and exhibit very low similarity with other epochs.

—— Response to frequent stmulus A: Baseline
= = Response to infrequent stimul B: N200
C: P300
+002mV _'E
- -
7 -
A ’ Sa
0 -.‘—:.-:\M‘_\
N8B =
0 150 300 450 600

Time, relative to stim ulus presentation (ms)

Fig. 3. Example of EEG signals with N200 and P300 patterns for target
(infrequent stimulus) and nontarget (frequent stimulus) epochs [3].

On the other hand, the epochs with ERP-related ICs ex-
hibit higher similarity with others. The correlation value
is adopted to measure the similarity

Yo
m=1,m#i Tsi sm
N, — 1

®)

f similarity —

where 7, s is the correlation coefficient between ICs (s; and
sm) calculated from epoch i and m. N, is the total number of
epochs in the dataset.

Overall, an 8-D feature vector (one temporal feature, one
spatial feature, five spectral features, and one similarity feature)
is extracted from each IC.

b) Hierarchical clustering: In order to automatically dis-
tinguish artifact-related ICs from brain-related ICs, a hierarchi-
cal clustering approach based on the features described in the
previous section is employed here. We choose the hierarchical
clustering approach for two reasons: First, the dendrogram in the
hierarchical clustering not only encapsulates the grouping for
clusters, but also provides information on the closeness of the
elements in each cluster in the form of the height of the node.
Second, the entire clustering procedure can be accomplished
without determining the number of clusters a priori.

c¢) Physiological artifacts identification: Since the physi-
ological artifacts can randomly occur and are unexpected, it is
difficult to generate a global model to identify them. Thus, in-
stead of constructing a global template for artifact-related ICs,
our approach is based on a global pattern that encapsulates
models for signals of interest and identifies the artifact-related
ICs by searching for the minimal contribution to this model.
Neuroscientists have found that, for the P300 speller task, most
ERP-related ICs have two common significant ERP patterns:
N200 and P300 [2]. The cognitive representation of N200 is
related to response inhibition and error-related negativity and
the latency of N200 is related to the subject’s health conditions
(there is an increase in latency for subjects with psychiatric dis-
orders), while the cognitive representation of P300 is related to
the process of decision making and the latency of P300 depends
on the complexity of the stimuli (the latency is longer during
difficult stimulus tasks) [3], [31]. Fig. 3 shows an example of
EEG signals with N200 and P300 patterns for target (infrequent
stimulus) and nontarget (frequent stimulus) epochs [3]. A tar-
get epoch corresponds to the intensification of a row/column
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Fig.4. Injecting current into the signal electrode for impedance measurement.

including the desired letter, and a nontarget related to intensifi-
cations not including the desired letter.

Hence, we build a template to guide the artifact identification
for all the subjects based on this a priori knowledge:

Step 1: Calculate the back-projection value p; of each IC as
follows:

pi=W(i) x s (6)

where p; is the back-projection value of IC i, and W~ !is the
inverse of the unmixing matrix.

Step 2: Calculate contribution of each cluster to the desired
signal of interest patterns: N200 (07*) and P300 (@f 3), sepa-
rately, since they have different cognitive representations and
impact factors related to the latency. The contribution value ¢;
[see (7) and (8)] for each cluster is obtained by the average
value p; of all ICs in the cluster, which is then averaged over a
specified time range:
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Fig. 5.
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where @f 3is the contribution value for the desired ERP (P300)
of cluster j, @?2 is the contribution value for N200, and m is the
total number of components included in the cluster j. ¢, and
t", specify the latency range for the N200 pattern and ¢, 5 and
tj; 5 specify the latency range for the P300 pattern. In our study,
all subjects are between 20 and 30 with no history of psychiatric
disorders and given the same stimuli and experimental orders;
therefore, we use the same latency range: ¢, = 200 ms, tIQ =
300 ms, tljg = 300 ms, t}53 = 500 ms for all the subjects.

Step 3: Finally, the cluster j which minimizes the difference
between @f 3 and (7);?2 is identified as being affected by artifacts
and the ICs inside of this cluster are marked as artifact-related
ICs.

2) Nonbiological Artifact-Related ICs: Poor scalp contact for
a particular electrode that will produce consistently bad data for
a long duration is the major source for nonbiological artifacts.
The poor contact may be due to the drying out of gels used
to establish a conductive path from the electrode to the scalp

in a wet-electrode acquisition system or due to sweat, hair or
the half-cell effect interfering with the connectivity between the
scalp and the electrode for a dry-electrode system [32]. In order
to identify this class of artifacts, the electrode-scalp impedance
information is employed to guide the nonbiological artifact-
related IC identification process.

a) Electrode-scalp impedance: Accurate measurement of
EEQG relies heavily on a low-impedance conductive path from
the scalp to the signal acquisition device. If there is any disrup-
tion between an electrode and the scalp, the reported results may
not be accurate. Typically, the contact quality of an electrode to
the scalp is evaluated by the impedance value between the elec-
trode and the scalp. One method to measure the electrode-scalp
impedance would be to inject a current at the signal electrode,
shown as [, in Fig. 4. This technique is called “lead-off detec-
tion” and is provided on the TI ADS1299. When the applied
current is a sinusoid at a known frequency f,, then we have

%ut,fo =g, fy X Zovcrall~ (9)

The frequency response of Vg, at f, is dominated by the
voltage drop across the overall impedance of the circuit due to
the injected current, /,:

Zoverall = Zelec.sig + ZL + Zelec,ref~ (10)
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The overall impedance Z,yera1 is the combination of
Zelec,sig (the impedance faced by the dry signal electrodes), Z1.
(the impedance of the length of the scalp between two elec-
trodes), and Zjec rer (the impedance faced by the wet refer-
ence electrode). The power spectrum of the signal V,,; at f,
is directly proportional to the impedance faced by the constant
current /,,.

If the electrodes are properly connected with the scalp, the
injected signal has minimal impact on V,,;. However, when
the contact quality becomes weak, the impedance Zgjec,sig in-
creases. Since the impedances Z; and Zgjec ot Temain rela-
tively constant for all the electrodes during our experiments,
any changes in the overall impedance Z,,,11 Will be due to the
various impedances of the dry electrodes and these will be re-
flected in frequency response of V;,,; at the frequency f, in each
channel. This gives us a measure of the relative impedances of
the eight signal electrodes.

b) Nonbiological artifacts identification: In our study, we
inject a sinusoidal signal with f, = 30.5 Hz as the constant cur-
rent I, and compute the magnitude of the power spectra of the
output signals at 30.5 Hz as a measure of the impedance between
the electrode and the scalp. A higher magnitude at 30.5 Hz, mea-
sured at one output channel, implies higher impedance faced by
the corresponding electrode and therefore poorer contact be-

tween that electrode and the scalp. Fig. 5(a) shows the magni-
tude of the power spectra between 25 and 35 Hz for the signal
originating from each electrode for subject #1. Among all the
electrodes, electrodes #4 (Pz) and #7 (PO7) exhibit extremely
high magnitude at 30.5 Hz.

In order to separate electrodes (#4 and #7) which show much
higher impedance compared to the other electrodes, a Euclidean
distance-based hierarchical clustering procedure is employed on
the magnitude values at 30.5 Hz. Fig. 5(b) shows the dendro-
gram plot of eight electrodes on subject #1. After the clustering
process, electrodes #4 and #7 which show higher impedance
values in Fig. 5(b) are grouped together and separated from the
other six electrodes.

We then transform the vector multiplication in (1) and repre-
sent it as a linear combination:

§7j: E ’wqij’Uj

Jj=1

(1)

where i is the IC index number and j is the electrode index num-
ber. w;; is the ijth element of the unmixing matrix W. Each IC §;
consists of all the electrodes, and each electrode has its own con-
tribution w; ;. These ICs represent the brain-related potentials as
well as artifacts. In our study, the brain-related potentials should
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Fig. 10. (a)Original EEG signals and (b) artifact-free EEG signals for the case

that the original signals show visible N200-P300. Both exhibit the N200-P300
complex, but the complex becomes more prominent after application of our
proposed algorithm. (c¢) Original EEG signals and (d) artifact-free EEG signals
for the case that the original signals do not exhibit the N200-P300 complex. The
artifact-free signals clearly show the N200-P300 complex.

contain two patterns: N200 and P300 (see Fig. 3). Therefore,
IC #3 in Fig. 6(a) can be classified as ERP-related IC since it
follows these two patterns, and IC #1 [see Fig. 6(b)] and #2 [see
Fig. 6(c)] are artifact-related ICs.

The contribution of each electrode to the above ICs is shown
in Fig. 6(d). After comparing the different contributions of each
electrode, we can see that for the artifact-related ICs (IC #1 and
IC #2), electrodes #4 and #7, which have higher impedance
value, provide the maximal contributions. However, for the
ERP-related IC (IC#3), these two high-impedance electrodes
have minimal contributions.

Based on the relationship between the impedance and the
contribution of each individual electrode to the ICs, the nonbi-
ological artifacts can be identified in the following steps:

Step 1: Calculate the electrode-scalp impedance for each in-
dividual electrode and employ the clustering technique to find
the electrodes which show extremely high impedance compared
to others.

Step 2: Compare the contributions of all the electrodes for
each IC. The ICs that represent the nonbiological artifacts should
satisfy the following condition: the electrodes which have max-
imal impedance values provide the maximal contributions to
this IC. If this condition is satisfied, the corresponding ICs are
identified as artifact-related ICs.

D. Artifacts Removal and Clean EEG Reconstruction

In the last step, the components labeled as artifact-related ICs
are removed from the data. Then, the artifact-free EEG data was
reconstructed from the remaining ICs.

IV. RESULTS
A. Physiological Artifacts Identification

1) Example 1: Eye Movement Artifacts Identification:
Fig. 7(a) shows an epoch of 800 ms of the original EEG data
collected from eight electrodes. Around 400 ms, eye movement
artifacts are observed on the signals of electrodes PO7 and POS.
The corresponding ICA components are shown in Fig. 7(b).
IC#3 is automatically identified as eye movement artifacts since
its amplitude abruptly jumps, as shown in Fig. 7(c). This jump
is captured by the temporal feature, kurtosis value. Fig. 7(d)
shows the kurtosis value for all eight ICs and IC#3 shows a very
high value. Fig. 7(e) shows the dendrogram plot of eight ICs
after hierarchical clustering using the temporal feature. After
the clustering, IC#3 is isolated from the other ICs.

2) Example 2: Muscle Artifacts Identification: Fig. 8 demon-
strates the identification of muscle artifacts by ICA using spec-
tral features. It shows another epoch of 800 ms of the original
EEG data [see Fig. 8(a)] and its ICA components [see Fig. 8(b)].
The artifacts occurring during the entire epoch of the signals
from channels Cz, Oz, and PO7 [see Fig. 8(a)] are isolated to
ICA component 8 [see Fig. 8(c)]. IC#8 is automatically identi-
fied as muscle artifacts due to its abnormal spectral distribution
that shows very high value in the 20-50 Hz range [see Fig. 8(d)].
Fig. 8(e) shows the dendrogram plot of eight ICs after hierar-
chical clustering using the spectral feature. After the clustering,
IC#8 is separated from the other ICs.
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B. Nonbiological Artifacts Identification

Fig. 9 demonstrates the identification of nonbiological arti-
facts by ICA using the lead-off value. Fig. 9(a) shows the lead-
off value (magnitude at 30.5 Hz) of eight electrodes. Electrode
#2 shows an extremely high value compared to other electrodes.
Fig. 9(b) shows the contributions from each electrode to an IC
[shown in Fig. 9(c)]. This IC receives maximal contribution from
electrode #2. Since electrode #2 has the highest lead-off value,
the IC shown in Fig. 9(c) is automatically identified as artifact-
related. On the other hand, Fig. 9(d) shows the contributions
from each electrode to another IC [shown in Fig. 9(e)]. This
IC receives minimal contribution from electrode #2. Since the
ERP-related component should have minimal relationship with
electrodes that show high impedance, the IC shown in Fig. 9(e)
is identified as ERP-related IC.

C. Performance Evaluation by Reviewing Reconstructed
Artifact-Free EEG

Next, we compare the original EEG recordings with the re-
constructed EEG to evaluate the performance of our algorithm
on signal quality enhancement, especially ERP-related informa-
tion enhancement. In order to better evaluate the performance,
we separated the ten subjects into two groups. The four of them
that showed visible desired ERP-related patterns (N200 and
P300) in the original EEG recordings are in group 1. The other
six subjects who had no visible ERP-related patterns are in
group 2.

1) Group 1: Visible ERP Patterns Exist in the Original EEG
Recordings: Fig 10(a) and (b) shows the comparison result of
one subject who shows visible ERPs in the original EEG record-
ings. The original EEG signals are shown in (a) and the signals
after applying our automatic artifact identification and removal
algorithm are shown in (b). As indicated in Fig. 10(b), after
artifact removal procedure, the N200-P300 complex is more
prominent than in the original EEG signals.

2) Group 2: No Visible ERP Patterns Exist in the Original
EEG Recordings: Fig 10(c) and (d) depicts the comparison re-
sult for another subject who barely shows visible ERPs in the
original EEG recording. As shown in (c), the N200-P300 com-
plex is not visible before artifact removal. However, after artifact
removal by the proposed algorithm, a view of N200-P300 com-
plex is clearly recognizable on the reconstructed signals in Fig.
10(d). It demonstrates that the proposed algorithm can effec-
tively extract the ERP-related information even when there are
no clearly visible ERPs in the original signals.

These results illustrate the effectiveness of our proposed algo-
rithm in identifying and removing artifacts. More importantly,
our algorithm can also highlight ERP-related information in
the resulting artifact-free signals and distinguish the target and
nontarget epochs.

D. Performance Evaluation by Classification Accuracy
Comparison With Alternate Methods

Finally, we evaluate the performance of our proposed artifacts
identification and removal algorithm by comparing the classifi-

TABLE I
CLASSIFICATION ACCURACY (IN %) ACHIEVED BY FOUR COMMONLY USED
AUTOMATIC ARTIFACT IDENTIFICATION AND REMOVAL METHODS VERSUS OUR
PROPOSED METHOD

K-means Auto- ADJUST  FASTER Our

subject with mutual [7] [5] Method
similarity [12] information [15]

#1 84.8 86.3 88.7 89.9 92.1
#2 70.9 72.1 73.4 73.5 76.6
#3 76.2 74.5 79.6 79.9 83.5
#4 69.5 70.2 73.5 72.9 77.8
#5 75.5 74.5 76.9 71.5 80.9
#6 74.2 73.9 71.5 78.1 82.9
#7 75.2 74.2 78.9 78.4 84.4
#3 75.9 77.1 80.6 79.3 85.2
#9 81.7 81.1 83.3 83.7 86.4
#10 82.9 83.6 85.9 85.6 89.4
Avg. 76.68 76.75 79.83 79.88 83.92
p-value <0.01 <0.01 <0.05 <0.05

cation accuracies (target epochs versus nontarget epochs) with
four commonly used automatic artifact identification and re-
moval methods. The proposed approach outperforms method 1
that uses k-means clustering based on the similarity [12] (shown
in Column #2 of Table I) and method 2 that uses hierarchical
clustering based on automutual information [15] (shown in Col-
umn #3 of Table I). It is due to the fact that these two methods are
only suitable for the physiological artifacts and could not iden-
tify nonbiological artifacts. The ADJUST [7] (shown in Column
#4 of Table I) and FASTER [5] (shown in Column #5 of Table I)
methods can achieve better performance than the previous two
methods since they consider the nonbiological artifacts in their
artifact identification process. However, the accuracies obtained
by our proposed method are higher than these two methods since
our approach is more applicable for the low-density electrode
system. We also conducted the statistical t-test, shown on the
last row of Table I, to evaluate the significance of the improve-
ments between our algorithm and the other four algorithms. All
t-tests resulted in a p-value less than 0.05 which indicates that
the improvement in accuracy is statistically significant.

V. CONCLUSION

A novel automated artifact-related ICs identification algo-
rithm has been presented in this paper. The proposed methods
take into account both physiological artifacts and nonbiologi-
cal artifacts. An ERP-related clustering method is proposed for
physiological artifact-related ICs identification. A quantitative
comparison of original EEG signals with reconstructed artifact-
free signals shows that the proposed algorithm can effectively
enhance the ERP quality for all subjects in the study, even
for those that barely display ERPs in the original recordings.
Electrode-scalp impedance information was employed for non-
biological artifact-related ICs identification. Quantitative com-
parisons of the proposed algorithm to other methods show that
significant performance improvements were achieved using our
proposed method compared to four commonly used automatic
removal methods for noisy ICs.
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