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Abstract—Monitoring human movements using wireless wearable sen-
sors finds applications in a variety of domains including healthcare and
wellness. In these systems, sensory devices are tightly integrated with the
human body and infer status of the user through signal and information
processing. Typically, highly accurate observations can be made at the cost
of deploying a sufficiently large number of sensors, which in turn results
in increased energy consumption of the system and reduced adherence to
using the system. Therefore, optimizing power consumption of the system
while maintaining acceptable accuracy plays a crucial role in realizing these
stringent resource constraint systems. In this paper, we present an activ-
ity monitoring approach that minimizes power consumption of the system
subject to a lower bound on the classification accuracy. The system utilizes
computationally simple template-matching blocks that perform classifica-
tions on individual sensor nodes. The system further employs a boosting
approach to enhance accuracy of the distributed classifier by selecting a
subset of sensors optimized in terms of power consumption and capable
of achieving a given lower bound accuracy criterion. A proof-of-concept
evaluation with three participants performing 14 transitional actions was
conducted, where collected signals were segmented and labeled manually
for each action. The results indicated that the proposed approach provides
more than a 65% reduction in the power consumption of the signal process-
ing, while maintaining 80% sensitivity in classifying human movements.

Index Terms—Action recognition, AdaBoost, distributed classification,
low-power design, real-time embedded systems, signal processing, wearable
computing.

[. INTRODUCTION

EARABLE medical devices, which utilize tiny and wearable
W sensor devices with embedded communication and processing
units, offer unique opportunities for sensing, processing, and extraction
of useful information from the human body. The main driving factors in
designing this new generation of the healthcare paradigm include cost,
power consumption, and wearability [1]. An important aspect of the
low-power design is the development of efficient signal processing and
data reduction algorithms that reduce computing load of the processing
units, allowing for low-power low-cost processors.

Action recognition is a classification problem with the goal of de-
tecting transitional actions (e.g., “Sit to Stand,” “Walking,” and “Kneel-
ing”) for a variety of applications such as physical activity monitor-
ing [2], gait analysis [3], and diagnosis of many movement disorders
[4]. Designing power-aware signal processing algorithms for action
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recognition is challenging due to maintaining acceptable classification
accuracy while minimizing power consumption of the system [5].

The focus in this paper is on monitoring sparse movements as many
monitoring applications only use a very small subset of events. For
example, Parkinson’s disease monitoring is only concerned with cer-
tain movements such as “Tremors” [6]. In real-time continuous patient
monitoring, these target actions occur infrequently. Thus, the signal
processing pipeline can be improved for specific detection of target
actions. We use template matching to perform computationally sim-
ple classifications from a minimal set of body-worn sensors. We opti-
mize this classification model for power consumption while accounting
for system performance parameters such as precision and recall. Our
power-aware boosting algorithm learns from a set of weak classifiers
while minimizing system power consumption. The low-power signal
processing is accomplished by using computationally simple classifiers
that operate based on template matching on sampled inertial data and
eliminating, from the processing pipeline, sensors not relevant to the
activity monitoring. The high classification performance is maintained
using a boosting approach that combines results from distributed sen-
sors and enhances the classification accuracy by taking into account
the contribution of individual sensors.

Novel aspects of our study are as follows: 1) We consider two
performance criteria, accuracy and power consumption, to build a new
classification model; 2) we use efficient template-matching blocks that
are inherently less computationally intensive, use less memory, and are
easy to implement; 3) we adapt an AdaBoost-driven combiner model to
build a novel power-aware classifier learning approach that eliminates
redundant sensors from the classification process; and 4) in contrast
with studies that minimize the number of sensor nodes, our power-
aware activity monitoring is a fine-grained sensor selection technique
that eliminates inefficient sensors, selecting only those that are efficient
in terms of power consumption and classification accuracy.

Our classification scheme relies on a template-matching block. Ad-
vantages of template-matching classification over classical classifica-
tion algorithms that operate on feature space are as follows: 1) The
template-matching function is easy to implement in either hardware
or software as the implementations uses only Multiply-ACcumulator
(MAC) operations; and 2) template-matching requires almost constant
computation time.

II. RELATED WORK

While the data collected by the sensor nodes can be processed in
a distributed manner, most existing work focuses on developing algo-
rithms for local processing of the data and using a data fusion scheme
at the base station for summarizing state of the system. In a local pro-
cessing paradigm, each sensor node performs partial processing on the
data and transmits the results to a base station. The base station is
responsible for combining data from all nodes and building a central-
ized classifier that identifies unknown actions. The accuracy of such a
classifier depends on a variety of parameters including the classifica-
tion algorithm, sensor node placement, types of features extracted from
the signal, and number and type of actions/activities to be recognized.
While many algorithms such as k-nearest neighbor (k-NN) [7], hid-
den Markov models (HMM) [8], Naive Bayes [9], and support vector
machines [10] have been investigated, the £X-NN and HMM are more
common in action recognition in the wireless healthcare domain when
motion sensors are generally used for information inference.

Logan et al. [11] present a study on activity recognition using dif-
ferent types of sensory devices, including built-in wired sensors, RFID
tags, and wireless inertial sensors. The analysis performed on 104 h of
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data collected from more than 900 sensor inputs shows that motion sen-
sors outperform the other sensors on many of the movements studied.
A prototype called MEDIC, developed in [12] for remote healthcare
monitoring, uses a personal digital assistant as the base station and sev-
eral sensor nodes that collect and process physiological data. A Naive
Bayes classifier [13] provides more than 90% accuracy. A wireless
body sensor system for monitoring human activities and location in
indoor environments is introduced in [14], where each sensor node is
equipped with an accelerometer, gyroscope, and magnetometer. Bao
et al. [15] use a network of five accelerometers to classify a sequence
of daily activities. They report a classification accuracy of 84% for
detecting 20 actions. The system in [16] uses seven different sensors
embedded in a single node to classify 12 movements and achieves a
classification accuracy of 90%. The accuracy reported by the central-
ized k-NN classifiers in [17] is greater than 90% for classification of
different human actions.

Reducing the number of active nodes is a common approach for
power optimization and wearability enhancement in body sensor net-
works. Ghasemzadeh et al. [17] formulate the coverage problem in
the context of movement monitoring using inertial on-body sensors.
Their technique focuses on the minimum number of sensor nodes that
produces a full action coverage set. Another way to reduce the num-
ber of active nodes is to keep track of the actions performed and to
use the subset of sensors that can observe transitions from the current
motion [18]. Zappi et al. [19] propose to optimize the system energy
consumption by selecting the required subset of sensors with meta-
classifier sensor fusion. Therefore, it is sufficient to turn ON sensors
only when their values are needed to enhance accuracy. In [20], only a
few sensor nodes are required to correctly classify a small action set.
Additional sensor nodes are added to the system, if new actions cannot
be uniquely identified by the existing sensors. Lombriser ef al. [21]
introduces a model for dynamic reconfiguration of the system, thus
reducing the number of active nodes.

The idea of combining simple classifiers to achieve higher accu-
racy results is discussed in [22], where authors suggest using a single
accelerometer for activity monitoring and combining classifiers using
plurality voting. A lot of work has been done on selecting only rele-
vant pieces of information for classification. Selecting only individual
features for each activity can improve the rate of the classification as in
[23]. In [24], AdaBoost is used to select a small number of features to
speed classification. The algorithm automatically selects the best fea-
tures and ranks them based on their classification performance. Given
the maximum number of features that the activity recognition system
can use, the system automatically chooses the most discriminative sub-
set of features and uses them to learn an ensemble of discriminative
static classifiers for the activities that need to be recognized.

[II. ACTIVITY MONITORING MODEL

In this section, we present the architecture of our activity monitoring
model (see Fig. 1), which uses template matching for local classification
and a weighted combiner model for global decision making. In Section
IV., we will use this action recognition model to formulate a problem
for sensor selection.

Our signal processing algorithms use a simple template-matching
model to reduce complexity and customize the processing model for
action recognition applications [25]. Our approach is based on nor-
malized cross correlation (NCC) [26] which is lightweight, fast, and
adaptable for real-time implementations. Each sensor stream is associ-
ated with a binary classifier that runs on the sensor node. The classifier
performs coarse analysis on the motion signals by comparing the in-
coming signal with a predefined template associated with the target
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Fig. 1. Template-matching and boosting approaches for action recognition.

action. The template matching generates a similarity score between the
signal and the target template. The calculated score is compared against
a threshold in order to classify the incoming signal into a binary truth
value (true if the current action is classified as a target action and false
for a nontarget action).

The model needs only the template of the target action to be stored
on the sensor node, and it requires only the computation of the NCC
score (which is faster than other similarity measures such as dynamic
time warping and HMM approaches typically used in activity recogni-
tion). We design a “weak classifier” for each sensor on the node and
combine local decisions to create a significantly stronger classifier at
the base station. Per-node weak classifiers support implementation of
the signal processing algorithms in the node [27], [28]. In addition,
the classifier combiner ensures improved accuracy. Since the signal
processing is done on the node, the amount of data sent to the base
station is reduced, resulting in a reduction of energy consumption and
bandwidth.

A. Template Generation

To obtain a unique template for the target action, we use a supervised
learning approach. This task is accomplished during training and is in-
dependent of the real-time constraints of the system. The raw sensor
readings are collected along with the video recording of the actions. The
collected signals are then segmented and labeled manually for each ac-
tion. Video recording is used to segment the data in a more fine-grained
manner. This manual segmentation ensures precise segmentation and
labeling of the data and limits injecting automatic segmentation errors
to subsequent signal processing and pattern recognition blocks. The
action template needs to be representative of the specific action while
being robust to variabilities between different people and movement
instances. Our templates are generated by comparing every pair of
training instances and choosing the one which is most similar to the
others. The NCC measure is used to calculate similarity score between
pairs of training instances.

Action instances may vary in length. While a template has a fixed
length, the incoming signal segment may have a different length. To
address this problem, we assume that the template and the incoming
signal segment have the same length. A normalization technique is used
to make the two signals uniform in length. The normalization process
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for two signals S and T is given by

newsS (i) :SQ%J xi) Vie{l,2,...,|T]} )

where 7" is the longer signal and newS is the transformation of the
shorter signal.

B. Weak Classifier

Each sensor node in our system is composed of several weak clas-
sifiers, each associated with a physical sensor such as x-accelerometer,
y-accelerometer, and z-accelerometer. The first step in our model is
an in-node classification of the signals being generated by the iner-
tial sensors using weak classifiers. This classification is accomplished
using a threshold value for each axis of the sensors. The threshold is
calculated to distinguish between target and nontarget instances. The
value for each weak classifier is calculated during training and is set to
fall between upper and lower bounds. These bounds are the average of
the cross-correlation values by comparing the template with positive
and negative instance classes.

Each weak classifier makes a decision on the incoming signal as
follows. For each axis of the sensors (e.g., three for accelerometer and
two for gyroscope), the corresponding signal is used to perform the
template matching and compare the incoming signal with the previously
determined template. If the result of the comparison is greater than the
threshold, the signal is labeled as a target action. Otherwise, the signal
is classified as a nontarget action.

C. Weighted Combiner

Although in-node classifiers are computationally simple and fast,
their accuracy is limited by the relatively small amount of information
they observe from human actions. In fact, each weak classifier uses only
a 1-D signal to perform template matching. In order to enhance inter-
classifier performance, we employ a decision fusion approach based
on ensemble learning [29]. Our decision fusion algorithm is a classifier
combiner, which takes into account the amount of contribution each
weak classifier can make to the overall accuracy of the system.

Although our decision fusion approach is inspired by the ensem-
ble learning, it is quite different from classical techniques. Traditional
ensemble learning techniques iteratively resample the training set and
train the classifier with a new resampled training set at each phase of
the algorithm. In contrast, we work with the original training instances
without resampling them, and a weight is assigned to one of the clas-
sifiers at each iteration of the algorithm. Our basic boosting approach
is presented in Algorithm 1.

Algorithm 1: Weighted Combiner Model

data: 7'S training set (21, y1 ), (X2, ¥2),- -, (TN, Yy ) »
L learning algorithm generating hypothesis h; () classifier,
N size of training set
initialize: d,, weight of instance n (d is a distribution
withl = S d,)d, =1/N
input : 7 max number of hypotheses in the ensemble
begin
fort=1,...,|T| do
1. Train weak learner and obtain hypothesis h;
2. Compute error ¢, = Zfl\;l dy Iy, # hi(x,))
3. Compute hypothesis weight oy = & In 1=

€t

output: combined hypothesis fc ., () = Zfl] aghy ()

The algorithm works with a set of training instances that are correctly
labeled with the appropriate actions. Each instance consists of a sensor
reading (i.e., x;) and a label (i.e., y;) and is associated with a weight
that is equal for all instances of the same action. Let L be the learning
algorithm that generates the hypothesis h; (). The algorithm L is
the method of finding the threshold, and h, (x) is the function of our
weak classifier that produces true/false labels. If the outcome of the
comparison between instance x and target action template is greater
than or equal to the threshold value, a true label is generated. Each weak
classifier is associated with a weight, depending on the classification
error that is obtained during training. The weak classifiers that achieve
a smaller error are assigned larger weights to signify their contribution
to the overall system performance.

IV. POWER OPTIMIZATION APPROACH

Classical AdaBoost learns from a set of weak classifiers and boosts
classification performance by allocating weights to the individual local
classifiers. The weights specify contribution of each classifier to the
overall classification task. There are two main drawbacks with this
approach.

1) AdaBoost examines all classifiers even if they provide less infor-
mative data for classification. Contribution of different sensors to
action recognition varies depending on the placement of the sen-
sor, type of inertial information, and actions of interest. Practically,
body-worn sensors can produce redundant or correlated informa-
tion when a movement occurs. For instance, signal values from
nodes placed on the “upper arm” and “lower forearm” correlate
during an upper body movement. In addition, data provided by a
node placed on the “leg” may not contribute to upper body move-
ments. Consequently, a more intelligent learning algorithm could
select only those sensors that better contribute to the classification
accuracy.

2) AdaBoost does not take into account the power requirements of
the individual weak classifiers while learning from weak classi-
fiers. In fact, the weights assigned by the AdaBoost account only
for the accuracy of the classifiers. However, power consumption of
the classifiers varies depending on the type of sensors, computing
complexity, and data communication requirements. For example,
gyroscopes generally consume much more power than accelerom-
eters. Therefore, the optimal subset of the classifiers is selected by
making an appropriate design tradeoff between accuracy and power
consumption.

A. Problem Formulation

Our system aims to detect a target action of interest, a, associated
with a particular template. Therefore, the system consists of several
binary weak classifiers each contributing to detection of the target
action using a template-matching approach. To build a classification
framework, we assume that there are a total of m nontarget actions,
ie, A={aj,as,..., a, }, that may occur during the operation of the
system.

A motion sensor node, s;, is a physical wearable node composed
of [ sensors that capture inertial data from human movements. Let
S={s1, S2, ..., s, } be a set of n sensor nodes that are used to distin-
guish between the target action and nontarget actions. An example of
a sensor node used for our proof-of-concept evaluation has [ = 5 sen-
sors including three axes of accelerometer and two axes of gyroscope
readings.

Each sensor node, s;, consists of | weak classifiers: C; =
{Ci1,Cia,...,Cy}. Each classifier C;;, is associated with one of the
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Fig. 2. Learning algorithm and classifier combiner during training and test.

sensors available on s; and is a binary classifier that makes a classifi-
cation decision using the similarity score obtained from NCC.

Given the n nodes and [ sensors per node, the system has a total
of T'=n x [ weak classifiers. Fig. 2 shows how learning parameters
(e.g.,weights a1, . . ., ;) are generated during training. The learning
algorithm can also provide an estimate of the expected accuracy of the
entire classification, av. We note that the performance modeling in Fig. 2
relies solely on the training data used in the learning phase and is not
biased by any close feedback input from the test module.

To calculate power consumption of the set of active classifiers, we
consider two sources of power consumption, namely computation and
communication costs. We assume that each classifier is associated with
a specific sensor (e.g., x-accelerometer, y-gyroscope) and, therefore,
has a fixed computation cost depending on whether or not it is selected.

Definition 1 (Computation Cost): For each classifier C;; associ-
ated with ith node and jth classifier, we define w;; as the compu-
tation cost associated with power consumption of the corresponding
sensor. This value is a priori known and has a nonzero value for active
classifiers, while it is zero for nonactive sensors

n 1
Pcomp = Z Z "l‘tjwtj (2)

i=1j=1
where z;; denotes if classifier C;; is active

1, if classifier C; is active
Tij = . 3
0, otherwise.

Definition 2 (Communication Cost). For a set of weak classifiers
used for learning, the communication cost is given by

n 1
Pcomm = Z f Z Lij bLJ (4)
i=1

j=1
where f(.) denotes the communication cost due to transmission of
certain amount of data, x;; denotes if classifier C;; is selected, and b;;
represents the amount of data that is generated by classifier C;; and
needs to be transmitted to the base station.

‘We note that the communication costs are calculated for each sensor
node rather than individual sensors/classifiers. This is mainly due to
combining results of all active classifiers at each node prior to transmis-
sion to the base station. In other words, energy cost of communications
is calculated collectively for all active sensors at each node.

The power consumption of the system due to selection of a set of
weak classifiers used for learning is then given by

Z = Pcomp + Pcomm' (5)

Problem 1: Givenasetof T'=JC; = {C11,C1a,...,C, } clas-
sifiers, as well as data units b, ; and computation cost w; ; for each clas-
sifier C;;, the problem of minimum cost classifier selection (MCCS)
is to find a subset of C;; with minimum total cost while a lower bound
of o > F on the overall accuracy is met.

Therefore, the optimization problem can be written as follows:

n 1 n !
Minimize Z Z Tijw; + Z f Z ijbij ©)

i=1j=1 i=1 j=1

subject to
a>F. @)

B. Problem Complexity

The optimization problem presented in (6) poses several difficulties
in arriving at an optimal solution: 1) The communication cost in (4) is
a concave function, and minimizing a concave function is considered
to be hard in general [30]. Concavity of the communication cost is due
to the decrease in energy per bit as packet size increases. In fact, larger
packets consume less energy per bit, turning the cost function into a
concave function [31]. 2) The constraints of the optimization problem in
(7) are nonlinear inequalities, which makes the minimization problem
even harder. Therefore, in its general case, the MCCS problem belongs
to the broad class of concave minimization problems over nonlinear
constraints.

To develop a polynomial-time algorithm for the MCCS problem, we
simplify some assumptions made for our classification model. Trans-
forming the concave communication cost function into a linear function
of the transmitted data turns the objective function into a convex func-
tion. One specific property of our weak classifiers is that they produce
a fixed (e.g., ) and small amount of data per classification. That is,
upon occurrence of a new action, each active classifier generates a label
(true/false) as (see Fig. 1). Typically, only a few bits are generated by
each sensor node depending on the number of active sensors. When the
number of sensors embedded within each node is small, the communi-
cation costs are almost constant for the nodes with at least one active
sensor. In other words, for each sensor/classifier, we have

A, if classifier C; is active
f@ijbij) = ®)

0, otherwise.

For example, the amount of energy per bit is about 0.67 1J when
data transmission rate is 1 bit/s. Increase in the amount of energy per
bit is negligible when the data rate increases by a few bits per second,
mainly because the packet header is the dominant factor in the packet
size. Thus, it is reasonable to assume that

!
! Zﬂﬂijbij = f(zijbij) = * ©))

Jj=1

Therefore, local results can be combined to form a small fixed-size
packet. As a result, it is reasonable to assume that the communica-
tion cost is constant for each active classifier. With this, the objective
function in our optimization problem can be rewritten as follows:

n 1
Minimize Z Z x5 (wi; + A) (10)

i=1 j=1
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where A is the communication cost for each active node. This would
turn our optimization problem into minimizing the overall computation
cost.

C. Greedy Approach

In this section, we present a greedy heuristic algorithm that takes
power consumption and accuracy of the weak classifiers into account
and finds a subset of the least power-consuming classifiers that maintain
an overall accuracy of at least equal to a given value. Our greedy algo-
rithm is a backward elimination algorithm that starts with all classifiers
being considered for AdaBoost learning. The set of all classifiers can
potentially achieve a maximum accuracy that might be much higher
than the lower bound accuracy. However, this configuration is highly
power consuming as it uses all available sensors for action recogni-
tion. The algorithm iterates through different steps until it stops given a
condition on overall accuracy of the classification. At each stage of the
algorithm, one of the classifiers is eliminated. The elimination criterion
is validated as a tradeoff between power consumption and accuracy.
Specifically, the classifier whose % is maximized is the candidate for
elimination. We note that w,; and «;; represent the power consump-
tion and significance of the classifier C;;, respectively. Yet, at each
step, the algorithm checks whether the overall accuracy is still above
the minimum desirable value. The algorithm stops if elimination of the
next classifier would decrease the overall accuracy to a value below the
given desirable threshold, F'.

V. PROOF-OF-CONCEPT EVALUATION

In this section, we present a proof-of-concept evaluation of our clas-
sification framework and power-aware sensor selection algorithm. The
data were collected from three males in good health. The data include
acceleration and angular velocity for these 12 transitional actions: 1)
stand to sit, 2) sit to stand, 3) sit to lie, 4) lie to sit, 5) bend and
grasp, 6) kneeling, right leg first (Kneel-R), 7) kneeling, left leg first
(Kneel-L), 8) turn clockwise 90° (CW90), 9) turn counterclockwise 90°
(CCW90), 10) move forward—1 step (Move F), 11) move backward—
1 step (Move B), and 12) jump. Each participant was asked to perform
each one of the actions ten times while wearing four motion sensors
on these body locations: 1) right wrist, 2) waist, 3) right thigh, 4) right
ankle. Each wearable sensor node had five sensors including three axes
of accelerometer and two axes of gyroscope. The data collected from
the experiments were stored on a Laptop computer where we developed
our signal processing algorithms and conducted the analytic results.

A. Training Parameters

A set of experiments was conducted to identify the 12 actions listed
previously. For each experiment, the particular action was considered
as target action, and the rest of the actions formed a nontarget class. As
discussed previously, for each target action, we generate a template that
will be used during training, for parameter setting and threshold cal-
culation, and during test to compare the template against the incoming
action. The training dataset for each target action was used to gener-
ate the corresponding template for each weak classifier. We recall that
each classifier is associated with one axis of the inertial sensors. The
training instance with the minimum average distance from all others
was considered as the template of the target action.

Once a target template is determined, a threshold value needs to be
calculated for each weak classifier. The threshold will be used later
during classification to accept or reject an incoming action as the target
action. Since NCC is used to compare the signals, the range of the
cross-correlation scores resulting from the comparison varies between

—1 (uncorrelated) and +1 (correlated). To detect the threshold, we
compared the template with the “true” and “false” instances. The true
instances were the sensor signals referring to the target action and
the false one to the nontarget ones. Comparing the template with the
true instances would output values close to +1 as they refer to the
same action, whereas comparing the false instances will produce lower
correlation values.

By taking an average over all the similarity scores between the
template and target action instances, we obtained an upper bound on
the value of the threshold as given by

N
1
Thrupper = 32 > A(TPL, S;) VS; € TrueClass an

i=1

and similarly, a lower bound on the threshold value was calculated by
comparing all nontarget action trials with the target template:

v
1
Thtiower = 5 ;V(TPL, S;) VS; € FalseClass.  (12)

Thus, the value of the threshold can vary between Thrygy e and
Thrupper, changing the result of the classification in terms of number
of false positive and false negative values. For our experiments, we use
a threshold that is calculated as given by

Thrupp er + Thrlower
3

Thr =

13)
which was chosen empirically.

B. Detecting “Sit to Stand”

In our first analysis, we trained the system for detecting one particu-
lar action (i.e., “sit to stand”) as the target action. The greedy algorithm
was used to find the best subset of the sensors that can detect this action
with a precision of P > 90% and a recall of R > 80%. The backward
elimination algorithm removed all weak classifiers except one sensor
axis. The resulting active sensor was the “Z-axis accelerometer” of the
“right thigh” node. This observation can be interpreted as follows. The
Z-axis acceleration is the axis for the frontal plane of the participant and
has a unique pattern during “sit to stand.” This pattern is not repeated
for the rest of actions and, therefore, is a distinguishing pattern that can
by itself distinguish between this action and the others. This results in
20-fold reduction in the number of active sensors (from 20 to 1).

C. Accuracy and Power Analysis for All Actions

The system may be used to detect any target action. Thus, it is impor-
tant to measure performance for actions other than when “sit to stand”
is the target event. For this reason, we performed an analysis in this
section where each action is considered as the target, and performance
of the system is analyzed accordingly. We analyzed these results for
three scenarios where performance of the desired classification per-
formance varies. For each performance level, we found the minimum
set of weak classifiers that achieve the given sensitivity (or recall) and
precision values. The three performance levels are:

1) First level: precision = 0.8, recall = 0.7.
2) Second level: precision = 0.85, recal = 0.75.
3) Third level: precision = 0.9, recall = 0.8.

1) Classifier Accuracy Performance Analysis: Table I shows the
number of sensors (or weak classifiers) that are required to obtain the
desirable performance. These classifiers are needed to achieve a pre-
cision and a recall that is equal or greater than the given performance
level. Of course, to increase the accuracy, for certain actions, we might
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TABLE I

LIST OF ACTIVE SENSORS (WEAK CLASSIFIERS) FOR DETECTING EACH TARGET ACTION

Movement Desired accuracy threshold values (P = Precision, R = Recall, wk = weak classifier)
P=08R=0.7 No. of P=085R=0.75 No. of P=09R=108 No. of
wk wk wk

Stand to Sit AcZ-3 1 AcZ-3 1 AcZ-3 1

Sit to Stand AcZ-3 1 AcZ-3 1 AcZ-3 1

Sit to Lie AcZ-4 1 AcZ-4 1 AcX-1,AcY-2,AcZ-4 3

Lie to Sit AcY-4 1 AcY-2, AcZ-3, 3 AcY-2, AcZ-3, 3
AcY-4 AcY-4

Bend Grasp AcX-1, AcZ-2, AcZ-3 3 AcX-1, AcZ-2, 3 AcX-1, AcY-1, 5
AcZ-3 AcY-2

AcZ-2, AcZ-3

Kneel-R 15 20 20

Kneel-L AcX-1, AcZ-1, AcY-4 3 AcX-1, AcZ-1, 3 AcX-1, AcZ-1, 3
AcY-4 AcY-4

CW90 14 14 17

CCW90 AcX-2, AcY-3, AcZ-3 5 AcX-2, AcY-3, 5 10
AcZ-3

AcX-4, AcY-4 AcX-4, AcY-4

Move F AcZ-1, AcZ-2, AcY-3 3 AcZ-1, AcZ-2, 3 AcZ-1, AcZ-2, 3
AcY-3 AcY-3

Move B 20 20 20

Jump 14 14 20

Il Precision=0.8, Recall=0.7
[IPrecision=0.85, Recall=0.75

I Precision=0.9, Recall=0.8

Precision (%)

Fig.3. Measured precision due to using only active sensors for classification.
Results are presented for three different performance levels.

need to increase the number of weak classifiers that should be used
by the final classifier combiner. The number of active sensors clearly
depends on the action that is intended to be recognized. In most cases,
only a few sensors are enough to monitor the target action. However,
there are cases such as actions Kneel-R, CW90, Move B, and Jump
where a larger number of sensors need to be selected during classifi-
cation. The list of the weak classifiers used during the classification
task, for different levels of accuracy, is shown in Table I. For visual-
ization, the list of the active sensors is eliminated from the table for
those actions that require a large number of active sensors. This is the
case for actions Kneel-R, CW90, Move B, and Jump, which require 15,
17, 10, and 14 active sensors for the highest calculated performance,
respectively. Figs. 3 and 4 illustrate the results of the classification in
terms of measured precision and recall. These results are based on the
minimum number of weak classifiers.

2) Power Analysis: Reducing power consumption of the system
usually results in a decrease in classification accuracy of the system. The
model developed in this paper aims to minimize power consumption
of the system while taking into account classification performance

Il Precision=0.8, Recall=0.7
[_|Precision=0.85, Recall=0.75
Il Precision=0.9, Recall=0.8

Fig. 4. Measured recall by selecting active sensors reported by backward
elimination greedy algorithm.

that can be obtained from signal processing and pattern recognition
algorithms. As mentioned previously in Section IV, we assume that
power consumption due to data transmissions is constant for each active
sensor node, and therefore, only power consumption due to template
matching and local classifications specifies the most power-consuming
weak classifier at each state of the greedy algorithm. The nominal
values of power used by the accelerometers and the gyroscopes on
TelosB mote are 2.64 and 31.35 mW, respectively. Given that data
acquisition from a sensor (i.e., accelerometer or gyroscope) is constant
regardless of the number of axes used for classification, we allocate a
fixed cost to each sensor even if only a single weak classifier is used.
As a result, the power consumption of each weak classifier is equal to
the power consumption of the corresponding sensor axis.

In Table II, the power consumption of the classification for each
target action is shown for the case of highest precision and recall. As
we can see, the values of the power consuming remain very low (e.g.,
below 10 mW) for almost all the actions. The power needed for the
classification increases suddenly when we start to use the weak clas-
sifiers associated with the gyroscope sensors. Such power-consuming
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TABLE II
POWER CONSUMPTION DUE TO POWER-AWARE LEARNING

Mov. W/ Optimization [mW] W/o Optimization [mW] Saving [%]
Stand to Sit 2.6 135.9 98.1
Sit to Stand 2.6 135.9 98.1
Sit to Lie 79 135.9 94.2
Lie to Sit 79 135.9 94.2
Bend Grasp 79 1359 94.2
Kneel-R 135.9 135.9 0
Kneel-L 5.3 135.9 96.1
CW90 104.6 1359 23.0
CCW90 10.6 135.9 92.2
Move F 7.9 135.9 94.2
Move B 135.9 135.9 0
Jump 1359 135.9 0
Avg. 47.1 135.9 65.4

' ' |

| '

Il Precision=0.8, Recall=0.7

[IPrecision=0.85, Recall=0.75
Il Precision=0.9, Recall=0.8
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Fig. 5. Cross-validation analysis of precision with set of minimum sensors
for classification.
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classifiers are selected in order to improve the accuracy of the classi-
fication and to achieve the desirable classification performance as re-
quested by the user. The amount of power savings achieved by using our
power-aware action recognition framework is shown in the last column
in Table II.

D. Generalizability

The results that we presented in Section V-C are based on a fixed
training/test set and using a template-matching approach that we have
developed in this paper. We chose a fixed training/test set (rather than
a cross-validation approach) in order to be able to demonstrate active
sensors, as shown in Table I. In this section, we demonstrate how our re-
sults can be generalized under a cross-validation scenario. Furthermore,
we show accuracy performance comparison between our approach and
a k-NN classifier.

Our performance analysis of template matching relies on two single
sets: training and test. We want to analyze our combiner classifier
using k-fold cross-validation approach, which is powerful in estimating
more accurately the classification performance of our system when
training and test sets change. Figs. 5 and 6 show the measured precision
and recall for the classifier, using k£ = 10 folds and stratified random
subsampling for their construction.

We compared the template-matching results against a feature-based
classification approach, often used in activity recognition context: k-
NN. In this approach, each sensor calculates some features on a window

1
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Fig. 6. Cross-validation analysis of recall with minimum sensors set for clas-
sification.

TABLE III
COMPARISON OF OVERALL PRECISION AND RECALL LEVELS

Approach Precision [%] Recall [%]
Template Matching 97.8 88.9
k-NN 89.2 83.3
Cross Validation 96.5 91.3

of acquired raw data; then, each set of features is sent to the base sta-
tion, where the classifier labels the class by a majority vote among the
k closest training examples. Distance between the data is evaluated
according to a metric. The most commonly used metrics are Euclidean
distance, Manhattan distance, and Hamming distance. Features ex-
tracted for classification are basically statistical information about the
signal such as mean, standard deviation, energy, and correlation.

We simulated the classification approach in MATLAB, using the
k-NN classifier with & = 5 (a reasonable value for reducing classifica-
tion noise) and Euclidean distance metric; for our test purposes, sensors
extracted four features from the raw data including mean, standard de-
viation, minimum value of signal segment, and maximum amplitude of
the signal segment. We evaluated the approach using the same dataset
used for template matching and, for each movement, only the selected
sensors resulting by backward elimination algorithm. We show the av-
erage precision and recall values among the movements, concerning
only the third performance level and for different test scenarios includ-
ing template matching with fixed training/test sets, k&-NN classification,
and cross-validation approach.

Results in Table III show that, using the same set of sensors for clas-
sification, template matching has a generally better performance level
than k-NN: 8.64% for precision and 5.56% for recall. Cross validation
also demonstrates our classifier effectiveness, showing an excellent
generalization level of template matching: precision and recall reach a
value higher than 90%.

VI. CONCLUSION

In this paper, we proposed a novel classification approach that in-
corporates two design criteria: energy consumption and classification
accuracy. Our system uses simple template-matching blocks to perform
coarse classification of human movements on wearable sensor nodes.
Only a subset of the sensors is selected for classification purposes where
active sensors are determined according to their power consumption as
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well as their contribution to the overall classification performance of
the system. The results obtained by active sensors are further combined
through a boosting approach to achieve higher classification accuracy.
As discussed in Section V-D, our template-matching algorithm out-
performs the k-NN classifier by achieving 8.64% higher precision and
5.56% higher recall values. Our approach achieves both precision and
recall values of more than 90%. Accuracy performance of the proposed
classification algorithm can also be compared against a number of pre-
viously studied approaches. The Naive Bayes classifier presented in
[13] achieves 90% accuracy, but exact precision and recall values are
not reported. The classification accuracy reported in [15] is 84% for
detecting 20 movements using a network of five motion sensor nodes.
The accuracy obtained in [16] is 90% for classifying 12 movements
using seven different sensors embedded in a single node.
Our template-matching classification approach has several advan-
tages over classical algorithms:
1) the template-matching function is easy to implement in either hard-
ware or software as it only uses MAC operation;
2) template matching requires almost constant computation time.
Despite these advantages, template matching may not be feasible for
all physical movement monitoring applications. While further in-depth
study is needed to draw solid conclusions, we think that major limita-
tions of the proposed approach fall into the following areas: 1) While
our experimental analysis shows that template matching is effective
in detecting typical transitional movements, simple template matching
may fail when dealing with more complex movements. For example,
the type of movements studied in [21] may require a different classifi-
cation scheme or a hierarchy of template-matching blocks for reliable
action recognition. 2) Template matching relies on structural and mor-
phological properties of the signals and thus may not apply to the cases
where distinguishing patterns are not constituted in morphology of
individual sensor streams.
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