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Abstract—Becoming proficient in a sport requires significant
investment in training. Traditional training approaches such as
training with a partner or an expert, and training with the help of
videotaping can significantly increase progress. These techniques,
however, do not provide fine grain detail about movements of the
player, are time consuming, or are limited to specific locations. In
contrast, wearable sensor devices can improve training due to the
high level of mobility, ubiquity and intelligent feedback offered. In
this paper, we present a wearable platform that provides baseball
players with corrective feedback based on multidimensional phys-
iological data collected from a body sensor network. We employ a
swing model that specifies actions that must be performed prop-
erly, in the correct order, and with precise timing between limbs.
The system evaluates a baseball swing using motion transcripts.
Transcripts simplify interpretation of complex movements and
can be used to reduce the size of data that need to be transmitted
across the network. Using transcripts, we measure coordination
among limb segments and joints of the body. The starting times
of key events are found in the transcripts, and the coordination
between these times is analyzed. The swing quality is then assessed
by comparing the intersegment coordination of a test swing to that
of a template swing.

Index Terms—Body sensor networks, inertial sensors, motion
transcripts, signal processing, sports training.

I. INTRODUCTION

L EARNING to perform well in sports is difficult and time
consuming. Sports often involve physical tasks that re-

quire specific choreography in order to be most effective. For
example, golf swings, tennis serves, basketball free throws, and
martial arts kicks all involve a series of movements that must
be properly timed and executed. Acquiring the physical skills
necessary to perform such movements well requires three steps:
1) task definition; 2) practice; and 3) performance assessment.
The process is iterative and continues indefinitely, with feed-
back from performance assessment at each step revising the task
definition.

Task definition can be determined by watching a video,
reading a book, or listening to a coach. Assessing performance
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is challenging due to complexity of movements. Even if the
learner fully understands what to do, it may be difficult to
effectively compare performed actions to the intended action.
Videotaping can be effective, but it does not provide fine grain
detail of joint movement, and identifying performance mis-
takes using video may require an expert. Even when coaches
are available, they have many students and limited time, and
diagnosing problems can be time consuming. An automated
system that can assess the overall performance of a learner
and pinpoint problem areas in the learner’s movements would
facilitate performance assessment, increasing the effectiveness
of unsupervised practice.

Movement coordination refers to the relative timing of
motions made by different body segments. Our study focuses
on detecting coordination problems in a baseball swing. Tradi-
tional studies on coordination analysis use kinematic variables
of human motions to discover inter-joint time differences.
Most techniques originate from a method by Grieve [1] who
proposed the use of a plot of angular time series of two joints
to visualize intersegment coordination. These plots, called
angle-angle diagrams, can be used in coordination assessment
[2]. Inter-joint coordination can be used in both biomedical and
sports training applications. In gait analysis, kinematic-based
approaches are used to measure coordination between rearfoot
and forefoot during walking [3]. In sports training, changes in
coordination during the practice, e.g., soccer kick [4], can be
reported, and is used for skill development. A major problem
with the current methodologies that quantify coordination is
that they rely on video data to extract the dynamics of motion,
or require expensive components to analyze physical models
of movements. In contrast, we propose an effective model that
uses machine learning and signal processing techniques to
extract coordination information from inexpensive off-the-shelf
motion sensors [5].

The idea behind our coordination analysis approach is to use
clustering techniques to extract temporal behavior of the signal
during a baseball swing. By enforcing constraints during clus-
tering, we highlight key events important in baseball swings.
The resulting clusters enable us to represent each signal in
terms of a sequence of clustered data points in time. Using
specific sequences of clusters, we identify the movement and
extract timing information from certain transitions in the clus-
tering, which correspond to the key events. Our swing analyzer
is trained on inertial data recorded from a number of practice
swings with properly coordinated movements. Coordination is
assessed by an expert watching associated videos. The most
representative swing from this practice set of swings is chosen
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as a template. A new swing is then compared to the template,
and the quality of movement is quantified based on the degree
of variation.

In this study, we make the following contributions:
1) We present a mobile sports training system using body-worn
motion sensors [5] to analyze body movements during a base-
ball swing. 2) We introduce motion transcripts that are extracted
from sensor readings and specify prominent movements of in-
dividual body segments. 3) We develop a signal processing
model to assess coordination between different body segments
using motion transcripts.

II. RELATED WORK

Much effort has been expended on building sport apparatus
and training systems that help people improve their sport skills.
These devices can be broadly categorized into mechanical and
electronic devices. Mechanical training systems (e.g., [6] and
[7]) have been traditionally used to provide high-level feed-
back on quality of movements. While these systems have simple
structure and are easy to use, they lack fine grain details of
movements a player can perform. Furthermore, most traditional
sports training systems have constraints in terms of training lo-
cation and degree of intelligence they offer. For instance, [8]
uses a laser beam attached with the golf club which along with
a convex mirror helps the player to track the path of a hitting
ball.

Use of sensor-based platform has proved effective in evalu-
ating quality of movements. Majority of the research focuses
on recording and analyzing the body movements of the person
using different types of sensors such as cameras, RFIDs, and
inertial sensors. Authors in [9] use a motion capture system to
record and analyze dynamics of human motions when learning
tennis strokes. They show that alternative forehand and back-
hand movements outperform discrete forehand or backhand
practices due to the inertia of the trunk rotation movements
between subsequent strokes. Authors in [10] present an optical
approach for the purpose of capturing high-speed motion of a
hitting ball in baseball using multi-exposure images obtained
by low-cost still cameras and a stroboscope. They derive al-
gorithms to track the ball and analyze dynamics of the motion
by measuring position, velocity, rotation, and spin of the ball.
The work in [11] presents a system for accurate detection of
a tennis ball using task-level learning from practice approach.
The authors program a robot to juggle a tennis ball and use
binary-vision to track the movements and measure the perfor-
mance. The task-level learning improves the performance with
every successive practice. A motion capture system is used
in [12] to build a virtual baseball training system. The batter
swings the bat toward a virtual ball rendered over a screen,
and the trajectory of the swing is used to provide qualitative
results. Another training system presented in [13] integrates
accelerometers and video data to detect human action and
provide visual feedback in real-time. Although vision-based
training approaches provide sufficient resolution of human
movements, they are relatively expensive and are constrained
to lab conditions and cannot be used in the field.

Lack of fine grain detail in traditional training systems and
lack of mobility in video-based training warrant the need for use

of wearable mobile platforms. Advancements in electronic and
wireless technologies have enabled design of wearable sensory
platforms that can be woven into our daily lives. Body-worn
motion sensor systems are primarily used for healthcare moni-
toring [14]–[16]. Accelerometers and gyroscopes are the most
commonly used sensors to detect motor movements [17], [18]
in wearable healthcare domain. These sensors can be placed on
the human body or sport equipments and provide information on
movements. Virtual training systems that use such platforms are
portable. They accelerate training by providing students with in-
formation regarding mistakes made during practice at anytime
and in any location. In [19], authors present an on-body wireless
sensor platform for real-time snowboard training. They deploy
inertial sensor, bend sensors and force-sensitive resistors along
with communication facilities in a wireless network to capture
and analyze rider’s motion and posture on the snowboard. Au-
thors in [20] develop signal processing algorithms to measure
the angular rotations of wrist during golf swings. [21] describes
how to use body-worn sensors, accelerometer and gyroscope
in particular, to record the actions made by humans in martial
arts. The acquired data are then used to find the quality of the
moves and level of expertise the person has while making those
moves. In [22], authors model the golf swing as a double pen-
dulum system and use inertial sensors placed along the body and
golf club to determine how closely the movements of the body
follow predetermined motion rules.

Several researchers have investigated coordination between
joints and body segments with the use of kinematic variables
of human motions. Most techniques are originated from the
method presented in [1] that uses a plot of angular time series
of two joints in order to visualize intersegment coordination.
These plots, so-called angle-angle diagrams, have been used in
coordination assessment [2]. An application of this technique
in sports skill verification is given in [4] where changes in co-
ordination are examined during the practice of a soccer kick.
Quantification of movement coordination, however, has been a
challenging problem. Several attempts have been made to quan-
tify timing difference in movement patterns. Authors in [23] de-
scribe a chain-encoding technique originally presented in [24].
The vector coding technique involves using a superimposed grid
to transform the angle-angle trajectory into digital elements.

Our work is different from aforementioned studies. We use
body sensor networks to build a signal processing model for
evaluation of baseball swings in terms of coordination between
movements of different body joints. To the best of our knowl-
edge, coordination analysis of baseball swings using wearable
sensors has not been previously studied by other researchers.

III. BASEBALL SWING MODEL

Baseball batting involves hitting a thrown ball with the pri-
mary objective of transferring maximum force to propel the ball
as far as possible in a desired direction. Successful batting re-
quires proper sequence and timing of movements by different
body segments. Numerous baseball players and coaches have
suggested methods for successful batting. The swing model pre-
sented in this section is obtained based on studies in [25] and our
extensive discussions with coaches and baseball players.1

1Shane Shewmake (UT-Dallas head coach) and Randy Black (college base-
ball player)
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A good swing is the result of a sequence of rotational move-
ments including foot, knees, hips, shoulder, and hands move-
ments. Generally, the action of the batter starts in the lower body
and moves upwards. Properly performed motions executed at
the right time maximize the power of the swing. Major compo-
nents of a good swing include bat speed, bat swing plane and
timing. The components aim to improve the chance that the bat
connects with the ball, and increase the strength with which the
bat hits. Common mistakes include late rotation of lower body,
back shoulder dip, and drifting of the front foot. Late move-
ment of the foot and hips impair the swing timing. Dropping the
back shoulder affects the bat plane so as the bat does not pass
through the strike zone horizontally, decreasing the chance of a
successful hit. Drifting refers to improper weight transfer from
the back foot to the front foot. One consequence is losing power
in the hips, which decreases the bat speed at impact. Therefore,
proper weight transfer necessitates coordination between dif-
ferent body segments during the swing.

Our model of baseball swing emphasizes three major events:
1) rotation of the lower body (feet, knees, hips) toward the
pitcher; 2) rotation of the upper body into the swing; and
3) the swing of the arms and hands toward the pitcher. These
key events should be executed in a specific and overlapping
sequence. The coordination is extremely important as it ensures
that the maximum power from arms, shoulders, and hips is
delivered exactly as the bat crosses the plate [25]. Our measure
of swing quality is based on this coordination.

The coordination, , between two body segments and
is defined as the time difference between corresponding key

events and [26]

(1)

The three key events in our swing model are the starting hip
rotation, shoulder rotation, and arm extension.

IV. SYSTEM OVERVIEW

This section provides a brief overview of our swing vali-
dation system including hardware infrastructure and statistical
signal processing techniques. In Section V, we will elaborate
on core processing components of our system. In particular, we
will show how human movements can be transformed into a se-
quence of primitives, and how transcripts can be generated to
highlight specific key events of a baseball swing.

A. Sensing Platform

We use several wireless sensor nodes, collectively called a
body sensor network (BSN), to monitor swing dynamics. The
sensor nodes are commercially available TelosB motes from
XBow®. We use a custom-designed sensor board [27] consist of
a three-axis accelerometer and a two-axis gyroscope. The motes
sample their sensors at 50 Hz and use a TDMA scheme to com-
municate all data to an off-body base station. Three sensor nodes
are placed on the subjects, as shown in Fig. 1. Sensor nodes are
secured at the locations that capture movements of our specific
key events in a baseball swing. The base station relays the infor-
mation to a PC via USB. Two webcams are used to record video

Fig. 1. Experimental subject with three sensor nodes placed on “hip,” ‘chest,”
and “wrist” to capture “hip rotation,” “shoulder rotation,” and “arm extension.”

Fig. 2. Using swing analyzer for coordination analysis. Cluster parameters are
determined during training, and are used by individual sensor nodes for tran-
script generation. Template is defined during training, and is used by a base
station to analyze timing of different body movements.

of all experimental trials, and MATLAB collects and synchro-
nizes the sensor and video data. The video data are used during
training for segmentation. We also use video data as a gold stan-
dard to validate our signal processing techniques.

B. Swing Analyzer

Our system aims to evaluate a baseball swing in terms of
coordination between body segments by processing raw sensor
readings acquired from movements of hip, shoulder, and arm.
A top-level block diagram of our signal processing model
for evaluation of a given movement is shown in Fig. 2. The
processing takes the following steps. The data collected from
motion sensors are filtered using a moving average filter to
enhance the signal-to-noise ratio (SNR). Next, simple statis-
tical features including mean, standard deviation, root mean
square, and first and second derivatives are extracted from a
small moving window centered about each point of the signal
segment. The signal processing model shown in Fig. 2 is then
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Fig. 3. Training for swing analyzer includes cluster creation, which is used for
transcript generation, and creation of a template swing.

used to provide feedback on coordination measure based on
the definition in (1). Each sensor node independently extracts
a sequence of symbols, known as a motion transcript, based
on the features extracted from sampled data, and according
to previously trained cluster parameters. Transcripts aim to
highlight the key events using a semi-supervised clustering
technique. Event times (e.g., start of hip rotation) are extracted
from each transcript using simple string matching. These event
times are sent from each node to a base station and compared
to a reference template, which is the event times from a repre-
sentative proper swing. Players are provided these deviations
as feedback to determine swing quality.

The coordination analysis in Fig. 2 requires several inputs in-
cluding a template transcript (i.e., representative proper swing)
and clustering parameters. A set of practice swings and event
timings for those swings are required to train the model. An
expert uses timing criteria to select good swings from a set of
practice swings, and then to specify key event times for those
swings. This data are used to train the model, as shown in Fig. 3.
The cluster creation and template selection steps are explained
in Section V.

V. MOTION TRANSCRIPTS

The movements of interest in our system can be performed
well, poorly, or not at all. For example, problems with hip ro-
tation could include: 1) not rotating the hips at all; 2) allowing
the swing to pull the hips instead of making the hips push the
swing; or 3) starting to rotate the hips too late. We aim to build
transcripts of movements that can be used to identify and grade
the movements of interest as well as analyze the coordination
between joints to provide further feedback. We call this body
choreography modeling.

The idea of motion transcripts is motivated by the hierarchical
representation of human speech. Like words in spoken language
that are divided into phonemes, human movements can be rep-
resented by coordinated sequences of simple motions and pos-
tures, referred to as primitives. Each body segment has its own
sequence of motions that is coordinated with and affected by the
motions on other limbs. For instance, in a baseball swing, the
wrist initially is held motionless next to the head, then swings
down, and finally is pulled across the body. Further, rotation of
the hip will affect the speed and timing of the hand movement.
Motion transcripts can significantly reduce complexity of raw

data and provide a simple and compact representation of human
movements [28], [29].

A transcript of motion is a record in time of simple move-
ments performed by several joints. A simple movement, which
we call a primitive, is a segment of motion with persistent phys-
ical behavior. The transcript describes the order and timing of
movement primitives that creates overall complex movement.
For example, a transcript for the foot during walking consists
of: 1) lifting the foot; 2) moving the foot forward; 3) placing
the foot on the ground; and 4) bearing weight on the foot,
with certain periods of time associated with each primitive.
The pattern repeats as long as walking continues. At the same
time, a transcript for the hip consists of: 1) rotate clockwise and
2) rotate counterclockwise, repeatedly. The primitive sequences
for different joints in the body may not be independent. For
example, in walking, the hip should rotate clockwise when
the left foot moves forward and rotate counterclockwise when
the right foot moves forward. When the coordination between
joints is incorrect, the movement may be performed poorly,
or a different movement may be performed. Transcripts of
consistent movements should be consistent, and transcripts of
inconsistent movements should highlight the differences be-
tween them. Achieving this requires finding the proper number
of relevant movement primitives to use when describing com-
plex movements. If no prior knowledge exists about changes in
physical behavior of a particular movement, then transcript of
that movement can be generated in an unsupervised manner as
follows. At every point in time, the movement has certain char-
acteristics. We can assume that adjacent points belong to the
same movement primitive if they have similar characteristics.
We can determine the characteristics for each data point in the
signal by extracting statistical features such as mean, standard
deviation, root mean square, and first and second derivatives
from a moving window centered about the current point. In the
next step, individual data points can be clustered based on these
features. The centroid of each cluster then defines a movement
primitive. In our baseball training system, however, some of
the events such as “hip rotation,” “shoulder rotation,” and “arm
extension” can be identified from video during training. This
information can help the clustering algorithm highlight specific
parts of the signal, and therefore, can be used to measure timing
of the events during testing.

A. Transcript Generation

Using motion transcripts, we divide sensor readings into over-
lapping frames. During training, an expert can use videos of the
movements to label certain frames as events of interest (e.g.,
hip rotation). Other frames may remain unknown or are not of
interest to designer; however, they may represent particular mo-
tions of individual limbs. Therefore, the process of transcript
generation should be semi-supervised. Our system uses a semi-
supervised clustering [30] based on the well-known -means
clustering to generate transcripts. While information about cer-
tain motions (e.g., hip rotation) is provided during training, a
swing includes unspecified movements of body segments. Im-
portant information about the key motions at any given time may
be contained in a short interval of sensor readings centered on
the time of interest. These short, overlapping intervals (frames)
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Fig. 4. Raw sensor readings and corresponding transcript generated from a
node placed on the “wrist” during a baseball swing. Only gyroscope readings
are shown in this figure; however, both accelerometer and gyroscope sensors
were used to generate the transcript.

are individually assigned symbols. Furthermore, the unknown
events are automatically detected by grouping frames together
based on a similarity measure and assigning unique labels to
each grouping.

The exact time of certain key events is known (i.e., ), so
the frames for a short period of time before the event are la-
beled and those right after the event are labeled . The
labels (with ) for the rest of the frames
are unknown; therefore clustering is used to assign these labels.
The time of a key event can be extracted from a transcript by lo-
cating the transition from to . An example of a transcript
generated from sensor node placed on the “wrist” is shown in
Fig. 4. In this figure, the two top graphs illustrate angular ve-
locity about and axes. The graph at the bottom shows a
transcript generated using -means clustering. From the node
placed on the “wrist,” we intend to highlight the time of “arm ex-
tension.” From our training data, we detect the value of the time
(relative to the start of the swing) when a player starts extending
his/her arms. This information is used to enforce the clustering
algorithm to group sample points prior to and after occurrence
of the “arm extension” to separate clusters. In Fig. 4, a transition
from to illustrates the “arm extension” event.

B. Clustering Algorithm

Statistical classification uses training data to create a model
which can be used to assign labels to the frames in new data. If
the labels are known for the training data, then a classifier can be
built which tries to assign one of the known labels to a new frame
based on how closely it matches the data for the training frames.
If the frame labels for the training data are unknown, methods
known as clustering can group frames together based on sim-
ilarity and assign unique labels to each grouping. Our system
uses a hybrid approach called semi-supervised clustering [30].
The -means technique is used to define our primitives because
it is algorithmically simple and efficient to use after training
[31], [32]. Two important parameters when training the model
are the number of clusters, , and cluster centers. Proper choice
of is important because too few clusters will cause the tran-
script to miss key details and too many clusters will produce
irrelevant and misleading clusters. A number of different values

of , varying between 2 and 9, are tried, and the resulting models
are evaluated using the Silhouette measure [33]. The silhouette
index is given by

(2)

where is the number of data points in the training set, is
the average distance between the th data item and all the items
inside same cluster, and is the minimum of the average dis-
tances between the th item and all the items in other clusters
than th data point. The clustering model with the highest sil-
houette index is chosen.

The second major parameter is the initial clustering. A
common technique in the literature for choosing the proper
cluster centers is to train the model with different initial cen-
troids and calculate the sum of square error (SSE) for each. The
SSE is given by

(3)

where denotes the th data item, denotes the centroid
vector associated with th cluster, and is the total number
of clusters. In each phase of the algorithm, we randomly assign
distributed data points as initial centroids. The configuration that
has minimum SSE value is chosen for clustering.

C. Template Selection

The goal of template selection is to pick a representative
swing from the trials with proper sequence and timing of the
key events. Coordination of a new swing will be measured
against this template, and the degree of deviation is reported
as the quality of the performed movement. The template, , is
selected from the set of “coordinated” training swings, . The
trial with the lowest summed deviation in coordination between
itself and the other trials is selected, as shown in (4)

(4)

D. Template Matching

The process of comparing a test trial against the template
to detect start time of a key event is not trivial. An event
which is represented by transition from one symbol to another
( ) might be repeated several times in a transcript.
Therefore, it is required that a template matching function finds
the right timing information about the event. Let be the tem-
plate generated for sensor nodes with the key event . For a
test trial , template matching finds the instance of that has
the minimum time difference among all existing pat-
terns. The resulting event is given by

(5)

VI. SYSTEM PROTOTYPE

In this section, we illustrate how our swing analyzer can mea-
sure quality of baseball swings and provide quantitative feed-
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Fig. 5. Transcripts of sample swings with good and bad ordering of key events. (a) A swing with proper sequence and timing of motions. (b) A bad swing with
improper ordering of key events.

back on intersegment coordination. We specifically describe dif-
ferent steps for data collection, signal processing and transcript
generation, and swing validation.

A. Data Collection

We conducted a set of experiments to determine coordination
between the key events of hip rotation, shoulder rotation, and
arm extension. For this purpose, three male subjects were asked
to wear our body sensor network as shown in Fig. 1. The sub-
jects had no previous swing training, and aged between 25 and
35. They were asked to execute 20 baseball swings each with
varying timing and sequences of the key events. The data were
collected on a Laptop through a base station, as described in
Section IV-A. Video of all trials was captured for training our
swing analyzer in subsequent steps.

B. Preprocessing

The raw sensor readings were passed through a five-point
moving average filter to reduce the effect of high frequency
noise. To capture parts of the signal that correspond to a com-
plete baseball swing, we used the video data which was recorded
during data collection. Using video, we found the start and the
end of each swing and ignored the rest of the signal in subse-
quent processing. The video data was further used to manually
identify timing of the key events to train the system and validate
its performance. We used 50% of the trials with proper ordering
of the events (22 trials out of a total 44 good swing trials) to train
our system. The rest of the trials (other 22 proper trials as well
as 16 improper trials) were used for validation.

C. Transcripts

The next step in our signal processing flow was feature extrac-
tion. The five statistical features described in Section IV-B were
extracted from a moving window centered about each sample.
These features were calculated for all training trials. The fea-
tures were then used for -means clustering which aimed to con-
struct primitives of the movements. These features are compu-
tationally inexpensive that can be executed on our lightweight
sensor nodes and their effectiveness in capturing structural pat-
terns of motion data and detecting the key events is established
through our experiments.

Transcripts of all swings were prepared using our previously
described technique. Fig. 5 shows transcripts of sample swings

Fig. 6. Coordination of good and bad swing trials.

in terms of sequence and timing of the events. Each unique
motion primitive is assigned a different color for visualization.
Each key event is identified by two symbols, illustrating a tran-
sition from one primitive to another. “Hip rotation” is detected
when the pattern “AB” is observed on the transcript. Similarly,
“shoulder rotation” and “arm extension” are detected by “XY”
and “MN,” respectively.

D. Coordination

After training the coordination analysis system using the pro-
cedure shown in Fig. 3, the intersegment coordination was cal-
culated using (1). By comparing this value with the one obtained
for the template, we provide feedback to the user in terms of
the amount of deviation from the “perfect” swing. The template
matching can be done for every pair of key events. Fig. 6 shows
the average amount of deviation in coordination from the tem-
plate for the first 16 test trials for both groups of proper and
improper swings. The values were averaged over all three pairs
of events (hip versus shoulder, hip versus arm, shoulder versus
arm). As it can be observed from the figure, improper swings
have been identified as to have significantly larger deviation
from the template. Overall, good swings had an average dis-
tance of 109 msec from the template while this number was 295
msec for improper swings.
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Fig. 7. Comparing transcript-based coordination measurements with coordina-
tion extracted from video, for “hip-shoulder” and “hip-arm” coordination.

Fig. 8. Comparing transcript-based coordination measurements with coordina-
tion extracted from video, for “shoulder-hip” and “shoulder-arm” coordination.

Fig. 9. Comparing transcript-based coordination measurements with coordina-
tion extracted from video, for “arm-shoulder” and “arm-hip” coordination.

In order to measure accuracy of our coordination evaluation
system, we further compare coordination values calculated from
transcripts with those measured from video. Figs. 7–9 show this
evaluation for the set of 38 test trials for different pairs of body
joints. These plots visualize the error of transcript-based coor-
dination assessment. Fig. 7 illustrates the plot of coordination
measured from transcripts versus that of videos for the node
placed on the hip. Figs. 8 and 9 compare transcript-based and

TABLE I
MEAN AND STD. OF COORDINATION MEASUREMENTS (MSEC)

TABLE II
MAE FOR COORDINATION BETWEEN EVENT PAIRS (MSEC)

video-based coordination measurements for the shoulder and
arm nodes respectively. Given the video-based analysis as the
ground truth, the points closer to the dashed line exhibit less
error with respect to motion transcripts. Table I shows mean and
standard deviation of measurements made by our transcripts as
well as those calculated from video-based analysis.

The accuracy of our coordination analysis based on motion
transcripts is demonstrated by measuring the mean absolute
error (MAE) between our technique and the coordination anal-
ysis based on video. Table II shows the absolute error for both
groups of improperly coordinated test movements and proper
swings. The overall error over all categories was 101 msec
which is 3.4% of the total length of the template (3 sec.).

Algorithm Complexity

The five statistical features described in Section IV-B are cal-
culated from each sampled data. As a result, the feature extrac-
tion linearly grows with the number of samples within each ac-
tion and the number of features, turning the feature extraction
into a linear function in the number of features and length of
actions.

Once -means clustering is used to create and define clusters,
it can be used to assign an unknown observation to one of the
clusters. Transcript generation for a given test trial consists of
finding proper label for each data point based on distance be-
tween every sample point and previously defined cluster cen-
troids. For a given baseball swing, this process is linear in the
length of the trial and the number of clusters. In our system, the
length of swings and number of created clusters were 3 sec and
5 clusters on average.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel idea on how to train a
player in baseball by using portable sensor networks which also
would prove to be more economical than a coach. To achieve
this we plan prepared the system for generating transcripts of
various human movements using body sensor networks, and de-
veloped a technique for measuring coordination between body
segments. We used a semi-supervised clustering technique to
construct basic patterns of movements. The motions include
motions specified in the training data as well as motions found
automatically. We further demonstrated the effectiveness of mo-
tion transcripts for analysis of baseball swings using inertial data
collected from several subjects.
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As part of our ongoing research, we are developing our ex-
isting techniques for real-time signal processing on the motes.
We are also working with a baseball coach to develop criteria
for detecting other common mistakes, and to determine the most
useful types of feedback for players and coaches. The model of
transcripts was chosen because it can label motions that are not
directly specified. For instance, an athlete might have a motion
that hurts the swing, but is difficult to see in the video. This might
be shown in the transcripts, and allow the motion to be diagnosed.
As an example, in our data, the transcripts clearly label the hitting
zone even though it was not specified as a key event. We intend
to more formally investigate these properties in the future.
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