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Abstract—A Sign Language Recognition (SLR) system 

translates signs performed by deaf individuals into text/speech in 

real time. Inertial measurement unit (IMU) and surface 

electromyography (sEMG) are both useful modalities to detect 

hand/arm gestures. They are able to capture signs and the fusion 

of these two complementary sensor modalities will enhance system 

performance. In this paper, a wearable system for recognizing 

American Sign Language (ASL) in real-time is proposed, fusing 

information from an inertial sensor and sEMG sensors. An 

information gain based feature selection scheme is used to select 

the best subset of features from a broad range of well-established 

features. Four popular classification algorithms are evaluated for 

80 commonly used ASL signs on four subjects. The experimental 

results show 96.16% and 85.24% average accuracies for 

intra-subject and intra-subject cross session evaluation 

respectively, with the selected feature subset and a support vector 

machine classifier. The significance of adding sEMG for 

American Sign Language recognition is explored and the best 

channel of sEMG is highlighted. 

 
Index Terms—American Sign Language recognition; IMU 

sensor; surface EMG; feature selection; sensor fusion 

 

I. INTRODUCTION 

sign language is a language which uses manual 
communication to convey meaning, as opposed to 

acoustically conveyed sound patterns. It is a natural 

language widely used by deaf people to communicate with each 

other [1]. However, there are communication barriers between 

hearing people and deaf individuals either because signers may 

not be able to speak and hear or because hearing individuals 

may not be able to sign.  This communication gap can cause a 

negative impact on lives and relationships of deaf people. Two 
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traditional ways of communication between deaf persons and 

hearing individuals who do not know sign language exist: 

through interpreters or text writing. The interpreters are very 

expensive for daily conversations and their involvement will 

result in a loss of privacy and independence of deaf persons. 

The text writing is not an efficient way to communicate because 

writing is too slow compared to either spoken/sign language 

and the facial expressions during performing sign language or 
speaking will be lost. Thus, a low-cost, more efficient way of 

enabling communication between hearing people and deaf 

people is needed.  

A sign language recognition (SLR) system is a useful tool to 

enable communication between deaf people and hearing people 

who do not know sign language by translating sign language 

into speech or text [2, 3]. Fig. 1 shows a typical application of 

sign language recognition system. The system can be worn by 

deaf people who cannot talk and translates the signs performed 

to text or speech on the cell phone of the people who can hear 

and talk. The speech recognition system on deaf person’s cell 

phone translates speech into sign language images/videos. The 

speech recognition part is not considered in this paper. The 

real-time translation enables them communicate in a more 

convenient and natural way.  

There are different sign languages in different countries in 

different regions. Around 300 hundred sign languages are in 

use all over world today. Sign languages are natural languages 

and similar to spoken languages, they differ from each other. 

The system should be studied and designed for a specific sign 

language. In this paper, we focus on the recognition of ASL. 

There are thousands of signs in ASL dictionary but most of 

them are not commonly used. In our paper, 80 commonly used 

signs are chosen from 100 basic ASL signs [4, 5].  A sign 

consists of hand shape, hand location, hand orientation, hand 

and arm movement and facial expression. In our paper, facial 

expression is not considered when we design our system.   

Vision-based and glove-based SLR systems are well-studied 

systems which capture signs using cameras and sensory glove 

devices, respectively [6, 7, 8, 9, 10].Vision-based techniques 

typically require cameras to be mounted in the environment 

which inherently suffer from a limited range of vision. Further, 

the required infrastructure may not be available at all of the 

desired locations or may be too expensive to implement. Issues 

associated with users’ privacy also limit the utility of 

vision-based techniques. Due to high cost of glove devices, 

glove-based SLR systems are not ideal for use in daily life. 
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Fig. 1.  Typical application of sign language recognition system.

Wearable inertial measurement unit (IMU) based gesture 

recognition systems attract much research attention due to their 

low cost, low power consumption and ubiquitous sensing 

ability [11, 12]. An IMU measures acceleration and gravity 

with a 3-axis accelerometer and angular velocities with a 3-axis 

gyroscope. A surface electromyography (sEMG) sensor 

measures muscle electrical activity and it can be used to detect 

neuromuscular diseases and to analyze human kinetics. 

Different signs will generate different muscle electrical patterns 

and sEMG is able to capture this information to distinguish 

different gestures [13, 14]. For sign language recognition 

systems, the wrist worn IMU sensor is good at capturing hand 

orientations and hand and arm movements while sEMG does 

well in distinguishing different hand shapes and finger 

movements when the sensors are placed on the forearm. Thus, 

they each have their own advantages capturing different 

information about a sign. The fusion of these two 

complementary modalities will enhance the performance of an 

SLR system and thus enable the recognition of a large number 

of signs [15]. 

A wearable system for recognizing American Sign Language 

in real-time fusing information from inertial and sEMG sensors 

is proposed in this paper. Although such a system has been 

studied for Chinese Sign Language [16], to the best of the 

authors’ knowledge this is the first time such a system is 

studied for American Sign Language. In our work, an adaptive 

auto-segmentation technique using sEMG is proposed to define 

the beginning and ending of a sign. A broad range of 

well-studied features from both inertial and sEMG sensors are 

extracted from each segment and a best feature subset is 

selected using an information gain based feature selection 

approach. Four popular classification algorithms are evaluated 

for intra- and inter-subject testing and the significance of 

adding sEMG for SLR is explored.  

The remainder of this paper is organized as follows. The 

related work is discussed in Section II. Our lab customized 

sEMG data acquisition and IMU hardware platforms are 

introduced in Section III. The details of our system are 

explained in Section IV, followed by the experimental setup in 

Section V. The experimental results are explained in Section VI 

and limitations are discussed in Section VII. At last, the paper is 

concluded in Section VIII. 

II. RELATED WORK 

SLR systems are well studied in the areas of computer vision 

and image processing. Two vision-based real-time ASL 

recognition systems are studied for sentence level continuous 

American Sign Language using Hidden Markov Model (HMM) 

[6].  In the first system, the camera is mounted on the desk 

while in the second system, the camera is mounted on a cap 

which is worn by the user. They are both tested for 40 signs and 

achieve 92% and 98% accuracy, respectively. A framework for 

recognizing the simultaneous aspects of ASL is proposed [7].  

This framework targets at addressing the scalability issue 

associated with HMM. It breaks down the signs into their 

phonemes and modeling them with parallel HMM. In this way, 

the state space will decrease significantly as the number of 

signs increases. Another vision-based SLR system is studied 

for a medium vocabulary Chinese Sign Language [17]. Robust 

hand detection, background subtraction and pupil detection are 

implemented as the first module, followed by a tiered-mixture 

density HMM. With the aid of a colored glove, this system 

achieves 92.5% accuracy for 439 Chinese Sign Language 

words. A combination of three new vision based features are 

explored for ASL recognition [18]. Three features are mapped 

into four components of ASL: hand shape, place of articulation, 

hand orientation and movement. The proposed features achieve 

10.90% error rate on an existing dataset.  

Glove-based SLR systems implement multiple sensors on 

the glove and capture the physical features of the gestures. 

Unlike vision-based systems, they do not require cameras 

mounted around the user and the system can perform 

recognition at any place at any time with a wearable glove. A 

glove-based Australian SLR system is studied using two 

classifiers (i.e. Instance based classifier and decision tree 

classifier) with some simple features. 80% accuracy is achieved 

for 95 AUSLAN signs [19]. The performance of artificial 

neural networks is explored for an ASL recognition system 

using a sensory glove [9]. It achieves about 90% accuracy for 

50 ASL signs. 
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The low cost wearable accelerometer and sEMG based SLR 

systems have the same advantages as glove-based systems 

compared to vision-based approach while they cost much less 

than glove based systems since they have fewer sensors 

deployed. Therefore, this kind of wearable SLR system is 

gaining more and more popularity in recent years. SLR system 

has been explored in several studies fusing information from 

accelerometer and sEMG sensors. The comparison of 

accelerometer based and sEMG based gesture recognition 

systems is discussed [20]. It is suggested accelerometer and 

sEMG sensors are good at capturing different information of 

gestures and the performance enhancement combining these 

two modalities has been studied. The experiments show 5% - 

10% accuracy improvement is obtained after fusing these two 

modalities [21]. An accuracy of 93% of recognizing 60 Greek 

Sign Language signs is achieved using only one effective 

sample entropy based feature set for both accelerometer and 

sEMG [22]. A Chinese SLR framework is proposed fusing data 

from an accelerometer and 4-channel sEMG sensors [16]. Auto 

segmentation is applied to extract sign words from continuous 

sentences according to sEMG signal intensity. Multiple 

classifiers are implemented at different stages and the decisions 

achieved by each individual classifier are fused. At the first 

stage, the linear discriminate analysis (LDA) classifier is 

applied for both sEMG and accelerometer data which are able 

to capture hand shape and hand orientation, respectively. All 

sEMG and accelerometer features are cascaded and fit into a 

multi-stream HMM to recognize signs. A Gaussian mixture 

model is applied to fuse decisions obtained in the first stage. 

Although this system obtains a 96.5% accuracy for 120 Chinese 

sign words with sensors deployed on two hands, multiple stages 

and multiple classifiers make it unfavorable for implementation 

on real-time wearable computers based applications which are 

constrained by limited computational resources. Another 

system is proposed to detect seven German sign words with 

99.82% accuracy achieved using an accelerometer and one 

channel sEMG [23]. However, this work is not extensively 

evaluated for a large number of signs and does not include 

auto-segmentation which makes it difficult to operate in real 

time. The major differences between our work and the previous 

works are as follows: 1) An adaptive auto-segmentation is 

proposed to extract periods during which signs are performed 

using sEMG. 2) The best feature subset is selected from a broad 

range of features using information gain criterion and the 

selected features from different modalities (e.g. accelerometer, 

gyroscope and 4-channel sEMG) are discussed.  3) Gyroscope 

is incorporated and the significance of adding sEMG is 

analyzed. 4) Although such a system has been studied for 

Chinese Sign Language [16], our paper is the first study for 

American Sign Language recognition fusing these two 

modalities.  

III. HARDWARE DESCRIPTION 

A. IMU Sensor 

Fig. 2 shows the 9-axis motion sensor customized in our lab. 

The InvenSense MPU9150, a combination of 3-axis 

accelerometer, 3-axis gyroscope and 3-axis magnetometer, 

severs as the IMU sensor. A Texas Instruments (TI) 32-bit 

microcontroller SoC, CC2538, is used to control the whole 

system.  The board also includes a microSD storage unit and a 

dual mode Bluetooth module BC127 from BlueCreation. The 

system can be used for real-time data streaming or can store data 

for later analysis. It also has an 802.15.4 wireless module which 

can offer low power proximity measurement or ZigBee 

communication. In this paper, the sampling rates for 

accelerometer and gyroscope are chosen to be 100 Hz which is 

sufficient for the sign language recognition system [24]. 

 
Fig. 2. Motion Sensor Board. 

B. sEMG Acquisition System 

sEMG measures the electrical activity generated by skeletal 

muscle. Fig. 3 shows a customized 16-channel 

Bluetooth-enabled physiological signal acquisition system. It 

can be used for ECG, sEMG and EEG data acquisition. The 

system is used as a four channel sEMG acquisition system in 

this study. A TI low power analog front end, the ADS1299, is 

used to capture four channel sEMG signals and a TI MSP430 

microcontroller is responsible for forwarding data to a PC via 

Bluetooth. A resolution of 0.4 μV is achieved setting a gain of 1 

on the ADS1299. Covidien Kendall disposable surface EMG 

patches are attached to skin and the same electrodes are used as 

introduced in our previous work [25]. 

Generally, sEMG signals are in the frequency range of 0Hz 

-500 Hz depending on the space between electrodes and muscle 

type [26]. To meet the Nyquist criterion, the sampling rate is 

chosen as 1K Hz, which is usually used in surface EMG based 

pattern recognition tasks [27]. 

 
Fig. 3. 8-channel sEMG acquisition system. 

IV. PROPOSED SLR SYSTEM 

The block diagram of our proposed multi-modal ASL 

recognition system is shown in Fig. 4. Two phases are included: 

training phase and testing phase. In the training phase, the 

signals from 3-D accelerometer (ACC), 3-D gyroscope (GYRO) 

and four channel sEMG are preprocessed for noise rejection and 
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Fig. 4. Diagram of proposed system.

synchronization purposes. The sEMG based auto-segmentation 

technique obtains the beginning and ending of a sign for both 

IMU and sEMG. As the segmentation is done, a broad set of 

well-established features are extracted for both IMU and sEMG 

signals. All extracted features are then put into one feature 

vector. The best feature subset is obtained using an information 

gain (IG) based feature selection scheme. Four different 

classifiers are evaluated (i.e. decision tree, support vector 

machine, NaïveBayes and nearest neighbor) on the selected 

feature subset and the best one is selected.   In the testing phase, 

the same techniques are repeated for preprocessing and 

segmentation. The selected features are extracted and 

recognition of the sign is achieved by the chosen classifier. 

A. Preprocessing 

The synchronization between IMU and sEMG data is 

important for fusion. In our system, IMU data samples and 

sEMG data samples are sent to a PC via Bluetooth and 

time-stamped with the PC clock. The synchronization is done by 

aligning samples with the same PC clock. Bluetooth causes a 

transmission delay (5-20ms) for both IMU and sEMG data and 

this small synchronization error is negligible for the purposes of 

our system. To remove low frequency noise in sEMG, a 5Hz IIR 

high pass filter is used since the frequency components of 

sEMG beyond the range of 5Hz – 450Hz are negligible [28]. 

The raw data is used for accelerometer and gyroscope. 

B. Segmentation 

Automatic segmentation is crucial for real-time applications. 

It extracts the period during which each sign word is performed 

such that the features can be extracted on the correct segment 

before classification is done. For certain parts of some signs, 

only finger movements are observed and no obvious motion 

signal can be detected from the wrist. Thus, sEMG signals are 

used for our automatic segmentation technique since sEMG 

signals can capture larger number of movements. 

To explain our segmentation technique, we first define the 

average energy E of four sEMG channels in an n sample 

window in Equation (1).  Sc(i) denotes ith sample of cth channel 

of sEMG. m is total number of channels which equals four in our 

case. A non-overlapping sliding window is used to calculate E in 

every window. The length of the window is set to 128 

milliseconds, which covers 128 samples with the 1000 Hz 

sampling frequency. If E in five continuous windows are all 

larger than a threshold T, the first sample of the first window 

will be taken as the beginning of a gesture. If E in four 

continuous windows are all smaller than the threshold, the last 

sample in the last window is considered to be the ending of this 

gesture.  
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Different people have different muscular strengths which will 

result in different E. A simple threshold may not be suitable for 

all subjects. An adaptive estimation technique is proposed to 

adjust the threshold according to different subjects and different 

noise levels on-line. The proposed approach is explained in two 

steps. In the first step, the average energy E is calculated for five 

continuous windows. If all five E is smaller than a*T, it is 

assumed no muscle activity is detected and the threshold is 

updated with b*T in the second step. a is called the converge 

parameter and this reduces the threshold T when quiet periods 

are detected. b is the diverge parameter which enlarges the 

threshold T as the noise level increases. The values of a, b and T 

are set to be 0.5, 4 and 0.01 for the system empirically. 0.01 is 

much bigger than E for all subjects and the user is requested to 

have a 2-3 seconds quiet period at the beginning of system 

operation to have the system converge to a suitable threshold. 

C. Feature Extraction 

A large number of features have been proposed and studied 

for both sEMG and IMU sensors for detecting activities or 

gestures. We adopt some of these well-established features in 

our paper [29, 30, 31, 32, 33]. Table I and Table II show features 

from sEMG and IMU sensors, respectively. The dimension of 

each feature is also listed in the table. The sEMG features are 

extracted for all four channel signals and the total dimension is 

76. The IMU sensor features are extracted for 3-axis 
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accelerometer, 3-axis gyroscope and the magnitude of 

accelerometer and gyroscope. It leads to a 192 dimension 

feature space. The features from sEMG and IMU sensors are 

combined into the final feature vector of dimension 268. 

TABLE I.  SEMG FEATURES 

Feature name (dimension) Feature name (dimension) 

Mean Absolute Value (1) Variance (1) 

Four order Reflection 

Coefficients (4) 

Willison Amplitude in 5 amplitude 

ranges (5) 

Histogram (1) Modified Median Frequency (1) 

Root Mean Square (1) Modified Mean Frequency (1) 

Four order AR coefficients (4)  

TABLE II.  IMU SENSOR FEATURES 

Feature name (dimension) Feature name (dimension) 

Mean (1) Variance (1) 

Standard Deviation (1) Integration (1) 

Root Mean Square (1) Zero Cross Rate (1) 

Mean Cross Rate (1) Skewness (1) 

Kurtosis (1) First three orders of 256-point FFT 

Coefficients (3) 

Entropy (1) Signal Magnitude Area (1) 

AR coefficients (10)  

D. Feature Selection 

Feature selection provides a way to select the most suitable 

feature subset for certain tasks from the well-established 

features. It reduces over fitting problems and information 

redundancy existing in the feature set. It can also suggest the 

best feature subset if a smaller feature set is required by 

applications with limited computational resources.   

There are three different feature selection methods which are 

filter methods, wrapper methods, and embedded methods [34]. 

Wrapper methods generate scores for each feature subset based 

on a specific predictive model. Then, cross validation is done for 

each feature subset. Based on the prediction performance, each 

subset is assigned a score and the best subset is chosen. Filter 

methods use general measurement metrics of a dataset to score a 

feature subset instead of using the error rate of a predictive 

model. Some common measures are mutual information and 

inter/intra class distance. The embedded methods perform the 

feature subset selection in conjunction with the model 

construction.  In our work, an information gain filter method is 

used in conjunction with a ranking algorithm to rank all the 

features. The best n features form the best feature subset which 

is evaluated with different classifiers. The choice of n is 

discussed in Section V. Compared to wrapper methods, the 

features selected by filter methods will operate for any classifier 

instead of working only with a specific classifier. 

E. Classification 

Four popular classification algorithms are studied in this 

paper: decision tree (DT) [35], support vector machine 

(LibSVM) [36], nearest neighbor (NN) and NaiveBayes. Weka, 

a widely used open source machine learning tool, is applied for 

the implementations of these four algorithms [37]. The radial 

basis function (RBF) kernel is selected for the LibSVM and the 

best kernel parameters are tuned using a grid search algorithm. 

The default parameters are selected for the other three classifiers. 

In machine learning, it is usually hard to determine which 

classifier is more suitable for a specific application and thus it is 

worth testing several algorithms before we choose one. 

V. EXPERIMENTAL SETUP 

A. Sensor Placement 

The signs can involve one hand or two hands. In our paper, 

we only look at the right hand movements for both one-hand or 

two-hand signs. If they system is deployed on two hands, it will 

increase the recognition accuracy. Fig. 5 shows the sensor 

placement on right forearm of the user. Four major muscle 

groups are chosen to place four channel sEMG electrodes: (1) 

extensor digitorum, (2) flexor carpi radialis longus, (3) extensor 

carpi radialis longus and (4) extensor carpi ulnaris. The IMU 

sensor is worn on the wrist where a smart watch is usually 

placed. To improve signal-to-noise ratio of sEMG readings, a 

bi-polar configuration is applied for each channel and the space 

between two electrodes for each channel is set to 15 mm [38]. 

The electrode placements are also annotated in the figure. 

 

Fig. 5. Placement of sEMG electrodes.  

B. Data Collection 

80 commonly used ASL signs in daily conversations are 

selected in our paper. Three male and one female volunteer are 

recruited for data collection. They are all first time learners and 

did not know ASL before. For each subject, the data is collected 

from three sessions on three different days and during each 

session, the subject repeats each sign 25 times. The dataset has 

24000 instances in total.  

C. Experiments 

Four different experiments are conducted to test our system: 

intra-subject testing, all cross validation, inter-subject testing 

and intra-subject cross session testing. For intra-subject testing, 

the data collected from three sessions of same subject is put 

together and a 10-fold cross validation is done for the data 

collected from each subject separately. 10-fold cross validation 

means the data is split into 10 subsets randomly and the model is 

trained with 9 subsets and tested on the 10th subset. This process 

is repeated for 10 times and the average was taken over. For the 

all cross validation analyses, data from all four subjects are put 

together and a 10-fold cross validation is performed. For the 

Inertial 
Sensor



JBHI-00032-2016 6 

inter-subject testing, the classifier is trained with data from three 

subjects and tested on the fourth subject. The performance is 

averaged for four tests. The feature selection for the first three 

experiments is carried out during all cross validation since it has 

data from all four subjects which makes it a good generalization 

for classification algorithms. For the intra-subject cross session 

testing, the feature selection is performed and the classifier is 

trained with two sessions from each subject and tested on the 

third session of the same subject. The process is repeated three 

times for each subject and the performance is averaged for each 

subject. This experiment would give an indication of how well 

the system will generalize to new data collected in future for the 

same subject. 

VI. EXPERIMENTAL RESULTS 

A. Auto-segmentation 

In our experiment, we do not have a gold standard (e.g. video 

record) and thus it is hard to measure the error of our automatic 

segmentation technique. However, we know the total number 

of signs each subject performed and the number of signs our 

algorithm recognized. An error rate (ER) is defined as: 

𝐸𝑅 =
|𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑠−𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑛𝑢𝑚𝑠|

𝑝𝑒𝑟𝑓𝑜𝑚𝑒𝑑 𝑛𝑢𝑚𝑠
                (2) 

detected nums and performed nums are numbers of signs our 

algorithm detected and numbers of signs the user actually 

performed, respectively. The ER of our approach is 1.3% which 

indicates our segmentation technique achieves a good 

performance. The intra-subject classification results in section 

V.C also indicate suitable performance of the segmentation. 

B. Feature Selection 

All 268 features are ranked with a score obtained from 

information gain criterion. The highest ranked ones are selected 

to form the best subset. To decide the size of best feature set, all 

cross validation is performed on four different classifiers as 

feature subset size increases from 10 to 268. 

 
Fig. 6. Results of feature selection. 

Fig. 6 shows classification accuracies of four classifiers as 

the size of the best feature subset increases. It is seen from the 

figure that as the size of feature subset increases, the accuracies 

of all classifiers increase. However, when the feature number is 

bigger than 120 for LibSVM and nearest neighbor, their 

accuracies start to decrease as a result of over-fitting. This 

illustrates one of the reasons why feature selection is necessary. 

Table III lists four data points when classifiers achieve best 

performance. 

TABLE III.  OPTIMAL DATA POINT OF FEATURE SELECTION 

Classifier Optimal point (feature number,  accuracy) 

NaiveBayes (270, 82.13%) 

NeareastNeighbor (120, 98.73%) 

Decision Tree (100, 78.00%) 

LibSVM (120, 98.96%) 

 

Fig. 6 shows that when number of selected features becomes 

40, LibSVM already achieves 96.16% accuracy.  Due to the 

computational constraints associated with wearable systems, 

the feature size is thus selected to be 40. Among the 40 features, 

the numbers of features selected from different sensors are 

shown in Table IV. More than half of the features are selected 

from accelerometer which means accelerometer plays most 

important role in recognizing signs. Accelerometer measures 

both gravity and acceleration caused by movement. Gravity is 

usually the major part which is capable of capturing hand 

orientation information. It indicates hand orientation 

information is more significant than hand shape when 

distinguish different signs. Ten features from gyroscope are 

selected which means that the hand and arm rotation is also 

valuable information. Nine selected sEMG features make this 

modality necessary for our system.  

TABLE IV.  NUMBER OF FEATURES SELECTED FROM DIFFERENT SENSORS 

Sensor 
 Number of 

feature selected 
Sensor 

Number of 

feature selected 

Accelerometer 21 sEMG2 2 

Gyroscope 10 sEMG3 0 

sEMG1 4 sEMG4 3 

To have a better understanding of the importance of different 

sensor features, forty selected features are listed in Table V 

along with their rankings. In the table, Acc_x, Acc_y and 

Acc_z represent accelerometer readings along x-axis, y-axis 

and z-axis, respectively. Similarly, Gyro_x, Gyro_y and 

Gyro_z are gyroscope readings along x-axis, y-axis and z-axis, 

respectively. From the table, we can see that most of the 

accelerometer features have very high rank which indicates 

accelerometer is the most important modality in our system. 

The gyroscope features have higher ranks than sEMG features 

on average. Although the gyroscope is not as important as the 

accelerometer, it contributes more than sEMG. sEMG features 

are the least important among the three modalities which 

indicates it may not be significant in our system. Among 

accelerometer and gyroscope features, the most important ones 

include mean, integration, standard deviation, RMS and 

variance. Mean absolute value, variance and RMS are valuable 

features for sEMG signal. One interesting observation of sEMG 

features is that four selected features from channel one have 

higher ranks than the others from channel two and channel four. 

Channel one is placed near the wrist where a smart watch is 

usually worn. In reality, if only one electrode is available, 

channel one would be selected and it can be integrated into a 

smart watch to capture the most important sEMG features.



JBHI-00032-2016 7 

TABLE V.  FOURTY SELECTED FEATURES 

Rank # Feature name Rank # Feature name Rank # Feature name Rank # Feature name 

1 Mean of Acc_y 11 RMS of Gyro_x 21 RMS of sEMG1 31 
Signal magnitude area of 

Acc_x 

2 Mean of Acc_z 12 
RMS of amplitude of 

accelerometer 
22 

Zero cross rate  

of Acc_y 
32 Variance of sEMG4 

3 RMS of Acc_x 13 
Mean of amplitude of 

accelerometer 
23 Variance of Gyro_z 33 Entropy of Gyro_x 

4 RMS of Acc_z 14 Mean of Acc_x 24 
Standard deviation 

Of Gyro_z 
34 RMS of sEMG4 

5 RMS of Acc_y 15 
Signal magnitude area of 

Acc_x 
25 Variance of Acc_y 35 

Signal magnitude area of 

Gyro_x 

6 Integration of Acc_y 16 
Standard deviation 

 of Acc_z 
26 

Standard deviation  

of Acc_y 
36 

Zero cross rate  

of Acc_z 

7 Integration of Acc_x 17 Variance of Acc_z 27 
Modified mean frequency 

of sEMG1 
37 

Mean absolute value of 

sEMG4 

8 Integration of Acc_z 18 
Standard deviation 

 of Gyro_z 
28 

Mean absolute value of 

sEMG1 
38 

Signal magnitude area of 

Gyro_z 

9 Entropy of Acc_x 19 Variance of Gyro_x 29 
First auto-regression 

coefficient of Acc_x 
39 RMS of sEMG2 

10 RMS of Gyro_z 20 Variance of sEMG1 30 
Mean absolute value of 

sEMG2 
40 

Mean of amplitude of 

gyroscope 

C. Classification results 

Table VI shows the classification results of intra-subject 

testing on four subjects. In this experiment, each classifier is 

trained and tested with data from the same subject. We can see 

that nearest neighbor and LibSVM achieve high accuracies 

while decision tree classifier obtains the lowest accuracy. 

Nearest neighbor classifier is a lazy learning classifier and it 

does not require a trained model. In the testing phase, it 

compares the testing instance with all instances in the training 

set and assigns it a same class label as the most similar instance 

in the training set. It does not scale well as the size of the 

training set increases since the testing instance needs to be 

compared to all instances in the training set. LibSVM trains a 

model based on training data. As the size of training set 

increases, it only increase the training time without affecting 

the time needs in testing phase. This is crucial for real time 

applications. Therefore, LibSVM is the one we select for our 

system implementation. The results achieved for 80 signs are 

consistent with the results obtained for 40 signs in our prior 

investigation [39]. It indicates our technique scales well for 

intra-subject testing. 

TABLE VI.  RESULTS OF INTRA-SUBJECT VALIDATION 

 NaiveBayes DT NN LibSVM 

Subject 1 88.81% 83.89% 96.6% 98.22% 

Subject 2 97.01% 91.54% 99.16% 99.48% 

Subject 3 92.74% 81.97% 92.89% 96.61% 

Subject 4 91.15% 77.98% 95.77% 97.23% 

Average 93.68% 83.85% 96.11% 97.89% 

Table VII shows classification results of all cross validation. 

For all classifiers, the classification results with sEMG and 

without sEMG are given. The classification with sEMG means 

we use all 40 features while without sEMG means we only use 

31 features from accelerometer and gyroscope. The 

performance improvement with adding sEMG is also listed in 

the table.  

Among four classifiers, LibSVM achieves the best 

performance in accuracy, precision, recall and F-score while  

NaïveBayes gives the worst performance. The accuracy, 

precision, recall and F-score are very close to each other for all 

classifiers which indicates all classifiers achieve balanced 

performance on our dataset. With 40 features, LibSVM 

achieves 96.16% accuracy. It is consistent with the results 

(95.16%) we obtained for 40 sign words with 30 features in our 

prior study [39]. This proves the scalability of approach for all 

cross validation test. 

TABLE VII.  RESULTS OF ALL-CROSS VALIDATION 

 NaiveBayes DT NN LibSVM 

Accuracy with sEMG 63.87% 76.18% 94.02% 96.16% 

Accuracy without sEMG 48.75% 68.93% 87.62% 92.29% 

Improvement 15.12% 7.25% 6.4% 3.84% 

Precision with sEMG 66.9% 76.3% 94.0% 96.7% 

Precision without sEMG 51.8% 69.0% 87.7% 92.3% 

Improvement 15.1% 7.3% 6.3% 4.4% 

Recall with sEMG 63.9% 76.2% 94.0% 96.7% 

Recall without sEMG 48.8% 68.9% 87.7% 92.3% 

Improvement 15.1% 7.3% 6.3% 4.4% 

F-score with sEMG 63.6% 76.2% 94.0% 96.7% 

F-score without sEMG 47.6% 68.9% 87.6% 92.3% 

Improvement 16.0% 7.3% 6.4% 4.4% 

 

 
Fig. 7. Results of inter-subject testing. 

The improvement after adding the sEMG modality is most 

significant for NaiveBayes classifier. It achieves about 15% 

improvement for all four classification performance metrics. 

However, for our chosen classifier LibSVM, the accuracy 

improvement is about 4% while the error rate is reduced by 
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50%. It indicates the sEMG is necessary and significant.  The 

significance of sEMG is further analyzed in next section. 

Fig. 7 shows the average accuracy of inter-subject testing for 

both eighty sign words and forty sign words. It is seen from the 

figure, none of the classifiers offer good accuracy for 

recognizing 40 or 80 signs. LibSVM still offers the best 

performance among four classifiers. There are three reasons for 

such low accuracies. First, different people perform the same 

signs in different ways. Second, all subjects in our experiment 

are first time ASL learners and never had experience with ASL 

before. Even though they follow the instructions, the gestures 

for the same signs are different from each other. Third, different 

subjects have very different muscular strength and thus leading 

to different sEMG features for same signs. From the 

comparison between accuracy of 40 signs and 80 signs, our 

technique offers low accuracy for all classifiers consistently. 

For NaiveBayes, NN and LibSVM, the accuracy obtained from 

40 signs is higher than obtained from 80 signs. However, NN 

offers higher accuracy for 80 signs surprisingly. The results 

suggest our system is not suitable for inter-subject test. It is 

suggested that the system should be trained on each subject 

before using it to obtain a high accuracy. 

 

Fig. 8. Results of intra-subject cross session testing. 

The first three experiments show our system achieves 

suitable performance if the system is trained and tested for the 

same subject and the system obtains less ideal performance for 

inter-subject testing. We further investigate how well the 

system will generalize for new data collected in future for the 

same subject. Fig. 8 shows the results of the intra-subject cross 

session testing in which the feature selection is performed and 

the classifier is trained with two days data from the same each 

subject and is tested on data of the third day for the same 

subject. This process is repeated three times for the same 

subject and the accuracy measures are averaged. We can see 

that both NaiveBayes and decision tree yield poor accuracies 

while LibSVM offers best accuracy. Table VIII shows the 

average accuracy of different classification algorithms between 

four subjects. LibSVM achieves 85.24% which is less suitable 

than the 96.16% of intra-subject testing. Two reasons may 

explain this performance decrease. The first reason is that the 

user may have placed the sensors at slightly different locations 

for the sEMG and IMU sensors, and with a slightly different 

orientation for the IMU sensor. The second reason is that all 

four subjects are first time learner who have not developed 

consistent patterns for signs. They may have performed the 

same signs somewhat differently on different days. 

TABLE VIII.  RESULTS OF INTRA-SUBJECT CROSS SESSION TESTING 

Classifier Accuracy Classifier Accuracy 

NaiveBayes 50.11% NN 81.37% 

DT 46.01% LibSVM 85.24% 

D. Significance of sEMG 

From the analysis of inter-subject testing in previous section, 

LibSVM achieves about 4% improvement for accuracy, 

precision, recall and F-score while the error rates for these 

metrics are reduced by about 50%. In this section, we further 

analyze the importance of sEMG. In American Sign Language, 

there are some signs which are very similar in arm movement 

and are different in hand shape and finger configurations (e.g. 

fist and palm). The sEMG is able to capture the difference of 

finger configuration and to distinguish these signs. If only 

inertial sensor is considered, the exactly same motion profile 

will make these signs confusing relative to each other. Fig. 9 

shows an example of sequences of postures when the user is 

performing two signs ‘Please’ and ‘Sorry’. We can see from the 

figures, the arm has the same movement which is drawing a 

circle in front of chest. The inertial sensor will offer same 

readings for these two different signs. However, the hand is 

closed (i.e. fist) when performing ‘Sorry’ while it is open (i.e. 

palm) when performing ‘Please’. This difference can be 

captured by sEMG and thus they will be distinguishable if 

sEMG is included. 

TABLE IX.  10 SIGNS WITH MOST TP RATE IMPROVEMENT 

Sign ID Sign Improvement 

29 Thank 21% 

19 My 18.2% 

9 Have 16.7% 

24 Please 16.7% 

37 Work 16.5% 

57 Tall 14.3% 

67 Girl 13.9% 

26 Sorry 13.8% 

76 Doctor 12.5% 

66 Boy 12.5% 

Instead of average improvement, the improvement of true 

positive (TP) rate is analyzed to show how the sEMG impacts 

each individual sign. TP rate is rate of true positive and true 

positives are number of instances which are correctly classified 

as a given class. The improvement of TP rate of each sign with 

sEMG can tell how much sEMG will help for each individual 

signs. Fig. 10 shows the TP rate improvement for 80 signs and 

the improvement is sorted in descend order. From the figure, 

we can see that for most of signs (last 29-80), the rate of 

improvement is within the range of [-5%, 5%]. However, for 

the signs from 1 to 11, the improvement is bigger than 10% 

which is very helpful for recognizing these signs. In Table IX, 

10 signs are listed with the highest TP rate improvement. We 

can see that ‘Sorry’ and ‘Please’ are both improved 

significantly since they are confused with each other. In reality, 

it is important to eliminate the confusion between signs which
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(a). Sequence of postures when performing ‘Please’. 

 
(b). Sequence of postures when performing ‘Sorry’. 

Fig. 9. Sequence of postures when performing ‘Please’ and ‘Sorry’.

have similar motion profile but different sEMG characteristics. 

Therefore, the sEMG is significant for our system. 

 
Fig. 10. TP rate improvement of all signs. 

VII. LIMITATIONS AND DISCUSSION 

The wearable inertial sensor and sEMG sensors based sign 

language recognition/gesture recognition systems have become 

more and more popular in recent years because of low-cost, 

privacy non-intrusive and ubiquitous sensing ability compared 

with vision-based approaches. They may not be as accurate as 

vision-based approaches. A vision-based approach achieves 

92.5% accuracy for 439 frequently used Chinese Sign 

Language words [17]. Although we have not tested for such a 

large number of signs, it may be challenging with wearable 

inertial and sEMG systems to recognize such a big number of 

signs. Another disadvantage with wearable inertial sensor and 

sEMG based sign language recognition system is that the facial 

expression is not captured.  

In our study, we observe that the accelerometer is the most 

significant modality for detecting signs. When designing such 

systems, if fusion of multiple modalities is not possible, the 

suggested choice order of these three are: accelerometer, 

gyroscope and sEMG. The significance of sEMG is to 

distinguish sets of signs which are similar in motion and this is 

crucial for sign language recognition. For some gesture 

recognition tasks, if gesture number is not big and there are no 

gestures which are very similar in motion, one inertial sensor 

may be sufficient for the task to reduce the system cost.  

Our system offers high accuracy for both 40 signs and 80 

signs for intra-subject testing and all cross validation. This 

shows our system is scalable for American Sign Language 

recognition if the system is trained and tested on the same 

subjects. However, very low accuracy is achieved for 

inter-subject testing which indicates our system is not very 

suitable for use on individuals if the system is not trained for 

them. We have talked to several experts of American Sign 

Language and they think it is reasonable to train for each 

individuals since even for expert, they will perform quite 

differently from each other for the same signs based on their 

preference and habits. This is the major limitation of sign 

language recognition systems. Our system is studied and 

designed to recognize individual signs assuming a pause exists 

between two sign words. However, in daily conversation, a 

whole sentence may be performed continuously without an 

obvious pause between each words. To recognize continuous 

sentence, a different segmentation technique or other 

possibility models should be considered.  

Machine learning is a powerful tool for different applications 

and is gaining a lot of popularity in recent years in wearable 

computer based applications. However, it is important to use it 

in a correct way. For different applications, different features 

and different classifiers may have significantly different 

performance. It is suggested to try different approaches to 

determine the best one. The other point is that the classifier 

parameters should be carefully tuned. In our approach, if we do 

not choose the correct parameters for LibSVM, only 68% 

accuracy can be achieved.  

VIII. CONCLUSION 

A wearable real-time American Sign Language recognition 

system is proposed in our paper. This is a first study of 

American Sign Language recognition system fusing IMU 
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sensor and sEMG signals which are complementary to each 

other. Feature selection is performed to select the best subset of 

features from a large number of well-established features and 

four popular classification algorithms are investigated for our 

system design. The system is evaluated with 80 commonly used 

ASL signs in daily conversation and an average accuracy of 

96.16% is achieved with 40 selected features. The significance 

of sEMG to American Sign Language recognition task is 

explored. 
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