66 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Physical Movement Monitoring Using Body Sensor
Networks: A Phonological Approach to
Construct Spatial Decision Trees

Hassan Ghasemzadeh, Member, IEEE, and Roozbeh Jafari, Member, IEEE

Abstract—Monitoring human activities using wearable sensor
nodes has the potential to enable many useful applications for
everyday situations. Limited computation, battery lifetime and
communication bandwidth make efficient use of these platforms
crucial. In this paper, we introduce a novel classification model
that identifies physical movements from body-worn inertial sen-
sors while taking collaborative nature and limited resources of the
system into consideration. Our action recognition model uses a
decision tree structure to minimize the number of nodes involved
in classification of each action. The decision tree is constructed
based on the quality of action recognition in individual nodes. A
clustering technique is employed to group similar actions and mea-
sure quality of per-node identifications. We pose an optimization
problem for finding a minimal set of sensor nodes contributing to
the action recognition. We then prove that this problem is NP-hard
and provide fast greedy algorithms to approximate the solution.
Finally, we demonstrate the effectiveness of our distributed algo-
rithm on data collected from five healthy subjects. In particular,
our system achieves a 72.4% reduction in the number of active
nodes while maintaining 93.3% classification accuracy.

Index Terms—Action recognition, body sensor networks, col-
laborative signal processing, decision tree model, phonology,
primitive.

I. INTRODUCTION

IRELESS sensor networks have caught tremendous
W attention recently due to their potential for a large
number of application domains. Applications range from mon-
itoring systems such as environmental and medical monitoring
to detection and supervision systems for military surveillance.
A special class of these systems, called body sensor networks
(BSNs), uses a network of lightweight embedded sensory
devices to acquire and process physiological data about the
subject wearing the system. BSNs can foster medical services
by providing real-time and remote healthcare monitoring. They
can be effective for rehabilitation, sports medicine, geriatric
care, gait analysis, and detection of neuro-degenerative dis-
orders such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases [1].

Action recognition aims to detect transitional movements
such as “sit to stand,” “sit to lie,” and “walking.” Action
recognition is usually required for development of many other

Manuscript received November 04, 2009; revised February 28, 2010, May
29, 2010, August 07, 2010; accepted September 20, 2010. Date of publica-
tion December 10, 2010; date of current version February 04, 2011. Paper no.
TII-09-11-0313.

H. Ghasemzadeh is with the West Wireless Health Institute, La Jolla, CA
92037 USA (e-mail: hghasemzadeh@ gmwhi.org).

R. Jafari is with the Department of Electrical Engineering, University of Texas
at Dallas, Richardson, TX 75080-3021 USA (e-mail: rjafari@utdallas.edu).

Digital Object Identifier 10.1109/T11.2010.2089990

applications. In gait analysis, certain information about the
quality of gait is extracted when the person is walking. Thus,
the current action needs to be reported prior to execution of
other processing tasks. In monitoring Parkinson’s Disease (PD)
patients, several symptoms such as resting tremor, muscular
rigidity, bradykinesia or delayed initiation of movements,
and postural instability need to be detected. However, these
symptoms are not equally pronounced during all of the human
actions. For example, bradykinesia cannot be identified when
a subject is perfectly still. In order to properly recognize PD
symptoms, action recognition needs to be performed first.

Limited processing power and finite battery energy are
two major obstacles in realizing real-time applications of the
BSNs. The limited computing capability warrants the need for
development of computationally inexpensive algorithms that
run on the lightweight sensor nodes, and reduce complexity
of the large amount of data collected by the sensor nodes.
Battery lifetime, however, can be maximized by optimizing
function of individual components such as processing unit and
communication system. Studies have shown that communica-
tion consumes significantly more energy than data processing.
Hence, significant power saving can be obtained by enhancing
the communication system.

This study focuses on developing a computationally simple
and distributed algorithm for action recognition. The task in-
volves introducing a novel representation of human actions in
terms of their basic building blocks, called primitives. With this
approach, each action is represented as a set of symbols asso-
ciated with the primitives. A distributed algorithm is then de-
veloped which detects human actions according to a decision
tree model. The decision tree is derived directly from interpre-
tation of action primitives and the level of contribution of each
sensor node for action identification. The distributed algorithm
produces a global classification decision based on a subset of
results generated by individual sensor nodes. The compact rep-
resentation of actions along with distributed nature of the algo-
rithm enables our system to lower the amount of information
stored at individual nodes, and to minimize the amount of data
passed in the network. Therefore, the amount of energy required
by individual nodes for data transmission is reduced. Further-
more, with the dynamic selection of the nodes needed for clas-
sification the overall number of active nodes is reduced. This
would lead to reducing the overall power consumption of the
system and can potentially increase system lifetimes.

Our contributions in this paper can be summarized as fol-
lows. 1) An efficient representation of individual nodes’ knowl-
edge about each action is presented using the concept of action

1551-3203/$26.00 © 2010 IEEE

GHASEMZADEH AND JAFARI: PHYSICAL MOVEMENT MONITORING USING BODY SENSOR NETWORKS 67

primitives. This provides a compact and flexible representation
for atomic movements which can enhance communication by
reducing the size of messages required to transmit across the
network. We provide phonological rules for constructing prim-
itives associated with each action. 2) We investigate the detec-
tion of human actions based on a decision tree model. In a deci-
sion tree for action recognition, each internal decision vertex is
associated with a sensor node, and terminal leaves correspond
to actions of interest. Depending on the observation made by a
sensor node, an internal vertex can branch to one node or an-
other. When a new action occurs, the system will classify that
action by visiting a sequence of nodes on a path from the root to
a leaf. The tree is optimal if a minimum number of nodes clas-
sifies all the actions. Such a model reduces the number of active
nodes by minimizing height of the tree.

II. RELATED WORK

A number of researchers have integrated on-body sensors in
a wireless network for the purpose of activity recognition and
lifestyle monitoring. In [2], authors report the results of a study
on activity recognition using different types of sensory devices,
including built-in wired sensors, RFID tags, and wireless in-
ertial sensors. The analysis performed on 104 h of data col-
lected from more than 900 sensor inputs shows that motion sen-
sors outperform the other sensors on many of the movements
studied. A wireless body sensor system for monitoring human
activities and location in indoor environments is introduced in
[3], where each sensor node is equipped with accelerometer, gy-
roscope and magnetometer. Authors in [4] use a network of five
accelerometers to classify a sequence of daily activities. They
report a classification accuracy of 84% for detecting 20 actions.
The system in [5] uses seven different sensors embedded in a
single node to classify twelve movements. The accuracy ob-
tained by this system is 90%. All the aforementioned systems
use a centralized approach for action recognition, where a cen-
tral classifier combines data of all sensor nodes and make a
global decision. In contrast, our study aims to build a distributed
action recognition model that uses only a subset of nodes for
classification. In a previous work [6], we introduced a heuristic
approach for distributed action recognition based on the concept
of motion transcripts. There are two major differences between
the current study and our previous work: 1) In this paper, we
introduce the concept of spatial primitives that represent each
action as a set of primitives spatially distributed across the net-
work. Our previous work uses the notion of temporal primitives
where each action is represented as a sequence of primitives by
each individual node. 2) While the distributed classification al-
gorithm in [6] is heuristic and cannot essentially provide the op-
timal ordering of the nodes for classification, our decision tree
based classifier in this paper has strong theoretical foundation.

The idea of primitive-based activity recognition originated
from research work in computer vision, where both static and
dynamic vision-based approaches have been developed. For
static methods, individual time frames of a video sequence are
used as the basic components for analysis. Recognition involves
the combination of discrete information extracted from indi-
vidual frames. In dynamic methods, a fixed interval of a video
stream is the major unit of analysis. The Hidden Markov Model
(HMM) [7], which takes into account the correlation between

adjacent time instances by formulating a Markov process [8],
is often used for the dynamic representation of motion due to
its ability to handle uncertainty with its stochastic framework.
Examples include the work presented in [9], that introduces a
statistical technique for synthesizing walking patterns. The mo-
tion is expressed by a sequence of primitives extracted using an
HMM-based model. The limitation of HMM in efficiently han-
dling several interdependent processes has led to the creation
of grammar-based representations of human actions. In [10],
the authors propose a platform for a visuo-motor language.
They provide the basic kernel for the symbolic manipulation
of visual and motor information in a sensory-motor system.
Their phonological rules are modeled as a finite automaton.
Authors in [11] present an algorithm that finds primitives for
human gestures using a motion capture system measures the
3D position of body parts. The trajectory of motion of these
parts is considered as a gesture, and primitives are constructed
based on the density of the training data set.

The primary objective of our work is to develop a fast classi-
fication algorithm which minimizes the number of active nodes
involved in distributed action recognition. We use the notion
of decision tree for this purpose. In order to construct a tree,
we map each movement onto a set of predefined primitives.
Our spatially distributed primitives simplify the representation
of movements and enable construction of a decision trees. Our
model further simplifies communication as each node in the tree
needs to convey information on its final result to the next node
in the tree.

III. SYSTEM ARCHITECTURE AND SIGNAL PROCESSING

Our action recognition platform is a BSN consisting of
several sensor units in a wireless network. The sensor nodes
aim to collectively detect transitional movements according
to a training model. Each node, which is also called a mote,
has a triaxial accelerometer, a biaxial gyroscope, a microcon-
troller, and a radio. Nodes sample sensor readings at a certain
frequency and can transmit the data wirelessly to each other.
The motes that are used in this study are TelosB, which are
commercially available from XBow®. The core processing unit
of a Telos mote is TT MSP430 with active power of 3 mW.
The power consumption of the radio is 38 mW and 35 mw
in receive and transmit modes, respectively. Each mote is
interfaced with custom-designed sensor board and is powered
by a Li-Ion battery. For the purpose of data collection, we use
an extra mote as a base station. The base station is connected to
a laptop by USB and communicates with on-body nodes using
a TDMA protocol. Furthermore, two Logitech webcams are
used to record video of all experiments. The video is used only
as a guide for manual segmentation of the actions. The sensor
readings and video are collected and synchronized in MATLAB
where we develop our distributed algorithms. Currently, we
use this sensing platform for data collection and perform all
processing offline in MATLAB.

Our distributed algorithm uses the signal processing model
shown in Fig. 1 to classify an unknown action by integrating
information from sensors across the network. This processing
model requires several parameters as well as a decision tree
which are precalculated during training. The training is con-
ducted, as shown in Fig. 2. Data are collected from each sensor

68 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Clustering
Parameters
&

Decision Tree

Local
Identification

Sensor

Node 1

) . Feature

j]ﬁ‘llter | |Segmentatlnn| l Extraction | l I EZ
) . Feature Local

E[mm]—[Seg’"e“‘a"‘"]"[Extraction ’ I Identification I 69

Sensor

Node 2

. . Feature
j Filter]—-[chmcntatlol]—[Extraction

Fig. 1. Signal processing flow for distributed action recognition based on de-

cision tree model.
Primitive
iConstructlon I ‘Symbohzatlonl

Local
Identification

Sensor

Node n

Features

Node 1
1~
2
| <3
3 g'
Node2 Primitive Symbolization 5
5 Construction a2
[l a
(@]
=]
-1
. 1 . 3
L] 1 L] =
. | . s
=l
1 3
Node n E Prlmmv.e Symbolization
E Construction

Decision
Tree

Fig. 2. Training model to construct action primitives and build a decision tree.

Cluster
Parameters

(z,y, z accelerometer, and z, y gyroscope) at 50 Hz and are
filtered with a five-point moving average filter to remove high
frequency noise. Next, signals are manually segmented to
determine the temporal regions that represent actions. Other
processing tasks are described briefly in the following.

Feature Extraction: Single-value features are extracted from the
signal segment. Statistical features include mean, start-to-end
amplitude, standard deviation, peak-to-peak amplitude, and
RMS power. Moreover, ten morphological features are obtained
from ten uniformly distributed points on the signal where each
feature is the value of the signal at one of the points. Intuition
behind using the above feature set is that: 1) these time-domain
features are computationally inexpensive that can be executed
on our lightweight sensor nodes; 2) they capture both statistical
and structural properties of the signal; and 3) significance of
statistical and morphological features for human movement
analysis has been previously suggested by other researchers
[12], and their effectiveness is established by our experimental
results in this paper.

Per-Node Identification: Each node uses a phonetic expression
of movements to map a given action onto the corresponding
primitive. Each primitive is represented by a cluster, which
groups similar actions together based on the features that are

extracted from each signal segment. During identification, an
unknown action is mapped onto a cluster based on the cluster
configuration obtained during training.

Distributed Action Recognition: The global state of the system
is recognized by combining local knowledge from different
nodes using a decision tree model. The decision tree allows
for incremental classification of actions and is specifically
constructed to minimize the number of nodes involved in the
classification. Each node can distinguish certain actions based
on the cluster assignment of the actions. The node which is most
informative among all existing nodes is used as the root of the
tree. The remaining nodes are organized in the tree according
to their capabilities in distinguishing the rest of the actions.
This decision tree-based model classifies an unknown action
by extracting information from a subset of nodes in a certain
order and typically determining the action before all nodes
are considered. The decision tree, which is constructed during
training, determines the node that initiates communication. The
algorithm proceeds by transmitting local results of one node to
the next node in the tree. On receiving data, the node combines
the data with its local statistics and may decide to branch to
another node in the tree. This process continues until all the
actions are distinguished, detecting the target action.

Primitive Construction and Symbolization: A phonological
approach is used to construct spatially distributed primitives
of actions at each sensor node. Primitives are created using
unsupervised classification techniques that map signal readings
with similar patterns onto the same clusters. We use a k-means
clustering algorithm to group similar actions based on the
value of the statistical and morphological features extracted
from each signal segments. On each individual sensor node,
several actions might fall into the same cluster. Each cluster
represents a primitive. When primitives are generated, a symbol
is assigned to each primitive. By symbolization, each action is
represented in terms of a set of meaningful phonemes that are
labeled by alphabets.

IV. PRELIMINARIES

Accurate detection of actions requires a global view of the
whole system, but each individual node in a BSN has only local
knowledge of the event taking place. The ability of a node to
recognize actions varies based on the type of action. For ex-
ample, consider the two actions “stand to sit” and “bend.” A
node mounted on the “arm” might distinguish these two actions,
but a sensor on the “ankle” might not provide useful informa-
tion. The main advantage of the clustering model in our system
is that by grouping training trials at each node, nodes not con-
tributing to a certain action will be identified. That is, we will be
able to determine which nodes are useful for recognizing which
actions.

A. Clustering Implications

We employ clustering to find primitives for each action. In
this section, we explain how we benefit from clustering algo-
rithms and strategies of finding the most effective clustering
configuration.

1) Clustering Techniques: Clustering is grouping together
data points in a data set that are most similar to each other. Two
major clustering techniques are hierarchical clustering [13] and

GHASEMZADEH AND JAFARI: PHYSICAL MOVEMENT MONITORING USING BODY SENSOR NETWORKS 69

K -means clustering [14]. In the hierarchical method, each data
item is initially considered a single cluster. At each stage of the
algorithm, similar clusters are grouped together to form new
clusters. In the K-means algorithm, K centroids are chosen;
one for each cluster. In this way, training data are grouped into
a predefined number of clusters. Unlike hierarchical clustering,
in which clusters are not improved after being created, the
K -means algorithm iteratively improves the initial clusters.
The continuously improving nature of this algorithm leads to
high-quality clusters when provided appropriate data. We use
this algorithm for our analysis because it is simple and operates
based on the firm foundation of analysis of variances [15].

2) Cluster Validation: Although K-means is a popular clus-
tering technique, the partition attained by this algorithm is de-
pendent on both the initial value of centroids and the number of
clusters. To increase the likelihood of arriving at a good parti-
tioning of the data, many improvements to K -means have been
proposed in the literature. The sum of square error (SSE) is a rea-
sonable metric used to find the global optimal solution. To cope
with the effects of initialization, we use uniformly distributed
initial centers and repeatedly search for the configuration that
gives the minimum error. We calculate the SSE error function
as in (1), where x; denotes the ith data item, uj denotes the
centroid vector associated with cluster C}, and K is the total
number of clusters

K
SSE = Z Z (z; — pr)?. (1

k=1:i€C}

Another problem with K-means is that it requires predic-
tion of the correct number of clusters. Usually, a cluster-validity
framework provides insight into this problem. We employ the
silhouette quality measure [16], which is robust and takes into
account both intracluster and intercluster similarities to deter-
mine the quality of a cluster. Using non-normalized features,
we calculate this metric in Euclidean space. Let C}, be a cluster
constructed by the K -means algorithm. The silhouette measure
assigns a quality metric S; to the ith data item of C}. This value
signifies the confidence of the membership of the ith item to
cluster C. S; is defined by (2), where a; is the average distance
between the 7th data item and all of the items inside cluster C},
and b; is the minimum of the average distances between the 2th
item and all of the items in each cluster besides C',. That is, the
silhouette measure compares the distance between an item and
the other items in its assigned cluster to the distance between
that item and the items in the nearest neighboring cluster. The
larger the S;, the higher the level of confidence about the mem-
bership of the ith sample in the training set to cluster C,

S; = ﬂ)
max{a;, b;}

While S;, also called silhouette width, describes the quality
of the membership of a single data item, the quality measure
of a partition, called the silhouette index, for a given number of
clusters K is calculated using (3), where N is the number of
data items in the training set

N
Sil(K) = % > S 3
i=1

To obtain the most effective configuration in terms of the
number of clusters, one can choose the K that has the largest
silhouette index, as shown in (4)

K = argmax{Sil(K)}. @
K

B. Phonology

Phonology refers to identifying basic primitives of actions.
In our networked framework, primitives are distributed among
sensor nodes with varying ability to recognize actions. Our pho-
netic description is able to characterize each action in terms of
primitives using a two-stage process that are described in the
following sections.

1) Primitive Construction: Primitives are created by in-
dividual sensor nodes during training. We use K-means to
perform local clustering at each node, transforming the fea-
ture space into groups of dense data items. Each cluster is
associated with a primitive in our model. This technique is
effective since it provides insights into the usefulness of nodes
for detecting each action. Actions with similar patterns tend
to be assigned to the same cluster at each node, while they
might be represented by different clusters at another node. Let
A = {ay,a9,...,a,n} be a set of m actions to be classified.
The clustering algorithm at node s; will transform the actions
into a series of clusters {P;1, Pa, . .., P;.}, where the number
of clusters c is limited to be at most m, the number of actions.
The intuition behind this constraint is that similar actions will
be grouped, and therefore, the total number of clusters will
be less than the number of actions. We employ the validation
techniques explained in Section IV-A2 to find the most effective
clustering configuration.

2) Symbolization: The second step in constructing our pho-
netic description is to select a final group of primitives and as-
sign symbols to them. Some of the clusters defining our initial
primitives are of low quality, meaning the primitives they de-
fine will not be good representations of our actions. We refine
our clusters by calculating the silhouette quality measure for
each cluster and eliminating clusters that do not meet a certain
threshold. The threshold is chosen to guarantee that each action
falls into at least one cluster. In this way, the set of primitives at
node 7 might be reduced to {P;1, Pi2, ..., P;p}, where p < cis
the number of final primitives after applying the quality measure
and c is the number of original primitives. After cluster refine-
ment, each cluster P;,.(r € {1,2,...,p}) is assigned a unique
symbol p;, from an alphabet .

V. MOVEMENT IDENTIFICATION PROBLEM

Physical movement monitoring by sensor networks requires
the combination of local knowledge from each node to achieve
a global view of human behaviors. In this section, we study the
problem of constructing a decision tree for action recognition
based on the semantic subspace generated by the primitives. We
use the notations in Table I throughout this section.

A. Decision Path for Action Recognition

The problem of recognizing actions using primitives can be
viewed as a decision tree problem in which each internal deci-
sion node represents a sensor node and its branches the primi-
tives identified within that node. The terminal leaves correspond

70 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

TABLE I

NOTATIONS
Symbol Description
S={s1, 82, ..., Sn} set of . sensor nodes that form a BSN
1 & J indices used for sensor nodes (e.g. s;, 5;)
n total number of sensor nodes
A:{al, as, ..., am} set of m actions/movements to be detected
k&l indices used for actions (e.g. ax, a;)
m total number of actions
P={p;} set of primitives created by sensor node s;
r&t indices used for primitives (e.g. pir, Pit)

Sensor node s, Sensor node s, Sensor node s

Fig. 3. An example of three nodes (s1, sz, s3) and four actions (a1, a2, a3,
a4). The actions are mapped to seven primitives (p11, P12, P13, P21, P22,
pa1,pa2). Bach action is symbolized by corresponding primitives;
a; = {011$921~,P31}; az = {012~,921~,P31}2 az = {912~,922~,P31}2
Uy = {0137P227P32}~

to the actions to be identified. It is required that the tree iden-
tifies each action correctly. The aim of action recognition is to
assign an unknown action to one of m mutually exclusive ac-
tions. The ordering of nodes in the tree changes its height and
thus the time needed to converge to a solution. Given a decision
tree T', path length for an action ay, (ar € A; A denotes set of
all actions as shown in Table I) is defined to be the number of
internal nodes in the path from root to a. The path length for
action ay, is denoted by £(ay). The cost of the tree is the sum of
all path lengths

Cost(T) = > ay). (5)

ap,€A

We first seek a linear ordering of the nodes that minimizes
convergence time. Using this model, the recognition policy will
explore a predefined series of sensor nodes regardless of obser-
vations made by individual nodes in real-time. Therefore, such
classification is static in terms of the ordering. An optimal or-
dering of the sensor nodes is then a minimum-cost decision path.
In an effort to make this model more efficient, we will then
look for methods of constructing a full decision tree in which
different branches can be taken according to the accumulative
knowledge attained by currently visited sensor nodes.

To better illustrate the identification problem, we provide a
simple example, shown in Fig. 3, which depicts the mapping of
actions to primitives. The system consists of three sensor nodes
denoted by s1, s2, and s3, and four actions denoted by a1, aso,
as, and a4 which are shown using a 2-D feature space (f; and
f2). The ellipsoids depict the distribution of different classes
across the network. Dashed-line rectangles show the mapping
of actions to primitives. The system has seven final primitives
denoted by {p11, p12, p13, p21, P22, P31, p32}. In node s1, action
a; is mapped to primitive pi1, actions as and a3 are mapped
to primitive p12, and action a4 is mapped to primitive pq3. In
other nodes, the actions are mapped to primitives as shown. This

Fig. 4. A sample decision tree for the example illustrated in Fig. 3.

phonetic expression can effectively describe the ability of indi-
vidual nodes to identify the actions. For instance, node s; can
distinguish action a; from the rest of the actions, as it finds no
ambiguity when mapping an action to p11, but it cannot dis-
tinguish between actions as and ag, as they are mapped to the
same primitive. While each node has limited knowledge of the
system, we require a global view in which every action is dis-
tinguished from the rest. Furthermore, we require an ordering
of sensor nodes that minimizes the total time of convergence.

Given an instance of a decision problem, one can construct
different decision trees. Fig. 4 illustrates a sample decision tree
for the example represented in Fig. 3. The problem of finding a
minimal decision tree is shown to be hard to approximate [17].
Therefore, in this section, we investigate construction of a de-
cision path for action recognition. The method of linearly or-
dering the nodes restricts the shape of the decision tree so that all
nodes are placed on a single path from the root and the tree has
a height equal to the total number of nodes required for recogni-
tion. We will investigate the construction of a full decision tree
in Section V-E.

B. Problem Formulation

In this section, we present a formal definition of our action
identification problem using a decision path.

Definition 1: Local Discrimination Set: Let A =
{a1,a2,...,a,} be a finite set of actions mapped to a set
of primitives P = {p;, }. The local discrimination set LDS; for
a node s; is defined by

LDS; = {(ax, a1)|ar € pir,a1 € pi,r #t,k <1}, (6)

The LDS; expresses the pairs of actions that can be
distinguished by s;. In the example shown in Fig. 3,
the local discrimination set for node s; is LDS; =
{(a17a2)7(a17a3)7(al,a4),(a2,a4)7(a37a4)}. For the other
IlOdCS, we have LDS2 = {(al,ag), (al,a4) (02703), (a2,a4)}

and LDSg = {(al, CL4), (az, a4), (a3, a4)}.

Definition 2: Global Discrimination Set: Let A = {ay,
as,...,am} be a finite set of actions and P = {p;,-} a collec-
tion of primitives. The global discrimination set GDS is defined
by

GDS = {(ak,a1)|ak € A,al € A,k < l} 7

The global discrimination set contains all the pairs
of actions that are required to be distinguished from
one another. For example, the global discrimination set
for the system shown in Fig. 3 is GDS = {(a1,4a2),
(a1,a3),(a1,a4), (az,as3), (az,a4), (a3, as)}. In this example,
the objective is to distinguish between every pair of actions.

GHASEMZADEH AND JAFARI: PHYSICAL MOVEMENT MONITORING USING BODY SENSOR NETWORKS 71

Definition 3: Complete Ordering: Let A = {a1,a2,...,am}
be a finite set of actions and P = {p;,.} a collection of primi-
tives. An ordering O = {s1, s2,...,s,} is complete if the fol-
lowing condition holds:

U LDS; = GDS. (8)

=1

This indicates that the ordering is capable of distinguishing
between all required pairs of actions. In the previous example,
the ordering O = {s1, s2} is complete since LDS; | JLDS, =
GDS, but the ordering O = {s2, s3} is not complete because
this ordering cannot discriminate between actions a; and as.

Definition 4: Ordering Cost: Let O = {s1,82,...,8,} be
a complete ordering of sensor nodes and f(ay) a function that
gives the index of the first node in which the following condition
holds:

far)
{(ar, a)|k < l,ar € A} C |] LDS..)
=1

That is, f(ay) is the number of nodes required to distinguish
ay, from all other actions. Then, the total cost of the ordering is
given by the following equation:

Z =" flax).

ap,€EA

(10)

This formulation weights the cost of an ordering so that an
ordering in which more actions require fewer nodes has a lower
cost. For instance, let O = {s3, $2, s1} be a complete ordering
for the example shown in Fig. 3. Then, f(as) = 1 because
action a4 can be completely identified by the first visited node
(s3). Atthe next node (s2), action ag can be distinguished from
the remaining actions (a; and as). Thus, f(a3) = 2 because
action ag is identified at the second node. Finally, actions a; and
as will be detected by visiting the third node (s;) meaning that
f(a1) = f(az2) = 3. Therefore, the total cost for this ordering
is 9.

Definition 5: Min Cost Identification Problem: Given a finite
set GDS and LDS, where LDS = {LDS;,LDSs,...,LDS,} is
a collection of subsets of GDS such that the union of all LDS;
forms GDS, Min Cost Identification (MCI) is the problem of
finding a complete linear ordering such that the cost of the or-
dering is minimized.

In the above example, it would be easy to find the optimal
solution by a brute-force technique. We can see that the cost for
the optimal ordering (s1, $2) is 6.

C. Problem Complexity

In this section we address the complexity of Min Cost Iden-
tification. We show that this problem is NP-hard by reduction
from Min Sum Set Cover.

Definition 6: Min Sum Set Cover: Let U be a finite set of
elements and S = {57, Ss,...,S,,} a collection of subsets of
U such that their union forms U. A linear ordering of S is a
bijection f from S to {1,2,...,m}. For each element ¢ € U
and linear ordering f, we define f(e) as the minimum of f(.5)

over all {S; : e € S;}. The goal is to find a linear ordering that
minimizes) f(e).
Theorem 1: The Min Cost Identification problem is NP-hard.
Proof: We will prove that the Min Cost Identification
problem is NP-hard by reduction from Min Sum Set Cover
(MSSC). Consider an MSSC instance (U, S) consisting of a
finite set of elements U and a collection S of subsets of U. The
objective is to find a minimum-cost linear ordering of subsets
such that the union of the chosen subsets of U contains all
elements in U. We now define a set U by replacing elements of
U with all elements (ay,a;) from the GDS. We also define S
by replacing its subsets S; with LDS;. (U, S) is an instance of
the MCI problem. Therefore, MCI is NP-hard. Since solutions
for the decision problem of MCI are verifiable in polynomial
time, it is in NP, and consequently, the MCI decision problem
is also NP-Complete. [|
Theorem 2: There exists no polynomial-time approximation
algorithm for MCI with an approximation ratio less than 4.
Proof: The reduction from MSSC to MCI in the proof of
Theorem 1 is approximation preserving; that is, it implies that
any lower bound for MSSC also holds for MCI. In [18], it is
shown that for every € > 0, it is NP-hard to approximate MSSC
within a ratio of 4 — e. Therefore, 4 is also a lower bound for
the approximation ratio of MCI.]

D. Greedy Solution

The greedy algorithm for MCI is adapted from the greedy al-
gorithm for MSSC and is shown in Algorithm 1. At each step,
it searches for the node that can distinguish between the max-
imum number of remaining actions. It then adds such a node to
the solution space and removes the actions it distinguishes from
further consideration. The algorithm terminates when all pairs
of actions are distinguished from each other. The approximation
ratio is 4 as previously discussed.

Algorithm 1: Greedy solution for MCI

Require: Set of actions A, set of primitives I°, and set of nodes .S
Ensure: Linear ordering O
calculate set LDS; for every node s;
calculate set GDS
0=¢
while O # GDS do
take node s; such that LDS; is maximum cardinality
0 =0Us:
for all ¢ € LDS; do
remove e from all LDS; (j = {1,...,n})
end for
end while

Algorithm 1 can be used to find the minimum number and
preferred locations of sensor nodes required to recognize cer-
tain actions. This can be used for power optimization because
at any time, only a subset of sensor nodes will be required to be
active, based on the actions of interest at that time. Furthermore,
reducing the number of required nodes helps in enhancing wear-
ability of the BSN platform.

72 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

E. Full Decision Tree for Action Recognition

The linear ordering of the sensor nodes provides a decision
tree that explores a predefined series of the nodes. When looking
for the next node to visit, the algorithm which constructs the de-
cision tree does not take into account the primitives to which
an action might be mapped. The convergence time can further
be reduced if information on primitives is taken into considera-
tion. Each primitive within a sensor node is a mapping of several
actions. An unknown action is detected by following a path in
the tree starting from root and ending at a leaf node. A action
mapped onto a certain primitive within may require a different
path than a action mapped to another primitive. Therefore, con-
structing a minimum-cost decision tree is required to guarantee
fastest possible action recognition.

Obtaining an optimal decision tree has been shown to be
NP-hard. In the following, we present results of hardness of
approximation for this problem introduced in [19] and [20].
Authors in [20] have studied the decision tree problem for en-
tity identification where an input table represents . attributes
(columns) of N entities (rows). To identify an unknown entity,
a decision tree is required in which each internal node is labeled
with an attribute and its branches are labeled with the values
that the attribute can take. The entities are placed in the leaves
of the tree. The cost of a decision tree is the expected distance of
an entity from the root. The goal is to construct a minimum-cost
decision tree. The case of the problem where entities are equally
likely is called U DT [20].

Theorem 3: For any € > 0, it is NP-hard to approximate the
UDT problem within a ratio of (4 — ¢) [20].

The problem of constructing a minimum-cost decision tree
for action recognition is similar in spirit to the U DT problem
stated above. Sensor nodes, primitive, and actions in the primi-
tive identification problem correspond to attributes, values, and
entities in the U DT problem. Therefore, the same approxima-
tion ratio holds for our full decision tree construction problem.

Corollary 4: For any € > 0, it is NP-hard to approximate the
problem of construction a full decision tree for action recogni-
tion, within a ratio of (4 — ¢).

Algorithm 2: Greedy approximation for full decision tree

Require: o C A, a subset of actions A = {a1,as,...,a,.} tobe
identified
Ensure: Decision tree T'
if || = 1 then
T is a single node a;, € A
else
let s; be the sensor node whose LDS; is maximum cardinality
create root node s;
for all e € LDS; do
remove e from all LDS; (j = {1,...,n})
end for
for all » € {1,...,B} do
let i = {ar|ar € pir}
T; = Greedy(a;r)
let s; be the root of T}
add T; to T by adding a branch from s; to s;
end for
end if

We present a greedy algorithm to construct minimum-cost
decision tree for our recognition problem. The algorithm
is adapted from [20] for entity identification and shown in
Algorithm 2.

Definition 7: Branching Factor: Let A = {a1,a2,...,am}
be a set of actions and II; = {pi1, ps2, . .., pip} denotes set of
primitives associated with sensor node s;. Then, the branching
is the maximum number of distinct primitives among all sensor
nodes, and is given by (11)
1D

B = arg max |II;].
i

The intuition behind the greedy approximation is that a good
decision tree should distinguish pairs of actions at higher levels
of the tree. Therefore, a natural idea is to make the sensor node
that distinguishes the maximum number of pairs as the root of
the tree. Assigning a sensor node s; as the root node will par-
tition the set of actions A into disjoint sets a1, 42, ...,Q;B,
where a;, = {ar|ar € pir}. The same greedy is applied to
each of these sets to obtain B decision trees and make them the
sub-trees of the root node.

Theorem 5: The greedy algorithm has an approximation ratio
of O(rBlogm) (see [20] for proof).

In the approximation ratio for Algorithm 2, B is the
branching factor, m denotes the number of input actions and
r B is a Ramsey number [21] which can be suitably defined and
has the value of at most log B.

F. Distributed Classification Algorithm

In this section, we present a distributed algorithm which uses
the decision tree model for action recognition. The algorithm
assumes that each node processes data locally and maps an un-
known action to the clusters generated during training. We fur-
ther assume that all the nodes are perfectly synchronized prior
to execution of the distributed algorithm. It can be done during
segmentation to ensure that all the nodes are collaborating for
classification of the same action. Communication is initiated by
the most informative node which is located at the root of the tree.
The root node generates a token which is transmitted across the
network as the classification algorithm proceeds. The computa-
tion is executed by a series of the nodes until the solution con-
verges. Each sensor node maintains a data structure, including
the decision tree structure, its local computation, and statistics
received from other nodes. In particular, each node s; keeps
track of recognition convergence by a variable Target Move-
ment Vector (TMV) which initially contains all actions as pos-
sible target movements. As the algorithm proceeds, each node
may decide to discard some actions from the TMV according to
the cluster membership of the action. The algorithm takes three
steps as follows.

Initialization: Each sensor node s; assigns an unknown action
a, to a cluster indicated by primitive p;,.. It further updates TMV
by rejecting all actions a; that do not belong to the cluster p;,..
Moreover, the root node generates a token which enables in-
ternode communication.

Transmission: A sensor node s; transmits its local statistics
only if it is the current owner of the token ¢. The data including
updated TMV,; and the token are then transmitted to the next
node in the decision tree. The next node is determined according

GHASEMZADEH AND JAFARI: PHYSICAL MOVEMENT MONITORING USING BODY SENSOR NETWORKS 73

TABLE II
STATISTICS
Node# Position #Primitives Ordering #Actions) | LA f(ak)

1 Left-wrist 8 - - -
2 Left-arm 6 3 5 26
3 Right-wrist 6 2 4 11
4 Right-arm 8 - - -
5 Right-ankle 7 4 7 54
6 Right-thigh 5 - -
7 Left-ankle 8 1 3 3
8 Left-thigh 5 5 4 74
9 Waist 7 6 2 86

to the assignment of the current assignment of the unknown ac-
tion (pir.).

Update: On receiving data, each node s; updates its local Target
Movement Vector TMV ; by combining the results provided by
the sender node s;. That is, s; might reject further actions from
consideration in subsequent steps of the algorithm. The receiver
also checks conditions for termination. Specifically, it checks
the convergence vector TM V), which contains possible actions
left. If only one action is left in the vector, the node declares a
convergence and reports that action as the target action. How-
ever, if more than one action is left in TMV}, the node would
find the next node in the tree for data transmission.

VI. EXPERIMENTAL ANALYSIS

This section describes experimental procedure and results
that demonstrate the effectiveness of the developed action
recognition algorithms.

A. Data Acquisition

To validate the proposed framework for movement classifi-
cation, experiments were conducted using a BSN composed on
the sensor nodes described in Section III. Five subjects aged
between 22 and 55 wore nine motion sensor nodes. The nodes
were placed at the positions shown in Table II. The subjects per-
formed 25 transitional actions for ten times each. Examples of
experimental actions include “stand to sit,” “sit to lie,” “kneel,”
and “jump.” A complete list of experimental actions can be
found in [22]. The experiments consisted of a relatively wide
range of actions that required motions from different segments
of the body.

The motes were programmed to sample sensors (accelerom-
eter and gyroscope) at 50 Hz. The sampling frequency was
chosen to satisfy the Nyquist criterion. For estimation of the
Nyquist frequency, the power spectrum of the sampled signals
was examined. From the power spectrum graphs, the highest
frequency of the signal was 8.5 Hz which means that a sam-
pling frequency of 17 Hz would suffice to meet the Nyquist
frequency.

The sampled data were sent wirelessly to a base station using
a TDMA protocol. The base station was connected to a laptop
via USB to deliver received data to our data collector tool. The
tool was developed in MATLAB to split collected data into dif-
ferent files according to the type of movement and the sensor
node that has transmitted data.

B. Data Processing

We used 50% of the data collated from all subjects as a
training set and 50% as a test set. The training set was used for

constructing primitives and finding the minimum-cost ordering
of the nodes as well as full decision tree, while the test set was
used to verify the accuracy of our recognition technique.

For each trial, the raw sensor readings were passed through
a five-point moving average filter to reduce high-frequency
noise. The five-point moving average filter is a low-pass filter
with a cutoff frequency of 2.4 Hz. The cutoff frequency was
obtained by conducting a discrete Fourier transform analysis
in MATLAB. Given the 50 Hz sampling frequency, the Pe-
riodogram analysis was used to estimate the Power Spectral
Density (PSD) of the signal. The cutoff frequency was deter-
mined as the frequency corresponding to 3 db below the first
peak in the plot of the signal PSD.

The choice of the window size for the moving average filter
relies on two objectives: 1) the cutoff frequency needs to be
low enough to effectively bypass unnecessary motions such as
tremors that occur at higher frequencies than usually movements
and 2) the cutoff frequency must be high enough to maintain sig-
nificant data. With these objectives, different filters with varying
window sizes ranging from 3 to 13 were examined. The three-
point filter was pruned out because it had a cutoff frequency of
4.3 Hz which is within the range of undesirable motions. Among
the remaining filters, the filter that generates highest quality
clusters during primitive construction was chosen. The Silhou-
ette measure [16] reported the highest value for the five-point
moving average filter.

For the purpose of segmentation, the video data recorded
during data collection was used to capture parts of the signal that
correspond to a complete action. Using video, we found the start
and the end of each trial and ignored non-activity parts in sub-
sequent processing. For each of the five data streams received
from each sensor node (z, y, z acceleration and x, y angular ve-
locity), the five features described in Section III were extracted.

C. Constructed Primitives

As previously stated, we use K-means clustering at each
sensor node to create action primitives. The clustering refine-
ment approach would map each action to one of the generated
clusters. The number of extracted primitives ranges from
5 for “Left-thigh” and “Right-thigh” to 8 for “Left-wrist,”
“Right-arm,” and “Left-ankle.” The number of primitives per
node and the actions that are mapped to each cluster depend
on the ability of the node in distinguishing between different
actions. We realized that actions as4 and a5 (going upstairs
and downstairs) are mapped to the same cluster on every indi-
vidual node except “Right-ankle” node, which means that the
“Right-ankle” is the only node that can distinguish these two
actions, and therefore, is needed for detection of asy and ass.
Also, the four actions ay5 to a1 (moving forward, backward,
or to the side) are associated with the same cluster on all the
nodes except “Right-ankle” and “Left-ankle” nodes, meaning
that “ankle” nodes contribute most to detection of these actions.

D. Constructed Decision Trees

The greedy solution described in Algorithm 1 was used to
solve the Min Cost Identification (MCI) problem. Solution to
this problem is a linear ordering of the nodes that can be used for

74 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

Fig. 5.

N
@

Movement No.
@

2 3 4 5 6
Right-wrist Left-arm Right-ankle Left-thigh Waist

Node Ordering

1
Left-ankle

Fig. 6. Identification order of actions using decision path. The path has a total
cost of 86 and an average length of 3.44 per classification.

action recognition. Given that the system consisted of 9 sensor
nodes to recognize 25 actions, the size of the GDS set was 300,
which is the total number of action pairs (ax,a;) to be distin-
guished. The ordering obtained by the greedy algorithm is given
in Table II. It shows that in the worst case, six sensor nodes were
sufficient to achieve a global knowledge of the current event in
the system. The most informative node was the node placed on
the “Left-ankle” with ordering 1, meaning that it needs to be
the first node to visit. The value of the cost function associated
with this node was 3 (last column in Table II) because it could
alone distinguish three actions (actions 4, 5, and 6 as shown in
Fig. 6) from all others actions. The second node on the decision
path was the “Right-wrist” node which can make a classification
decision about four other actions (actions 1, 2, 3, and 23). The
value of the cost function for this node was 8 which together
with the first node give a collective cost of 11 as shown in the
last column of Table II. The remaining actions can be classi-
fied by integrating information from “Left-arm,” “Right-ankle,”
“Left-thigh,” and “Waist” nodes, as shown in Fig. 6. Each one
of these nodes can detect 5, 7, 4, and 2 actions, respectively.
Fig. 6 shows the nodes required to identify each action using
the constructed decision path. Visited nodes are listed along the
z axis, and actions are listed along the y axis. The actions 4, 5,
and 6 which are “Sit to lie,” “Lie to sit,” and “Sit to lie to sit” can
be detected using only the “Left-ankle” node. This is in fact due
to the unique patterns of the legs during transition between “Sit”
and “Lie” postures. The actions that can be distinguished by the

Full decision tree constructed to classify 25 actions. The tree has a total cost of 62 and an overall expected length of 2.48.

second node (‘“Right-wrist”) include actions 1, 2, 3, and 23. This
implies that the actions that involve transitions between “Stand”
and “Sit” can be identified by visiting one lower body node
(e.g., “Left-ankle”) and one upper body node (“Right-wrist”).
We note that the actions that involve “Reach-up” and “Grasp”
(actions 7, 19, 20, 21, and 22) could not be classified using ob-
servations made by only one hand (“Right-wrist”). However, by
visiting the third node (“Left-arm”) these actions can be dis-
tinguished from the rest. This can be interpreted by the fact
that the set of “Reach-up” and “Grasp” actions includes both
‘one-hand’ and ‘two-hand’ actions which require information
from both hands to be distinguished from each other. Other ac-
tions that can be classified by visiting the three remaining nodes
(“Right-ankle,” “Left-thigh,” and “Waist”) can be interpreted
accordingly. From Fig. 6, the average number of nodes required
to detect an action is 3.44.

We used the greedy approximation described in Algorithm
2 to construct a full decision tree for the 25-action experiment.
The resulting tree is shown in Fig. 5. The order for visiting nodes
in the full decision tree may change depending on the action
because node ordering changes based on the target action. In
the full decision tree illustrated in Fig. 5, internal nodes, which
correspond to the sensor nodes, are specified by light ellipsoids
while the leaves of the tree that represent actions are specified
by dark squares. Each link in the tree is labeled by a number cor-
responding to the primitive that defines branch condition to the
next node. A label p;, on edge e;; indicates rth primitive within
sensor node s; that makes a branch to node s;. The root node
is the node whose local discrimination set (LDS) had maximum
cardinality. The sensor node s; was considered to be the root
node because LDS; had maximum cardinality (241) among all
the nodes. When taking a branch, the new node was the sensor
node capable of distinguishing maximum number of remaining
action pairs (ag, ar).

For each action, the path length was defined as the number of
internal nodes in the path from root to that action. Fig. 7 shows
path length for each action using decision path and full decision
tree. This value represents the number of sensor nodes required
to detect each action. While the expected path length for deci-
sion path was 3.44, decision tree had an average value of 2.48
which indicates faster recognition compared with the linear or-
dering. Therefore, compared with the original system with nine
sensor nodes, the decision path and decision tree models achieve
61.8% and 72.4% improvements in terms of node reduction. The
cost of each decision tree was measured by summation of path

GHASEMZADEH AND JAFARI: PHYSICAL MOVEMENT MONITORING USING BODY SENSOR NETWORKS 75

Path Length
w

JLLNIIE

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Movements

M Decision Path O Decision Tree

Fig. 7.
tree.

Path length for each action using linear ordering versus full decision

TABLE III
COMPARING SYSTEM PERFORMANCE BEFORE AND AFTER EACH OPTIMIZATION
Optimization #Nodes Reduction(%) Classification Accuracy(%)
No Optimization 9 0.0% k-NN (at base station) 98.2%
Linear Ordering 3.44 61.8% Decition Path) 95.7%
Branching Tree 2.46 72.4% Full Decision Tree) 93.3%

lengths over all actions. While the decision path had a cost of
86, the full tree had a total cost of 62.

E. Recognition Accuracy

To show the effectiveness of our action recognition algorithm
using only the active nodes reported by the decision trees, we
used the linear ordering of nodes as well as full decision tree to
classify our test set (50% of the collected data). After filtering,
segmentation, and feature extraction, each test trial was mapped
to its corresponding primitives on each active node (one of p;,.
clusters). The distributed algorithm described in Section V-F
was used to classify each unknown action as one of the 25 pre-
defined actions. Using the primitive representation and the de-
cision path defined by the ordering of active nodes, we achieved
an accuracy of 95.7%. Using full decision tree, we obtained an
accuracy of 93.3%. In Table III, we compare the effectiveness
of the two decision tree models against the original system with
nine nodes. For the case of nine sensor nodes, we assumed that
features from all the nodes are used to build a k-NN classifier
at a base station. With our distributed classifier, the accuracy re-
duces by 2.5% and 4.9% using linear ordering and branching
decision tree respectively.

F. Communication Saving

As mentioned previously, our decision tree classifier reduces
the communication cost by lowering the amount of data that is
needed to be transmitted across the network. Fig. 8 shows the
amount of bandwidth required for classification of each action
using centralized and distributed algorithms. The number asso-
ciated with each action represents an instantaneous bandwidth
which is calculated as summation of bandwidths from all ac-
tive nodes during occurrence of that action. In each classifica-
tion scenario, the required bandwidth is a function of sampling
frequency, number of sensors, number of nodes, and the size of
data units that are transmitted. With a centralized classifier, each

—o— Centralized-Raw

3 —v— Centralized-Features
—e— Distributed-Decision Path 1
—a— Distributed-Decision Tree

Bandwidth (bps)
=)

Action

Fig. 8. Comparing communication saving of distributed classification with
centralized approaches.

sensor node can transmit either raw sensor readings or a vector
of statistical features to the base station. For transmitting raw
data, we assume that each sensor reading is stored as a 12 bits

value, which is sufficient for the readings acquired from our mo-
tion sensors. The 12 bit data unit is also enough to represent each
feature.

To estimate the bandwidth required for detection of each ac-
tion, the 802.15.4 frame format is used with the ratio of control
to payload data being 0.2202. The control data include headers
from both PHY and MAC layers. Through the following ex-
ample, we explain how bandwidth is calculated for a partic-
ular action. For “Stand to Sit,” the average length of the ac-
tion over all test trials is 123.9 samples which translates into
2.48 s. For the case of transmitting raw data, each node needs
to transmit 5 x 123.9 x 12 = 7434 bits over the 2.48 s pe-
riod. We note that there is a total of five sensors in our system,
which are associated with z, y, z accelerometer and z, y gyro-
scope. The 7434 bits of payload data can be sent through nine
packets each accommodating a maximum of 109 bytes data.
Thus, the total amount of data sent to the base station by each
node is 7434 + 9 x 192 = 9162 bits (assuming 24 bytes of
control data per packet). Since all sensor nodes are involved in
communication during a centralized approach, the total amount
of data sent to the base station over the period of “Stand to
Sit” (2.48 s) is 9162 x 9 = 82458 bits. This translates into
32.5 Kbps bandwidth.

A similar approach can be used to estimate communication
cost for other classification scenarios. A decision tree based
classifier uses only a subset of the nodes to detect actions. On
receiving the TMV, each node updates the vector according to
its local results and transmits the vector to the appropriate node
in the tree. We note that the TMV is a binary vector which is
sized according to the number of actions. Therefore, distributed
classifiers require transmission of a 25-bit vector between the
nodes. Obviously, number of such transmissions varies from one
action to another and depends on the number of active nodes in-
volved in the classification. For example, only “Left-ankle” and
“Right-wrist” nodes are involved in detection of “Stand to Sit”

76 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 7, NO. 1, FEBRUARY 2011

TABLE IV
NUMBER OF BASIC INSTRUCTIONS AND TOTAL NUMBER OF CYCLES FOR
FEATURE EXTRACTION (FE) AND LOCAL IDENTIFICATION (CA)
AS SHOWN IN FIG. 1 (Action Length = I SAMPLES)

Task #Add #Mul | #Comp #Ld/St
FE (Mean) 51 5 0 5[
FE (S2E Amp.) 5 0 0 15
FE (P2PAmp.) 5 0 101 50
FE (RM S?) 51 51 0 51
FE (Std?) 51 51 0 50
CA 2KF | KF K? 2KF
Avg. #Cycles 2737 4969 45.5 3318

using a decision path classifier (see Fig. 6). The total amount of
payload in this case is 25 bits which needs to be transmitted in
2.48 s. A single packet can accommodate the 25 bits of payload.
Adding the control data yields a total of 25 + 192 = 217 bits
data. Given that two nodes are involved in the classification and
each node broadcasts the TMYV, this results in a bandwidth of
175 bps.

On average, we obtain bandwidths of 33.21 Kbps, 3.91 Kbps,
234 bps, and 167 bps for centralized algorithm with raw data
transmission, centralized algorithm with features transmission,
decision path, and full decision tree, respectively.

G. Algorithm Complexity

Major computational intensive blocks in our system include
feature extraction and local identification. In the following,
we estimate complexity of each computing block for real-time
execution on our TelosB motes. In particular, we calculate the
number of “Addition,” “Multiplication,” “Comparison,” and
“Load/Store” operations for “feature extraction,” and “cluster
assignment.”

Table IV shows the approximate number of operations for dif-
ferent processing tasks to perform local identification of an ac-
tion of length [from a feature space of size F' on a sensor node
with K primitives (clusters). We note that morphological fea-
tures do not require significant computing as they correspond
to the value of sensor readings at certain times. Furthermore,
features are extracted from all the five sensors including =, y, z
accelerometer and z, y gyroscope. Cluster assignment is done
locally to find mapping of the action to a cluster. This requires
calculation of euclidean distance between an unknown action
and all cluster centers on an F'-dimensional feature space, and
finding the closest cluster. Each summation, comparison, and
read/write can be executed in one cycle on MSP430; however,
a multiplication requires three cycles in the presence of a hard-
ware multiplier. In Table IV, the average number of cycles are
calculated based on the average length of actions (I = 115.12
samples), the average number of clusters (K = 6.67), and the
total number of features (F' = 75). Given an 8 MHz clock fre-
quency of the microcontroller on our TelosB motes, this results
in 0.06% CPU utilization.

VII. DISCUSSION AND FUTURE WORK

Major contribution of our work is construction of a decision
tree model for distributed action recognition in BSNs. To the
best of our knowledge, this is the first study on dynamic node

selection and communication enhancement based on the prop-
erties of decision trees. However, our work can be compared
with several previous studies on classifying daily activities using
centralized architectures. In particular, authors in [23] obtain
84% accuracy using five body-mounted accelerometers. A mul-
timodal system, composed of seven different sensors presented
in [5] provides 90% accuracy in detecting 12 actions. Further-
more, the accuracy reported by the centralized k-NN and Naive
Bayes classifiers in [22], [24], and [25] is more than 90% for
classification of different human actions.

Our decision tree classifier can significantly reduce energy
consumption by activating a small subset of the nodes for every
classification decision. This improvement is supported by MAC
protocols that provide sleep/awake transmission cycles. S-MAC
[26] is one of such protocols that avoid power consumption due
to listening to an idle channel.

One important aspect of BSN platforms is mobility. Previous
findings in [27] show that packet delivery rate varies in time as a
subject moves to new physical environments. This is mainly due
to the fact that internode transmissions occur by the radio waves
that reflect off of the surfaces in the environment, making open
environments less reliable in terms of communication. There-
fore, a direct link might become unreliable for communication
due to changes in physical location of the subject. Possible so-
lutions to compensate with this problem include: 1) increasing
power level of the radio on our TelosB motes and 2) replacing
a direct link transmission on our decision tree with a multihop
path where high packet delivery rates can be obtained. As sug-
gested in [28], the increase in power level can significantly re-
duce packet loss (4%) in close room environments such as hos-
pitals, while packet lost ratio is less that 20% when lowest power
level is used. Throughout our data collection process, the packet
lost never exceeded 20% for collecting data of different nodes,
subjects, actions and trials. In case of open environment, an un-
reliable communication link can be replaced with a path in the
decision tree based on the quality of communication.

The system presented in this paper does not accommodate an
automatic segmentation technique. The segmentation process
is currently performed manually using video data of the ex-
periments. However, we are working on developing automatic
segmentation and annotation techniques that meet computation
constraints of the system [29], [30].

VIII. CONCLUSION

In this paper, we proposed a framework for distributed action
recognition using BSNs. Our in-network classification operates
based on a decision tree model. We presented a phoneme repre-
sentation of human behavior which enables construction of op-
timal decision trees. We showed that the problem of determining
the optimal ordering of sensor nodes for movement monitoring
at the primitive level leads to constructing minimum-cost deci-
sion tree. Furthermore, we studied the problem of constructing a
full decision tree and presented a greedy approximation for that.
This full decision tree may further reduce the average number of
sensor nodes required to detect each movement. We verified that
our technique achieves 95.7% and 93.3% accuracies in classi-
fying human actions using decision path and full decision trees,
respectively, with a 61.8% and 72.4% average reduction in node
usage.

REFERENCES

[1] H. Ghasemzadeh, R. Jafari, and B. Prabhakaran, “A body sensor net-
work with electromyogram and inertial sensors: Multimodal interpre-
tation of muscular activities,” IEEE Trans. Inform. Technol. Biomed.,
vol. 14, no. 2, pp. 198-206, Mar. 2010.

[2] B. Logan, J. Healey, M. Philipose, E. Tapia, and S. Intille, “A long-
term evaluation of sensing modalities for activity recognition,” Lecture
Notes in Computer Science, vol. 4717, p. 483, 2007.

[3] L. Klingbeil and T. Wark, “A wireless sensor network for real-time
indoor localization and motion monitoring,” in Proc. 7th Int. Conf. In-
form. Process. Sensor Networks: IPSN’08, Washington, DC, 2008, pp.
39-50, IEEE Computer Society.

[4] L. Bao and S. S. Intille, “Activity recognition from user-annotated ac-
celeration data,” Pervasive pp. 1-17, Apr. 2004. [Online]. Available:
http://dx.doi.org/10.1007/696922

[5] J. Lester, T. Choudhury, and G. Borriello, A Practical Approach to
Recognizing Physical Activities. Berlin, Germany: Springer-Verlag,
2006. [Online]. Available: http://dx.doi.org/10.1007/11748625_1

[6] H. Ghasemzadeh, V. Loseu, and R. Jafari, “Collaborative signal
processing for action recognition in body sensor networks: A dis-
tributed classification algorithm using motion transcripts,” in Proc. 9th
ACM/IEEE Int. Conf. Inform. Process. Sensor Networks: IPSN’10,
New York, 2010, pp. 244-255.

[7] L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257-286,
Feb. 1989.

[8] J. Aggarwal and S. Park, “Human motion: Modeling and recognition of

actions and interactions,” in Proc. 2nd Int. Symp. 3D Data Processing,

Visualization and Transmission: 3DPVT 04, Sep. 2004, pp. 640-647.

N. Niwase, J. Yamagishi, and T. Kobayashi, “Human walking mo-

tion synthesis with desired pace and stride length based on HSMM,”

IEICE—Trans. Inf. Syst., vol. E88-D, no. 11, pp. 2492-2499, 2005.

[10] G. Guerra-Filho, C. Fermller, and Y. Aloimonos, “Discovering a lan-
guage for human activity,” in Proc. AAAI 2005 Fall Symp. Anticipatory
Cognitive Embodied Syst.: FS’05, 2005, pp. 70-77.

[11] L. Reng, T. B. Moeslund, and E. Granum, “Finding motion primitives
in human body gestures,” Gesture in Human-Computer Interaction and
Simulation, vol. 3881, pp. 133-144, 2006.

[12] R.Jafari, R. Bajcsy, S. Glaser, B. Gnade, M. Sgroi, and S. Sastry, “Plat-
form design for health-care monitoring applications,” in HCMDSS-
MDPnP. Joint Workshop on High Confidence Medical Devices, Soft-
ware, and Systems and Medical Device Plug-and-Play Interoperability,
Jun. 2007, pp. 88-94.

[13] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol.
32, no. 3, pp. 241-254, Sep. 1967.

[14] J. B. MacQueen, L. M. L. Cam and J. Neyman, Eds., “Some methods
for classification and analysis of multivariate observations,” in Proc.
5th Berkeley Symp. Math. Stat. Probability, 1967, vol. 1, pp. 281-297.

[15] P. Berkhin, “A survey of clustering data mining techniques,” in
Grouping Multidimensional Data. Berlin, Germay: Springer-Verlag,
2006, pp. 25-71.

[16] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1,
pp. 53-65, 1987.

[17] D. Sieling, “Minimization of decision trees is hard to approximate,” J.
Comput. Syst. Sci., vol. 74, no. 3, pp. 394-403, 2008.

[18] U. Feige and P. Tetali, “Approximating min sum set cover,” Algorith-
mica, vol. 40, no. 4, pp. 219-234, 2004.

[19] B. Heeringa, “Improving access to organized information,” Ph.D. dis-
sertation, Univ. Massachusetts , Amherst, Jan. 2006, Advisor(s) M.
Adler, AAI3242335.

[20] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. Mohania,
“Decision trees for entity identification: approximation algorithms
and hardness results,” in Proc. 26th ACM SIGMOD-SIGACT-SIGART
Symp. Principles of Database Systems: PODS’07, New York, 2007,
pp. 53-62, ACM.

[21] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory.
New York: Wiley, 1980.

[9

—

GHASEMZADEH AND JAFARI: PHYSICAL MOVEMENT MONITORING USING BODY SENSOR NETWORKS 71

[22] H. Ghasemzadeh, E. Guenterberg, and R. Jafari, “Energy-efficient in-
formation-driven coverage for physical movement monitoring in body
sensor networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 1, pp.
58-69, Jan. 2009.

[23] P.Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini,
and G. Troster, “Activity recognition from on-body sensors: Accuracy-
power trade-off by dynamic sensor selection,” Lecture Notes in Com-
puter Science, vol. 4913, p. 17, 2008.

[24] W.H. Wu, A. A. T. Bui, M. A. Batalin, L. K. Au, J. D. Binney, and W.
J. Kaiser, “Medic: Medical embedded device for individualized care,”
Artif. Intell. Med., vol. 42, no. 2, pp. 137-152, 2008.

[25] H. Ghasemzadeh, J. Barnes, E. Guenterberg, and R. Jafari, “A phono-
logical expression for physical movement monitoring in body sensor
networks,” in Proc. 5th IEEE Int. Conf. Mobile Ad Hoc and Sensor
Systems: MASS’08, 2008, pp. 58-68.

[26] W. Ye, J. Heidemann, and D. Estrin, “An Energy-efficient mac pro-
tocol for wireless sensor networks,” in Proc. 21st Annu. Joint Conf.
IEEE Comput. Commun. Societies: INFOCOM 2002, 2002, vol. 3, pp.
1567-1576.

[27] A.Natarajan, M. Motani, B. de Silva, K.-K. Yap, and K. C. Chua, “In-
vestigating network architectures for body sensor networks,” in Proc.
1st ACM SIGMOBILE Int. Workshop on Syst. Networking Support for
Healthcare and Assisted Living Environments: HealthNet’07, New
York, pp. 19-24.

[28] A. Natarajan, B. Silva, K. Yap, and M. Motani, “To hop or not to

hop: Network architecture for body sensor networks,” in Proc. 6th

Annu. IEEE Commun. Soc. Sensor and Ad Hoc Commun. Networks:

SECON’09, Jun. 2009, pp. 1-9.

E. Guenterberg, H. Ghasemzadeh, V. Loseu, and R. Jafari, “A dis-

tributed continuous action recognition using a hidden Markov model

on body sensor networks,” in Proc. Int. Conf. Distrib. Comput. Sensor

Syst.: DCOSS’09, 2009, pp. 145-158.

[30] E. Guenterberg, H. Ghasemzadeh, and R. Jafari, “A distributed hidden
Markov model for fine-grained annotation in body sensor networks,”
in Proc. 6th Int. Workshop on Body Sensor Networks: BSN’09, 2009,
pp. 339-344.

[29

Hassan Ghasemzadeh (M’10) received the B.Sc.
degree in computer engineering from the Sharif Uni-
versity of Technology, Tehran, Iran, and the M.Sc.
degree in computer engineering from the University
of Tehran, Tehran, in 1998 and 2001, respectively,
and the Ph.D. degree in computer engineering from
University of Texas at Dallas, Richardson, in 2010.
He is now with the West Wireless Health Institute
as a Postdoctoral Fellow. He is currently working on
collaborative signal processing, reconfigurable com-
puting, and algorithm design for medical embedded
systems. His research interests lie in different aspects of embedded systems.

Roozbeh Jafari (M’08) received the B.Sc. degree in
electrical engineering from the Sharif University of
Technology, Tehran, Iran, in 2000, the M.S. degree
in electrical engineering from SUNY at Buffalo, Buf-
falo, NY, and the M.S. and Ph.D. degrees in com-
puter science from the University of California, Los
Angeles (UCLA), Los Angeles, in 2002, 2004, and
2006, respectively.

He was a Postdoctoral Researcher with the Depart-
ment of Electrical Engineering and Computer Sci-
ence, UC Berkley, from 2006 to 2007. He is currently
an Assistant Professor of Electrical Engineering at the University of Texas at
Dallas. He is the Director of the ESSP Lab. His research is primarily in the area
of networked embedded system design and reconfigurable computing with em-
phasis on medical/biological applications, their signal processing and algorithm
design.

