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Abstract—Wireless body sensor networks (BSNs) possess enor-
mous potential for changing people’s daily lives. They can enhance
many human-centered application domains such as m-Health,
sport and wellness, and human-centered applications that involve
physical/virtual social interactions. However, there are still chal-
lenging issues that limit their wide diffusion in real life: primarily,
the programming complexity of these systems, due to the lack
of high-level software abstractions, and the hardware constraints
of wearable devices. In contrast with low-level programming and
general-purpose middleware, domain-specific frameworks are an
emerging programming paradigm designed to fulfill the lack of
suitable BSN programming support with proper abstraction lay-
ers. This paper analyzes the most important requirements for
an effective BSN-specific software framework, enabling efficient
signal-processing applications. Specifically, we present signal pro-
cessing in node environment (SPINE), an open-source program-
ming framework, designed to support rapid and flexible prototyp-
ing and management of BSN applications. We describe how SPINE
efficiently addresses the identified requirements while providing
performance analysis on the most common hardware/software sen-
sor platforms. We also report a few high-impact BSN applications
that have been entirely implemented using SPINE to demonstrate
practical examples of its effectiveness and flexibility. This develop-
ment experience has notably led to the definition of a SPINE-based
design methodology for BSN applications. Finally, lessons learned
from the development of such applications and from feedback re-
ceived by the SPINE community are discussed.

Index Terms—Design methods, human-centered applications,
sensor programming frameworks, signal processing in node
environment (SPINE), wireless body sensor networks (BSNs).
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I. INTRODUCTION

AWIRELESS body sensor network (BSN) is a collection of
wearable (programmable) sensor nodes communicating

with a local personal device. The sensor nodes have computa-
tion, storage, and wireless transmission capabilities, a limited
energy source (i.e., battery), and different sensing capabilities
depending on the physical transducer(s) they are equipped with.
Common physiological sensing dimensions include body mo-
tion, skin temperature, heart rate, skin conductivity, and brain
activity. The local personal device is typically a smartphone or
a PC, and allows for real-time monitoring, as well as long-term
remote storage and off-line analysis. Very diverse application
scenarios are enabled by BSN technologies, although m-Health
applications are probably the most emblematic example. BSN
systems can be used to directly monitor several vital signs con-
tinuously and noninvasively, as tiny wireless sensors are placed
on the skin and sometimes in the garments. These signals can,
in turn, infer many diseases (e.g., cardiovascular or neurodegen-
erative) at an early stage. Furthermore, BSNs are great enablers
for many other application domains such as e-Sport, e-Fitness,
and e-Wellness, where the objective is not specifically related
to disease detection and/or monitoring, but rather to help peo-
ple maintain physical and mental wellness. E-Factory is also
an emerging scenario in which BSNs have a central relevance;
these applications aim to monitor employees activities, such as
in production chains, to both help ensure safety, and to guide
proper assembly of the product. BSNs can play an important
role also for social physical/virtual interactions as they could
monitor emotional states of people while they meet, and enable
certain services depending on (mutual) emotion reactions.

However, although several BSN-based research prototypes
have been proposed to date [1], [2], almost none of them have
reached the market at this time. One of the main limiting fac-
tors is related to the programming complexity of these sys-
tems. Implementing real-time power-efficient distributed signal-
processing algorithms on wireless nodes that are very resource
limited and have to meet stringent requirements in terms of
wearability (including battery duration) remains extremely chal-
lenging and complex. Such algorithms are the basis for the
end-user applications of these devices. Yet, the software ab-
stractions provided natively by the current sensor node oper-
ating systems and development environments suffer a lack of
predefined, customizable, and easy-to-use sensing, sig-
nal processing, communication, and storage functionalities.

2168-2291/$31.00 © 2012 IEEE



116 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 43, NO. 1, JANUARY 2013

Consequently, BSN developers must devote significant develop-
ment time to what would be considered low-level programming
details, rather than focus on new and unique core application
functionalities and features. To date, almost all the BSN appli-
cations have been developed following two main approaches:
low-level programming and general-purpose middleware.

The most common approach consists of developing prototype
applications on BSN nodes as a monolithic block intertwin-
ing low-level services, reusable components, and application-
specific logic [10]–[17]. As a result, the developed software is
poorly reusable and difficult to modify. Moreover, the risk of
implementation errors is significant, and debugging can be a
very time-consuming process. Depending on individual devel-
oper skill, the main advantage is represented by manual code
optimization and efficiency.

The second approach is based on general-purpose frameworks
for wireless sensor networks. Such a framework is a software
layer consisting of a set of services implemented across a net-
work. It hides the complexity of low system and network layers
and provides proper abstractions and interfaces to the upper lay-
ers. Application developers can then focus on application logic
without dealing with the implementation details of the under-
lying services, and development time is generally shortened.
However, current general-purpose frameworks for WSNs such
as Agilla [3], DFuse [4], Milan [5], TAG [6], or Mires [7] are
designed to support a wide variety of application scenarios. As
a result, they are either too general (lacking abstractions typi-
cally needed for BSN systems) or demand too many resources
to realize efficient BSN-specific applications.

An emerging research topic is devoted to the design of novel
BSN programming approaches based on the concept of domain-
specific frameworks [8] which represent a concrete application
of the domain-specific modeling [9]. A domain-specific frame-
work is a collection of cooperating software entities that together
define a generic or template solution to a family of domain-
specific application requirements. Since such frameworks are
tailored around a well-defined domain, they enable faster pro-
totyping times and help realizing more effective and efficient
applications in the target domain. This paper discusses, in de-
tail, the most important requirements for an effective domain-
specific framework for BSNs. It then presents the signal process-
ing in node environment (SPINE) framework, a domain-specific
framework able to support rapid development of efficient
BSN applications, and describes how SPINE addresses these
requirements.

The remainder of this paper is organized as follows. Sec-
tion II discusses the requirements for a domain-specific frame-
work for BSN applications. Section III overviews some related
work. Section IV presents the SPINE Framework, analyzing
its distinctive features from different perspectives (architecture,
high-level data processing, and multiplatform support). Sec-
tion V focuses on thoroughly evaluating the SPINE performance
atop the most used hardware/software sensor platforms and also
with respect to well-known correlated frameworks. Section VI
briefly introduces some enabling BSN applications that have
been developed through SPINE to show the SPINE effective-
ness in supporting BSN systems. In Section VII, we propose a

TABLE I
COMMON TASKS OF BSN APPLICATIONS

design method based on SPINE and derived from the well-
known platform-based design (PBD) methodology for the devel-
opment of SPINE-based BSN systems. Section VIII discusses
the lesson learned with SPINE, summarizing interesting feed-
back received from the SPINE community. Finally, some con-
clusive remarks are drawn and future works delineated.

II. REQUIREMENTS FOR A DOMAIN-SPECIFIC BODY

SENSOR NETWORK FRAMEWORK

Typically, BSN applications share several common tasks on
top of which specific application components can be developed
at both sensor-node side and coordinator side. Table I describes
such common tasks that we have identified by examining in
depth the state of the art of BSN applications: sensor sam-
pling, in-node data (pre)processing, sensor (re)configuration
at run-time, node synchronization, duty-cycling mechanisms,
application-level communication protocols, and high-level pro-
cessing at the coordinator side.

Thus, a framework for the development of BSN applica-
tions should provide suitable programming abstractions and
tools to effectively and efficiently support the identified com-
mon tasks. Moreover, a software framework designed to sup-
port fast prototyping of efficient BSN applications should meet



FORTINO et al.: ENABLING EFFECTIVE PROGRAMMING AND FLEXIBLE MANAGEMENT 117

TABLE II
REQUIREMENTS FOR BSN FRAMEWORKS

specific (functional and nonfunctional) requirements in terms
of effectiveness, efficiency, and usability. In particular, such a
BSN-oriented framework should facilitate the development of
well-structured and resource-efficient applications with less ef-
fort in terms of development time and application programming
complexity. Resulting developed code should be more modular
and easier to maintain, and with usable tools for sensor-node-
side and coordinator-side application management. A system
interoperability requirement is desirable, which allows the inte-
grated use of heterogeneous sensor platforms in the same BSN
application. Finally, privacy is a very important nonfunctional
requirement in the context of BSN applications, as they usually
involve processing and communication of data acquired from
the human body. Such data are inherently personally identifiable
and may be medically relevant and, therefore, highly privacy
sensitive. In the following, such requirements are extensively
discussed. Table II summarizes the main identified requirements
for a BSN-oriented application development framework along
with key techniques/mechanisms, which the framework should
incorporate, capable of fulfilling them.

Programming Effectiveness refers to the ability of the soft-
ware framework to provide effective and specific support for the
programming, debugging, and testing of BSNs applications. It
is enabled by suitable programming abstractions, software engi-
neering methods, and debugging and testing tools. In particular:

1) Programming abstractions refer to development
paradigms, programming interfaces, and built-in func-
tionalities that provide easier access to the platform
physical resources (e.g., sensing, storage, and com-
munication), and higher level functionalities that help
developers focus on core application aspects. In particular,
the following BSN programming abstractions should be
made available: a) tunable sensor drivers, as it is often
necessary to adjust (sometimes during run-time) the
sampling rate, sensitivity, and range, or to enable a subset
of channels of a multichannel sensor (e.g., only some of
the axes of a three-axial accelerometer or gyroscope);
b) flexible data structures to easily accommodate different
data types (e.g., short, int, or long values) so that, for
instance, the same buffer might be configured for storing
data from sensors that produce samples with different
word-length; c) flexible communication application
programming interface (API), as different applications
may require different data payload structure and length;

d) parameterized processing functions, to set the inputs
of the functions without hard-coding their values (e.g.,
to allow run-time configuration of feature extractions on
variable signal windows). Finally, built-in tunable power
management schemes allow for customized tradeoff
between performance, reliability, and system lifetime.
They are often intended to improve the lifetime of
the sensor node, and allow, for instance, the radio duty
cycling (that may drastically reduce energy consumption),
reducing the sensor/s sampling and processing (which
typically reduce energy consumption at the cost of lower
performance), or disabling data transmission over-the-air
and enabling local storage.

2) Software engineering methods aim to support rapid proto-
typing of BSN applications through the use of component-
based approaches. They include properties such as ro-
bust isolation among software modules that enhances code
reusability, and testing of individual modules. In particu-
lar, the availability of predefined (ready to use) software
components that are common to most of the BSN applica-
tions, along with well-defined techniques through which
assemble them, is critical to obtain prototypes in a short
period of time. The main components often used in BSN
applications are signal filters (e.g., finite impulse response
filters) to clean or amplify a signal, feature extractors (e.g.,
average, variance, zero crossing, and signal slope) to re-
duce the amount of data to be transmitted, classification
algorithms (e.g., K-NN, decision trees) useful as deci-
sion support tools, and an application-level communica-
tion protocol (that includes, e.g., nodes/services discovery,
failure notification, and user data transmission).

3) Debugging and Testing tools allow for compile and run-
time assessment of the functional correctness of the BSN
application under-development. They are both extremely
useful to help developers find errors that can be revealed
only during run-time. Debugger tools are useful to lo-
cate the cause of a known erroneous application behavior,
while testing tools are used to help verify the correctness of
software components, as well as find specific situations in
which the program crash or executes unexpectedly. Such
tools may be offered by the development environment
and can be based on simulators or step-by-step debuggers
that are able to track the state of the application at each
instruction.

System Efficiency refers the quality with which energy, mem-
ory, and computational resources in the system are managed,
particularly with respect to the resource limited wearable sen-
sor nodes. It is important to optimize the code footprint (i.e.,
reduced code segment memory needs) and reduce RAM usage
for sensor node binaries, as common BSN nodes use a micro-
controller as their CPU. Thus, optimizing the signal-processing
algorithms that run on the sensor node is essential.

System Interoperability refers to the ability of using and mak-
ing collaborate devices based on different hardware/software
technologies. It includes the possibility of communication be-
tween different nodes of the same software platform (e.g.,
TelosB and Micaz motes on TinyOS), the ability of the
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system to allow heterogeneous network formation of nodes
that are programmable using the same language, the interop-
erability among homogeneous BSN coordinators, and, finally,
the ability of the system to inter-operate with heterogeneous
networks (e.g., Internet through sockets or XML RPC). It can
be enabled by an application-level communication protocol and
communication adapters for heterogeneous sensor inclusion that
jointly allow the simultaneous use of devices based heteroge-
neous hardware/software technologies.

System Usability indicates the property of a system to be
user-friendly for both end-users, and developers/designers. It is
typically supported by GUI-based flexible management of the
BSN along with a coordinator running either on PC or smart-
phone so that the BSN can be (re)configured remotely without
manually coding the instructions, but through intuitive graphical
interfaces.

Privacy Support refers to the ability of a system to protect a
user’s confidential information (such as physiological signals).
Encryption and authentication mechanisms allow the system to
maintain the secrecy of such information and, in turn, ensure
that it is released only to authorized entities. Privacy protection
is critical in real-life scenarios and can only be achieved when
supported by all sources and channels of privacy sensitive infor-
mation. As the source of privacy sensitive information, BSNs
should adopt strong privacy protection features and controls.

III. RELATED WORK

A. e-Health Body Sensor Network Systems

BSNs are receiving great interest from both academy and
industry as a novel technology for improving health-care sys-
tems and, as a consequence, quality of life. Practical e-health
scenarios where BSNs could be effective include physical activ-
ity recognition, physical rehabilitation, cardiac and respiratory
diseases prevention and early detection, emotion recognition,
remote elderly assistance and monitoring, sleep quality moni-
toring and sleep apnea detection, gait analysis, and Parkinson’s
symptoms. A wide range of such application prototypes has
been proposed, although most of them have not hit the mar-
ket yet. Here, we present some of the most representative and
pioneering research efforts and prototypes.

An innovative physical activity monitoring system is pre-
sented in [10]. The system is based on the eWatch, a multisensor
platform that can be worn in several body positions (such as at
the wrist, ankle, waist, and trousers pocket). Multiple activities
(sitting, standing, walking, ascending and descending stairs, and
running) are recognized in real time and stored into the device
for later analysis. The in-node classifier algorithm is a decision
tree fed with time-domain features extracted online from the
raw readings of a two-axis accelerometer and a light sensor.
Other projects [11]–[13] aim to recognize more complex activi-
ties, including movements (such as drinking, brushing the teeth,
and writing), and hand or facial gestures, but they combine data
from multiple sensor nodes placed in different body positions
rather than using a single multisensor unit like the eWatch.

MyHeart [14] is a system for cardiovascular diseases preven-
tion and detection. The sensors to detect the electrocardiogram

(ECG) signal are embedded into garments and an on-body pro-
cessing unit is in charge to perform signal processing to enhance
the ECG signal and reduce artifacts introduced by body motion.
A single-axis accelerometer placed into the on-body processing
unit is used to perform a real-time activity classification, whose
results are taken into account for the correct interpretation of the
ECG variations. The system also features a Bluetooth interface
to a Java-powered mobile phone where the end-user applica-
tion is running. The application allows the user to interact with
the BSN and, when Internet connectivity is detected, forwards
the acquired signals to a remote monitoring center consulted by
professional care-givers.

Emotion recognition can be of interest, for instance, in
human–computer interaction systems, and as a support to spe-
cialists and patients affected by autism. In [15], a study on using
BSN technology to recognize human emotions has been pre-
sented. The system uses the BodyMedia SenseWear Arm-band
to extract physiological signals needed by the classification al-
gorithm to detect sadness, anger, surprise, fear, frustration, and
amusement. In particular, galvanic skin response (GSR), heart
rate, and skin temperature are involved in the recognition task.
Other projects process only the GSR signal (however, high ac-
curacy is reached only to detect arousal) or use facial expression
to derive emotions [16], [17], although video cameras or EMG
electrodes placed on the face are required in this case. In [18],
a pilot study for monitoring Parkinson’s symptoms and motor
complications using wearable sensors is described. Eight wire-
less accelerometer sensors are placed on the left and right arms
and legs. In-node feature extraction is performed on the acceler-
ation signals to evaluate the severity of Parkinson’s symptoms,
by capturing movements associated with tremor, bradykinesia,
and dyskinesia; such estimations could be used to facilitate the
administration of medications. The authors stress on the impor-
tance of defining such methods and algorithms that are feasible
to be implemented on wearable nodes, to improve system life-
time and enable long-term patients monitoring.

All the described systems have been implemented using the
application-specific approach, which leads issues such as com-
plex and time-consuming maintenance and upgrade, as the code
produced tends to be less reusable. Furthermore, developers had
to implement from scratch functionalities that would have been
offered by a domain-specific framework such as SPINE.

B. Frameworks Supporting Body Sensor Network
Application Programming

The literature on domain-specific frameworks for BSN pro-
gramming is rather small. Indeed, just a few frameworks have
been proposed to date. This is partially due to the lack of stan-
dardization for BSN sensor node hardware and software plat-
forms, due to the fact that the BSN-based e-health domain is
still quite novel, and due to the application-driven programming
approach taken by many BSN developers that do not stress the
need for higher level software abstraction and toolkits.

One of the most relevant and, probably, the first attempt to
define a general platform able to support various BSN applica-
tions is CodeBlue [19]. Originally, it was designed to address a
wide range of medical scenarios, such as monitoring patients in
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hospitals or victims of a disaster scene, where both pa-
tients/victims and doctors/rescuers may move and not neces-
sarily be in direct radio range all the time. CodeBlue consists of
a set of hardware wearable medical sensor nodes (pulse oxime-
ter, ECG, EMG, accelerometer, and gyroscope) based on the
TelosB and MicaZ motes and on a software framework running
atop the TinyOS operating system [20] specifically designed
for integrating wireless medical sensor nodes and other devices,
such as PDAs and PCs. The CodeBlue framework allows these
devices to discover each other, report events, and establish com-
munications. It includes a naming scheme, a multihop commu-
nication protocol, authentication and encryption capabilities,
location tracking and in-network filtering, and aggregation.

A more recent example is RehabSPOT [21], a customizable
wireless networked body sensor platform for physical rehabili-
tation. RehabSPOT is built on top of SunSPOT technology [22]
from Oracle (formerly Sun Microsystems). The fundamental
idea behind RehabSPOT is that instead of downloading differ-
ent programs onto different sensor nodes, RehabSPOT-based
BSNs run a uniform program on all wearable nodes, although
they may perform different sensing and/or signal-processing
functions during run-time. The system software is based on a
client–server architecture. The server program is installed and
running on a PC, while the client program is installed in the
remote nodes. The communication between client and server
programs follows the message passing distributed computing
paradigm by leveraging the computation power embedded in-
side the remote nodes. A lightweight protocol for device discov-
ery at both remote nodes and base station to support dynamic
BSN construction has been introduced.

SPINE improves the current state of the art, fulfilling the main
limitations of the aforementioned frameworks. CodeBlue, for
instance, does not provide for complex and customizable pro-
cessing functionalities. RehabSPOT, instead, is available only
for the SunSPOT platform and, hence, does not guarantee suffi-
cient system heterogeneity.

In addition to the related work presented previously, a few
general-purpose middlewares for WSNs have been customized
to develop BSN-based health-care applications. Specifically,
Titan [23] and MAPS [24] have been used to develop a real-
time physical activity recognition prototype based on body-
worn motion sensors. Titan supports implementation and exe-
cution of context recognition algorithms in dynamic WSN en-
vironments by representing data processing by a data flow from
sensors to recognition results. The data are processed by tasks
that are interconnected to define a task network. It has been
designed to run on resource constrained sensor nodes and im-
plemented in TinyOS on Tmote Sky motes. MAPS is a novel
Java-based framework for wireless sensor networks based on
SunSPOT technology which enables agent-oriented program-
ming of WSN applications. MAPS has been appositely defined
for resource-constrained sensor nodes. It adopts component-
based lightweight agent server architecture to avoid heavy con-
currency models as well as lightweight architecture for efficient
agent execution, and migration. It also features minimal core
services involving agent migration, sensor resource capability
access (actuators, input signalers, flash memory, and battery),
agent naming, agent communication, and timing.

TABLE III
COMPARISON AMONG DIFFERENT DOMAIN-SPECIFIC

AND GENERAL-PURPOSE FRAMEWORKS

Table III summarizes the comparison of the domain-specific
frameworks described above against SPINE on the basis of the
identified requirements and high-level techniques for an effec-
tive BSN programming framework.

IV. SIGNAL PROCESSING IN NODE ENVIRONMENT

FRAMEWORK

SPINE [25], [26] is an open-source software framework [27]
for fast prototyping of applications based on BSNs. It has been
designed around the requirements defined in Section II to max-
imize its effectiveness for the development of applications in
the BSN domain. In particular, SPINE provides support for
distributed signal-processing intensive BSN applications by a
wide set of predefined physiological sensors, in-node and on-
coordinator signal-processing utilities, flexible data transmis-
sion, and optimized network/resource management. SPINE has
a powerful and well-designed modular structure that allows easy
integration of new custom-designed sensor drivers and process-
ing functions, as well as flexible tailoring and customization
of its built-in features as developers deem necessary. One fun-
damental idea behind SPINE is the reuse of software compo-
nents to allow different end-user applications to configure sensor
nodes at run-time based on the application-specific requirements
so that the same embedded code can be used for several applica-
tions without reprogramming. SPINE natively supports logical
star-topology sensor networks, where the edges are represented
by the wearable sensor nodes, and the center is a smart coor-
dinator station. As SPINE uses an application-level protocol, it
may rely on a network layer which supports multihop so that the
physical network can actually involve communication between
the coordinator and nodes that are more than one hop away.

The remainder of this section is organized as follows:
Section IV-A describes in detail the software architecture of
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Fig. 1. SPINE middleware architecture.

the SPINE framework, Section IV-B focuses on one of its most
recent and promising components that is the high-level data-
processing module, while Section IV-C describes the great de-
gree of heterogeneity of SPINE in terms of supported sensor
node and coordinator device platforms.

A. Architecture

Fig. 1 depicts a general overview of the SPINE architec-
ture. The SPINE middleware (MW) spans to both the coordi-
nator device and the wearable sensor nodes forming the BSN.
Both at coordinator and sensor node, SPINE provides an API
to manage the BSN application which relies on a platform-
independent communication protocol layer that we have specifi-
cally designed for SPINE. This abstraction layer is implemented
by different platform-dependent communication adapters (sup-
porting IEEE 802.15.4 and Bluetooth) which are dynamically
loaded at the coordinator which are linked at compile time at
sensor node level.

Figs. 2 and 3 depict, respectively, the two main components
of SPINE: SPINE Node(s) and SPINE Coordinator. The for-
mer is implemented in the sensor platform-specific embedded
programming language and runs on each sensor node forming
the BSN; the latter is implemented in Java and runs on the
coordinator device.

The SPINE Node is organized in four interacting components.
1) The “Sensor Node Manager” is responsible for the gen-

eral interactions among the sensing management, signal
processing, and communication modules, and dispatches
requests coming from the remote coordinator to the ap-
propriate block.

2) The “Communication” block handles reception and trans-
mission of messages over-the-air, and manages radio duty
cycling. It is composed by inbound packets decoders (i.e.,
service discovery, setup sensor request, set up function
request, function (de)activation request, and start and re-
set computation requests) and outbound packets encoders

Fig. 2. SPINE node software architecture.

(service advertisement, acknowledgment packet, sensor
readings, and processed data message). Each received or
sent message is initially handled by the radio controller
which provides a common interface regardless on the spe-
cific radio chip adapter.

3) The “Sensing Management” block consists of the sensor-
board controller component which acts as a general in-
terface to the physical sensors of the platform, setting up
timers when periodical sensing is requested by the re-
mote coordinator, or simply performing one-shot reading
to the requested sensors. The sensor-board controller man-
ages, independently from the specific hardware specifica-
tions, all the supported sensor drivers (currently three-
axis accelerometer, two-axis gyroscope, 4-leads ECG,
GSR, respiration rate, environmental temperature, light,
and humidity) through a list of sensor interfaces. This de-
sign approach guarantees high modularity and efficient
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Fig. 3. SPINE coordinator software architecture.

customization to properly support the hardware sensing
capabilities of the target platform. The sensor-board con-
troller uses the BufferPool component to store the sen-
sor readings so that they become available to the signal-
processing block. Specifically, the BufferPool consists of
a set of circular buffers and provides two mechanisms to
access the sensor data: 1) upon requests using getter func-
tions, and 2) using listeners that are notified when new data
from sensor/s of interest are available. The sensing man-
agement block, finally, contains a sensor registry where
each compiled sensor driver self-registers at boot-time, to
allow other components to retrieve the available sensor
list.

4) The “signal-processing” block uses the function manager
to handle a flexible, customizable, and expansible set of
signal-processing functionalities such as math aggregators
(currently, max, min, amplitude, mean, variance, stan-
dard deviation, entropy, and signal energy), filters, and
threshold-based alarms that can be applied to any sensor
data streams. Again, to simplify customization and exten-
sion with custom-developed functionalities, the function
manager engine uses an efficient design approach, based

TABLE IV
API EXPOSED BY SPINE AT THE COORDINATOR STATION

on a list of function interfaces which abstract any type of
processing tasks. The signal-processing block retrieves the
data to be processed from the BufferPool and, by interact-
ing with the sensor node manager and the packet manager,
it reports the results over-the-air back to the coordinator.

The SPINE Coordinator is organized in the two macrocom-
ponents.

1) The “communication” block has similar functionalities of
the corresponding block in the sensor node and has been
designed to load the proper radio module adapter (i.e., for
TinyOS 802.15.4 motes, Bluetooth devices, and for emu-
lated SPINE nodes) dynamically. This component has the
important function of abstracting the logical interactions
between the coordinator and the BSN from the low-level
transmissions that depend on the actual platform technol-
ogy being used. This is obtained by decoupling the com-
munication service interface from its platform-dependent
implementation layer.

2) The “SPINE coordinator manager” block represents the
most superficial layer and is the only one the SPINE ap-
plications will be based on. It includes the sensor network
control API and the event dispatcher. The former is an
interface exposed to the end-user application developers
to manage the underlying BSN (e.g., to activate sensor
sampling and on-node signal processing to certain nodes).
Table IV summarizes the most relevant functionalities pro-
vided by the control API. The latter forwards events such
as new nodes discovered, alarm or user data messages
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Fig. 4. Java desktop implementation of the SPINE management GUI (sensor-
node configuration dialog window).

to the registered listeners implemented by the SPINE
applications.

In addition to the core components, SPINE currently provides
two “optional add-ons” modules.

1) The “high-level data processing” enables signal process-
ing and pattern recognition on the coordinator node. Using
the SPINE distributed computing architecture, this impor-
tant module supports the design and implementation of
new applications by providing highly generalized inter-
faces for data preprocessing, feature extraction and se-
lection, signal processing, and pattern classification. It is
designed to simplify the integration of SPINE in signal
processing or data mining environments, providing func-
tionality such as automatic network configuration, aggre-
gate data collection, and graphical configuration. It also
includes a bridge to the popular WEKA [28] data mining
toolkit to allow the use of its feature selection and pattern
classification algorithms from within SPINE.

2) The “SPINE management GUI” is a graphical add-on tool
that allows configuration of remote sensor nodes using a
user-friendly interface (rather than by programming). It
also contains a simple textual logging function for events
generated by remote nodes and received by the underlying
SPINE coordinator (e.g., discovery advertisement packets
and data messages). Snapshots of the desktop and Android
implementation of this GUI are shown in Figs. 4 and 5,
respectively.

From a programming perspective, SPINE provides abstrac-
tion layers for the node discovery, sensing, signal processing,
and data transmission over-the-air. Apart from providing built-
in support for given sensors and processing, SPINE has been
designed such that it is very straightforward to add software
support for new, custom-defined sensor drivers, and develop-
ers can easily interact with the sensor nodes through a simple
Java API. The main functionalities exposed by this API are

Fig. 5. Android implementation of the SPINE management GUI (sensor and
function configuration dialog windows).

Fig. 6. Data-processing chain supported by the SPINE high-level data-
processing module.

summarized in Table IV. In the following sections, the high-level
processing and the multiplatform support enabled by SPINE are
described in more detail.

B. High-Level Data Processing

This module has been organized as an optional SPINE plug-
in and represents a powerful extension to the core framework
as it provides more complex signal processing and decision
support functionalities (e.g., pattern recognition, classification,
etc.) that are intended to be performed at the coordinator. It pro-
vides signal processing and pattern recognition (or data mining)
with flexible and reusable Java code. It is designed to sim-
plify the integration of SPINE in signal processing and pattern
recognition environments providing more application-oriented
functions such as automatic network configuration, aggregate
data collection, and graphical configuration. The module pro-
vides complete support during all the steps, from sensor data
acquisition up to classification, as shown in Fig. 6.

Fig. 7 depicts a schematic layered view of the high-level
data-processing module. The lower layers represent the WSN
and the way the module communicates with it (i.e., through
SPINE). On top of them, a set of converters manipulate data
coming from SPINE to obtain a more powerful and manageable
representation. In particular, the module is based on the concept
of Datasets and Signals, which are objects defined in the data
layer. This enables signal processors and data mining tools to
transparently work on data coming from the sensor nodes. One
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Fig. 7. High-level data-processing layered software architecture.

of the key features of this module is the capability of convert-
ing data in various formats such as the comma-separated values
or the attribute-relation file format document format (used by
Weka). Finally, a collection of helper classes has been defined
to speed up the implementation of the most common tasks of
SPINE applications. These helpers have been designed to re-
duce as much as possible the amount of code needed to con-
figure SPINE networks for specific uses. They aggregate data
from sensors that can be conveniently rearranged in any of the
structures aforementioned.

Each provides a number of default implementations the de-
veloper may choose. In addition, a modular architecture allows
for easy integration of further custom-defined components.

Sensor data are retrieved using the core functionality of
SPINE, and then converted into more convenient data structures
that reflect the concepts of signals and datasets. Optionally, de-
velopers may apply filtering and segmentation to the collected
signals. Feature Extraction algorithms have also been provided,
as they become useful when the application developers do not
choose to perform in-node feature extraction. Furthermore, sev-
eral feature selection techniques are available to identify optimal
subsets of the extracted features that are later used for the clas-
sification phase. The classification phase is widely supported,
also allowing for classifier algorithm training. A few algorithms
have been implemented, and, if needed, the developer may eas-
ily integrate further classifiers. Moreover, our module is also
integrated with the WEKA data mining toolkit. This brings
great advantages to SPINE as developing machine learning al-
gorithms is extremely time consuming. The choice of WEKA is
motivated by its very wide academic and industrial community,
and because it is freely distributed under the GPL license.

C. Multiplatform Support

The variety of hardware platforms, sensors, programming
languages, and operating systems supported by SPINE enables
a great degree of heterogeneity (see Fig. 8). This allows for a
very flexible and usable framework in different BSN application
scenarios (e.g., e-Health, e-Fitness/Wellness, and e-Factory),
where, due to specific requirements, only certain platforms or
operating systems might be used.

At the sensor node level, SPINE supports the most diffused
wireless sensor platforms. The TinyOS implementation runs
on TelosB/Tmote Sky, MicaZ, and Shimmer (both the IEEE
802.15.4 radio and Bluetooth radio are supported on Shimmer).
This implementation also provides an optional security function

Fig. 8. Heterogeneous physical sensors and sensor platforms supported by
SPINE.

TABLE V
SPINE-TESTED MOBILE PERSONAL DEVICES

that is based on hardware AES-128 encryption of the CC2420
radio (used on the Telosb/Tmote Sky, MicaZ, and Shimmer
platforms). In addition, SPINE implementations for ZigBee
devices (Telecom Italia “Bollino” equipped with a Chipcon
CC2530 SoC) using the Texas Instruments Z-Stack, and for the
Java-based SunSPOT nodes, are also available. Many physical
sensors (accelerometers, gyroscopes, ECG, electroimpedance
plethysmography, temperature, humidity, and light) are sup-
ported by default as their drivers are distributed along with the
core framework components, and simple signal-processing op-
erations (e.g., mathematical aggregation functions such as max,
min, average, and standard deviation) are implemented directly
at the sensor node level. As previously mentioned, the set of
predefined sensing and processing functionalities can be easily
extended. For instance, for the Shimmer platform [29], while
the driver for the accelerometer is available by default, devel-
opers may integrate further drivers for other sensors that can
be attached to the Shimmer (e.g., the gyroscope, ECG, EMG,
or the magnetometer). In addition to the built-in processing
functions, others may be implemented and integrated into the
SPINE framework depending on specific application needs; for
instance, it is very simple to integrate additional feature extrac-
tors such as the zero crossing or the first derivative, and even
simple classifier algorithms such as a small decision trees.

At the coordinator level, SPINE supports heterogeneous de-
vices, spanning from smartphones and PDAs (see Table V for de-
tails) to personal computers/workstations. Windows and Linux-
based PCs/workstations are widely supported through the Java
SE implementation of the framework and the availability of
the lower level components for communicating with the remote
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sensor nodes. A Java ME porting has also been carried out so
that many Java powered smartphones and PDAs can be used
as SPINE coordinators. More recently, an Android implementa-
tion of SPINE has been developed. It has been tested on several
smartphones based on Android 2.2 or above which commu-
nicate with Shimmer nodes over Bluetooth. Furthermore, an
implementation with limited functionalities using the QT devel-
opment environment has been realized. It runs on Symbian and
Windows, and enables Bluetooth communication with Shim-
mer nodes using the third-party QBluetooth library. Supporting
smartphones as coordinator devices is often crucial for many
real-time health monitoring applications especially when the
system must be able to properly work continuously and outdoor,
where is not possible to rely on fixed infrastructures. Many mod-
ern smartphones and tablets easily have sufficient computation
and storage capabilities to support different classes of BSN ap-
plications (e.g., activity, cardiac and respiratory monitoring) as
they can be equipped with 1-GHz (and more) CPUs, possibly
dual-core, with hundreds megabytes of RAM and gigabytes of
external flash storage drives. Furthermore, through their Inter-
net connectivity capabilities, they can transmit sensed and/or
processed data to remote servers and cloud services for offline
and long-term analysis [30].

Finally, SPINE has been also ported on an emulator tool,
which is called SPINE Emulator, that virtualizes SPINE-enabled
sensor nodes. The tool allows emulation of a set of nodes form-
ing a wireless BSN and requires a dataset for each node. The
dataset can be built using a provided data collector tool which
records data from real sensor nodes. Hence, a particular emu-
lated node is virtually equipped with sensors determined by the
given dataset. There are several advantages of using a SPINE
emulator. For instance, processing functionality can be tested in
the emulated environment first, to simplify the debug process.
Furthermore, datasets from real sensors can be used to objec-
tively validate and compare different processing algorithms or
hardware setups. Finally, the emulator and a standard dataset
can be used by interested developers to investigate the potential
of the SPINE framework itself, even if they do not have suitable
physical sensor nodes.

V. EVALUATING SIGNAL PROCESSING IN NODE ENVIRONMENT

PERFORMANCE ON MULTIPLE PLATFORMS

An extensive performance evaluation of the SPINE frame-
work was carried out, which included all the supported sen-
sor node platforms. It included measurement of the execution
time of signal-processing functionalities, memory usage of the
framework, and bandwidth and energy consumption under a
given application profile. We have, in fact, defined a common
benchmark scenario that was supported both by SPINE and im-
plemented with hard-coded logic in TinyOS. In particular, the
application profile corresponds to a three-axis accelerometer
sensor (attached to the node platform) that is sampled at 20 Hz,
and a sequence of 20 sensor readings is transmitted to the co-
ordinator device by using a single message so that the radio is
actively used to transmit one message every second. In addition,
we have reimplemented some of the significant functionalities

Fig. 9. Execution time of selected in-node functions computed on different
sensor platforms using sampling time = 20 Hz, window = 40 samples, and
shift = 20 samples.

of SPINE in specific hard-coded applications in TinyOS, in or-
der to evaluate how much overhead in terms of computation,
memory, and energy requirements is added by SPINE.

This analysis is important as it provides the quantitative cost
paid for the advantage of drastically reduced development time
of BSN applications. As highlighted in the following sections,
results from the performance evaluation are a crucial support for
SPINE developers that need to achieve high system efficiency.

A. Function Execution Time

Measuring the execution time of some key operations of
SPINE running on the supported sensor platforms is impor-
tant, not only to compare the platforms themselves, but also to
identify the upper bound of the sampling rate and transmission
rate considering the time needed to process the sensor readings
and transmitting the results over-the-air. To ensure the reliability
of in-node processing, developers must ensure that the execu-
tion time to calculate the most computational-intensive feature
is shorter than the sampling period of the associated sensor.
This is necessary to avoid potential sampling inconsistencies or
overwrites of sensor data before they can be processed. Espe-
cially, while using TinyOS, sensor sampling and buffering may
be blocked until a feature processing is completed, leading to
an inconstant sampling rate.

To provide a practical example, we implemented a simple
physical activity recognition system based on Shimmer motes
(that natively embed a three-axial accelerometer) placed on the
human body. Most of the basic human movements and postures,
such as walking or sitting, have loose requirements in terms
of sensor sampling rate and feature processing. Accelerome-
ter sampling rate between 20 and 40 Hz, and processing of
features such as the average, max, and min value over sen-
sor data windows of 40–100 samples with 25–50% overlap are
more than sufficient to enable the classification of simple ac-
tivities. Calculating such features over 100 samples using the
SPINE framework on the Shimmer platform takes much less
than the sampling period of 25 ms if the sensor is sampled at
40 Hz (see Fig. 9). Therefore, for this class of applications, it is
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TABLE VI
MEMORY REQUIREMENTS, ENERGY CONSUMPTION, BANDWIDTH, AND AVERAGE TRANSMISSION DELAY (FOR SENDING 28 BYTES) OF THE BENCHMARK

SCENARIO (MOTION SENSOR BOARD WITH FEATURE EXTRACTORS AND THRESHOLD-BASED ALARMS) ON DIFFERENT PLATFORMS

actually more convenient to enable in-node processing as con-
stant and continuous sensor sampling is always achieved. How-
ever, a similar analysis may lead the application designer to
choose slower sampling rate requirements, or perform the sensor
data processing entirely at the coordinator if in-node processing
will interfere with the sensor sampling.

To boost framework performance, SPINE implements an ad-
vanced execution mode that can be enabled for certain features.
While features are normally computed upon arrival of the last
sample in the window associated with that feature, some features
such as maximum, minimum, and average can be computed in-
crementally with each sample. For instance, it is possible to use
an average feature implementation that splits the computation
in elementary processing steps consisting of a simple summa-
tion of a new sensor reading to a total, and a single division of
the total by the window size when the data window must slide.
Many other features may be split in partial processing steps that
are distributed during the sensor sampling and that are individ-
ually faster than equivalent monolithic implementation, hence
allowing for higher sampling rates.

In addition, the comparison of SPINE processing operations
with applications implemented ad hoc to execute them without
any other overhead (to achieve highest performance) provides an
estimation of the overhead introduced by SPINE. Fig. 9 summa-
rizes some relevant time measurements. Z-Stack and SunSPOT
platforms are based on a more powerful microcontroller which
allows for faster execution times on the feature calculations.
However, significant packet transmission overhead, caused by
a tall network stack, can be observed on the SunSPOT. TelosB
and Shimmer show identical results as they are based on a very
similar hardware/software architecture (they have the same mi-
crocontroller and 802.15.4 radio, and both run TinyOS). Among
the analyzed functions, standard deviation and root mean square
are the most time consuming, and, in particular, they take longer
on TelosB and Shimmer due to the less performing microcon-
troller of these platforms (note that we did not use any hard-
ware multipliers for these experiments). As expected, the ad
hoc implementation on the TelosB performs better because the

modularity of SPINE adds some overhead incurred by the com-
munication among its components.

B. Memory Usage

The memory footprint of SPINE was analyzed on different
platforms. In particular, we have included with the core frame-
work the drivers for a motion sensor board (which mounts an
accelerometer sensor), the feature extractors, and the threshold-
based alarms signal-processing units. Results summarized in
Table VI show that the framework is well optimized and pro-
vides enough free memory for custom-developed extensions to
the framework, and for different tradeoffs while dimensioning
the size of the sensor data buffers (which affects RAM usage).
It is worth noting that complex extensions of the framework,
configured to compile with the standard built-in functionalities,
may not be installed on selected platforms if the required bi-
nary code resulting from the compilation process is greater than
the available ROM size. The modular architecture of SPINE,
however, helps developers reduce the ROM footprint by easily
reconfiguring the framework to exclude any standard sensing
and processing functionalities that are not needed for specific
applications.

C. Energy Consumption

To better understand the energy consumption results, it is
worth noting that while SPINE provides a built-in low-power
radio mode for TinyOS sensor platforms with IEEE 802.15.4
radio, this is not available if using the Shimmer Bluetooth radio.
The low-power radio mode was not implemented on the hard-
coded logic application.

To obtain the actual power consumption of the whole plat-
form, a professional digital oscilloscope connected to the motes
was used. The average power consumption is computed as the
weighted average consumption between the radio usage (mes-
sage transmission and listening for incoming packets) time and
the sensing/processing time during one cycle (that is, in this
case, 1 s, as the sensor is sampled at 20 Hz, and the system
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waits 20 samples before packing them into a message that is
eventually transmitted).

Results show that the lowest average power consumption is
achieved with SPINE running on the TelosB platform, which
also results in the longest lifetime since the available Li-ion bat-
tery (we have modified the standard TelosB which normally use
two AA alkaline batteries) has the greatest capacity among the
selected platforms (see Table VI). Although the TelosB and the
Shimmer platforms are both based on the same microcontroller
(the Texas Instrument MSP430F1611) and radio (the Chipcon
CC2420), there is a significant difference in the power consump-
tion among the two platforms. This is due to the accelerometer
used by the Shimmer, which consumes about six times more than
the one mounted on the custom motion board of the TelosB.

D. Communication Bandwidth

To analyze the bandwidth usage, we refer to the same bench-
mark scenario defined at the beginning of Section V. Therefore,
we send over-the-air, once a second, 20 readings of a three-axis
accelerometer, where each single-axis sample takes 2 bytes.
Consequently, the total user data to be transmitted each sec-
ond are 60 samples, totaling 120 bytes. On platforms using the
IEEE 802.15.4 CC2420 radio, SPINE automatically fragments
this message as the total number of bytes to send is greater than
the TX buffer (which is 128 bytes). Results are summarized in
Table VI. This includes the TelosB, Shimmer, and SunSPOT.
Using the Z-Stack platform is possible to transmit the whole
message into a single packet, resulting in a lower bit rate. With
the Shimmer, it is possible to use the Bluetooth radio and de-
crease the overhead incurred by fragmentation. Finally, as ex-
pected, a hard-coded implementation of the application allows
for a significantly reduced number of bytes transmitted with
respect of a SPINE-based implementation because the frame-
work must add to each packet generic and packet-specific head-
ers. Table VI reports the average time to transmit over-the-air
a packet of 28 bytes using different sensor platforms. Results
show that SPINE does not introduce a relevant overhead with
respect to the application-specific implementation on TinyOS.
On the SunSPOT, instead, the underlying VM components and
a more sophisticated low-level communication model cause a
significantly longer transmission time. Finally, as expected, our
measurements confirm that using Bluetooth on the Shimmer al-
lows for shorter delays (three times shorter than transmitting the
same packet using the 802.15.4 radio).

E. Comparison Between Signal Processing in Node
Environment, CodeBlue, and TITAN

In addition to the comparison of the benchmark scenario
among different platforms running the SPINE framework, we
have implemented our benchmark using the CodeBlue and
TITAN frameworks (see Section III) and compiled it for the
TelosB platform. This allowed us to analyze and compare the
performance and programming effectiveness of the three frame-
works to address a simple yet meaningful BSN application.
From a performance point of view, as summarized in Table VI,
the SPINE and CodeBlue implementations of the benchmark

have similar memory and bandwidth requirements, while the
SPINE implementation performs much better in terms of sys-
tem lifetime; the TITAN implementation, instead, has a RAM
footprint almost three times bigger and, although performing
better than CodeBlue in terms of energy consumption, its life-
time is three times shorter than the SPINE implementation.
In conclusion, with its domain-specific design and low-power
mechanisms, SPINE is more suitable to realize memory- and
power-efficient BSN applications.

This comparison has been useful also to compare the three
frameworks in terms of programming effectiveness on the BSN
domain. In particular, the application profile has been imple-
mented using SPINE “as is,” without the need for modifying or
extending any framework modules, which is a significant result.
This is also because SPINE provides a flexible and expressive
application level protocol, a wide range of predefined sens-
ing and processing functionalities, built-in support for sensor
data buffered transmission and low-level packet segmentation.
Conversely, both the CodeBlue and TITAN implementations
required extensions to the core modules, thus delaying the pro-
totyping time.

VI. SIGNAL-PROCESSING-IN-NODE-ENVIRONMENT-BASED

APPLICATIONS

In SPINE, sensors can be set up, activated, and disabled dy-
namically, and their output can be arbitrarily connected to the
online processing at run-time based on external controls. Of
course, to support different applications, the wearable sensor
nodes must be equipped with all the required physical sensors.
For instance, a doctor could use SPINE nodes that are equipped
with accelerometers and a suitable coordinator device, such as
a smartphone or a tablet, to monitor weekly energy expenditure
of a patient. The same nodes could be used later with another
patient in a rehabilitation scenario, as long as the proper appli-
cation software is available on the coordinator node.

We present six prototypical BSN systems (activity recog-
nition, physical rehabilitation, gait analysis, Kcal expenditure,
emotional stress detector, and handshake detection), that we
have been built atop SPINE, to show the practical flexibility
of our framework. These applications configure the SPINE net-
work differently to meet their requirements; however, the same
hardware devices and node-side software have been used in each
case.

A. Activity Recognition

Physical activity recognition is one of the fundamental build-
ing blocks of many BSN applications [31]. It is necessary to
monitor daily activity levels for wellness applications; it may
help identifying abnormal heart rate variations, e.g., by correlat-
ing the rate variations with the current activity being performed,
and it can be applied in highly interactive computer games, to
cite a few scenarios. Our prototype [32] uses only two wireless
motion sensor nodes placed on the waist and on the thigh of
wearer, and a personal smartphone running the end-user appli-
cation which is able to detect four basic activities (lying down,
sitting, standing, and walking). This is achieved with or without
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an individual training phase, and with an overall average accu-
racy of about 98%. Furthermore, the system may also report the
number of steps during walking and notify via SMS or registered
voice call in the event of accidental falls that may potentially
lead to dangerous situations (e.g., if, after a detected fall, the sys-
tem recognizes the subject is lying down for several minutes).
Finally, the application also provides an incremental learning
system that users may use to increase the set of activities that can
be recognized (e.g., to add a “kicking” or “jumping” activity).

B. Physical Rehabilitation

Wearable wireless motion sensors are also used for physical
rehabilitation purposes [33]. It is quite common to require repet-
itive physical exercises, for instance, to recover from a muscle
strain, a limb fracture, or a surgery. Having real-time feedback
about exercise performance quality would allow users to inde-
pendently exercise properly without the need of a continuous
professional assistance. In our physical rehabilitation applica-
tion [34], we used SPINE nodes equipped with accelerometer
sensors to monitor arm and leg movements. The application
consists of monitoring leg and arm bending movements in real
time and comparing them with the ones recorded during a setup
phase. The application scenario consists of two steps, namely,
setup and exercise phases. During the setup phase, the user wears
two sensors on either leg or arm that needs to be exercised and
performs the correct exercise under the guidance of rehabilita-
tion professional. Meanwhile, the system records the data and
stores them as reference exercise. Then, during the exercise
phase, the user repeats the bending movement and is provided
with a real-time feedback about how well the movement is done
with respect to the stored reference exercise.

C. Gait Analysis

Gait analysis is the study of human walking [35]. Recently,
it has been augmented by instrumentation for measuring body
movements, body mechanics, and the activity of the muscles.
Gait analysis is used to assess and treat individuals with condi-
tions affecting their ability to walk. A novel method of gait anal-
ysis, using a hidden Markov model (HMM)-based technique to
extract temporal parameters from gait, has demonstrated good
results and the potential to be partially implemented on the
hardware constrained sensing nodes [36], [37]. In our applica-
tion prototype, the HMM classifier has been implemented in
SPINE to run on the nodes in real time; however, an offline
processing step is still required to train the algorithm. Given
the trained HMM, SPINE nodes can classify the four walk
phases (initial swing, mid-swing, terminal swing/initial stance,
and mid-stance) and report back to the coordinator node the
classification results. In our test case, we extracted heel-down
and heel-lift events from a walking subject using a single wear-
able node at the waist equipped with a three-axis accelerometer
sensor.

D. Kcal Expenditure

Physical activity is essential to overall human health [38].
Accurate and objective measurement of daily activity is needed
to determine whether the suggested guidelines provided by the
medical scientific community are met. Our open-source applica-
tion [34] estimates the energy consumed, while performing daily
basic activities, and has been implemented on top of SPINE. It
uses a single sensor node equipped with a three-axis accelerom-
eter, placed on the belt (or in a trousers pocket). Because ac-
celerometer data are dynamically prefiltered, removing the grav-
ity components, the mote can be arbitrarily oriented. Further-
more, measurements are robust against tilting of the mote inside
the pocket. The node reports an activity count measurement to
the coordinator once per second, and the coordinator computes
an estimation of the energy expenditure (expressed in Kcal or
KJ) every minute. The algorithm can be tuned with the subject
gender and weight.

E. Emotional Stress Detector

Many studies show connections between long-term exposure
to stress and risk factors and poorer immune functions and car-
diovascular diseases. Although the exact mechanisms of how
stress exerts these effects are not yet well known, a stress mon-
itoring technique that would measure stress levels may signif-
icantly support the development of methods for the mitigation
of long-term stress, and promote healthier life style. Heart rate
variability (HRV) is among the most promising markers for this
purpose [39]. HRV represents the variations in the beat-to-beat
alteration in the heart rate. We have realized a custom sen-
sor board (named CardioShield) with a specific receiver for a
wireless chest belt (produced by Polar Electro) detecting heart
beats. The board is mounted on a standard TelosB mote run-
ning SPINE, customized with a specific processing function
that computes the inter-beat time interval. The prototype [40]
running on the SPINE coordinator receives these timed events
and performs an HRV analysis by extracting time-domain fea-
tures on the inter-beat times over a 10-min window. Then, these
features are fed to a simple threshold-based classifier to estimate
whether the subject is stressed.

F. Handshake Detection

The handshake gesture is an important part of the social eti-
quette in many cultures. The automated detection of a hand-
shake among people can enable wide range of pervasive com-
puting scenarios; in particular, different types of information
can be exchanged and processed among the handshaking per-
sons, depending on the physical/logical contexts where they
are located and on their mutual acquaintance. We have real-
ized a handshake detection system based on a collaborative
BSN [41] having a base station and a wrist-wearable, three-axial
accelerometer-equipped wireless sensor node [42]. The node
communicates with its corresponding base station only when a
potential handshake-like movement is detected. Moreover, sam-
pling on the sensor node is activated only when people are in suf-
ficient proximity with each other so as to exchange networking
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TABLE VII
SPINE EXTENSIONS REQUIRED BY THE PRESENTED APPLICATIONS

data through their BSNs. If the same potential handshake event
is detected by the two interacting BSNs that have advertised
each other, they cooperatively run a handshake detection proto-
col to recognize the handshake gesture. The recognition phase
is based on two J48 tree classifiers: one executing on the node,
which detects potential handshake, and the other running on the
coordinator, which provides the final outcome by aggregating
data from the interacting BSN. As the cooperative recognition
algorithm requires the interaction between BSNs, we have ex-
tended the SPINE framework with a specific API to support
bidirectional inter-BSN communication.

G. Signal-Processing-in-Node-Environment-Based
Application Development Analysis

Table VII summarizes the main programming efforts in terms
of customization and extensions of the basic SPINE frame-
work that were required to implement the presented appli-
cations. Thanks to the specific support for common sensors
and processing functions in the BSN domain, only the very
application-specific logic (e.g., the required classifiers and spe-
cific algorithms) was added to SPINE. The only two exceptions
are represented by the gait analysis system which required a
custom-defined gait data message, along with the correspond-
ing encoder and decoder and by the emotional stress detector
for which a specific hardware sensor-board has been used which
in turn required the integration into SPINE of its driver adapter.

VII. SIGNAL-PROCESSING-IN-NODE-ENVIRONMENT-BASED

DESIGN METHODOLOGY

In the context of WSNs, and BSNs in particular, the design
of systems usually follows a “bottom-up” approach such that
such systems are developed choosing the hardware components
first, then the communication protocols, and, finally, implement-
ing ad hoc applications on top of the underlying infrastructure.
Alternatively, the “top-down” approach is adopted when the de-
signer chooses to start from the high-level application require-
ments and map them to an application-level framework, i.e., a
set of programming abstractions and APIs, without any intrin-
sic assumptions on the underlying protocol stacks and hardware
platforms.

Through the use of SPINE for the development of many dif-
ferent BSN applications/systems (see Section VI), we have de-
fined a novel method to support rigorous BSN system design to
have reliable systems, system efficiency, and true interoperabil-
ity between different applications as well as between different
implementation platforms. The SPINE-based design methodol-
ogy (SPINE-based DM) is a BSN system design method based
on the well-known PBD [43], in which the defined platforms
are opportunely semi-instantiated.

In particular, the PBD methodology consists of a sequence of
steps that leads the initial high-level description of a system to
its final implementation. Each step is a refinement process that
transforms the design from a higher level description to a lower
level description that is progressively closer to the final imple-
mentation. This refinement step is obtained by mapping each
block of the higher level description with lower level blocks (or
set of blocks). The mapping choice is the result of a constrained
optimization problem: the methodology selects the mapping that
satisfies the constraints coming from the higher level descrip-
tion, while optimizing according to a cost function specified by
the designer. In the PBD formalism, each layer of abstraction is
referred as a platform.

Within the PBD-oriented SPINE-based DM, we identified
three layers of abstraction and corresponding platforms: the
Service Platform at the application layer, the Protocol Platform
to describe the protocol stacks, and the Implementation Platform
for the hardware devices. Each design integrates an instance of
the three layers, thus containing both application, protocol and
device layers. In particular, each design is a complete instance
of the BSN system under-development at a given refinement
step: high-level, detailed design (DD), or implementation.

However, differently from the pure PBD approach, some of
our platforms are semi-instantiated and, as a consequence, the
designer is guided to the development of a SPINE-based efficient
BSN system. In particular, the service platform is represented
by the high-level API exposed by the SPINE Framework (see
Section IV). The high-level application functionalities can be
mapped freely to the different and flexible services provided by
SPINE through its API commands. The protocol platform sup-
ports and models two different protocol stacks: IEEE 802.15.4
and Bluetooth. The protocol platform is the last to be instanti-
ated as the choice is almost always forced by the choice made
by the designer at the implementation platform (specifically, it
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Fig. 10. Architectural schemas of design patterns: (a) sensor data collection
for monitoring; (b) multisensor data fusion for detection/classification of events.

depends on the available type of radio on the target devices).
The implementation platform provides a significant variety of
hardware devices (both in terms of sensor nodes and coordi-
nator units) the designer may choose according to low-level
system requirements. This platform is also semi-instantiated,
as we assume to make available only TinyOS-based sensor
node architectures predeployed with the SPINE Framework, and
Java-based and/or Android-powered devices/computers (e.g.,
laptops, smartphones, or tablets) that will be used as BSN coor-
dinator units.

A. Pattern-Driven Application-Level Design

The application-level design of a SPINE-based BSN appli-
cation can be produced by following different pattern-driven
strategies. In the following, we discuss two frequent design
patterns that we use in the development of SPINE-based appli-
cations (see Section VI):

1) Sensor Data Collection for Monitoring: This pattern is the
simplest one as it supports the development of BSN appli-
cations which collect data from a set of wearable sensors
into the coordinator that, in turns, can archive, analyze or
simply display such data. The pattern architectural schema
is shown in Fig. 10(a). The main components, which have
to be specifically defined, are organized in two layers:

a) the Sensing layer, where data are collected from the
sensor nodes;

b) the Monitoring layer, where data can be stored,
analyzed, and visualized.

Each of such layers can be implemented both at the sen-
sor node and at the coordinator node (see Section IV).
Specifically, at the sensing layer, the sampling manage-
ment component provides (multiple) sensed data to the
data preprocessing component that can preprocess incom-
ing sensed data. At the monitoring layer, data can be
stored (in RAM or in mass-memory) by the data-storing
component, analyzed (by an application-specific logic) by
the data analysis component, and displayed through the

(application-specific) data visualization component. Each
of such components can be optional.

2) Multisensor Data Fusion for Detection/Classification of
Events: This pattern is an extension of the previous one
specifically focusing on the detection and/or classifica-
tion of events of interest, e.g., fall detection, activity
recognition, stress detection, and handshake detection (see
Section VI). The pattern architectural schema is shown in
Fig. 10(b). The main components, which have to be specif-
ically defined, are organized in three layers:

a) the Sensing layer, where data are collected from the
sensor nodes;

b) the Analysis layer, where decisions are extracted
from data;

c) the Dissemination layer, where information is pro-
vided to application built atop the BSN.

Each of such layers can be implemented both at the sen-
sor node and at the coordinator node (see Section IV).
Specifically, at the sensing layer, the sampling manage-
ment component provides (multiple) sensed data to the
feature extraction component that process incoming data
to compute specific features (e.g., max, min, dev std, etc).
At the analysis layer, the feature selection component is
able to select the most significant features and the feature
fusion component puts the selection feature together. Fi-
nally, the decision fusion component is able to provide
decision on the basis of the incoming set of features, e.g.,
classification of postures of humans on the basis of fea-
tures computed on the accelerometer data coming from
sensors worn on the human body (see Section VI-A). At
the dissemination layer, the event propagation component
sends the decision to application-level local and/or remote
components.

Both the two presented patterns can be fully supported by the
SPINE middleware (see Section IV).

B. System Parameters

The key parameters affecting BSN systems at different de-
grees of refinement (from high-level design (HLD) to imple-
mentation and deployment) can also be categorized into the
three reference levels of the proposed method, as follows:

1) Application Level: At this level, the most important pa-
rameters are the system accuracy, reliability, and respon-
siveness. Accuracy is application specific and related to
object/event classification, e.g., activity recognition accu-
racy (see Section VI-A) and stress detection accuracy (see
Section VI-E). Reliability is often a key parameter es-
pecially for life-critical applications (e.g., early detection
of heart attacks, fall prevention, or detection), although
typically an expensive property to be guaranteed in any
possible case. Responsiveness is intuitively related to the
ability of the system to provide the necessary feedback to
the user within acceptable times and is also application
specific as it depends on the computation load to perform
the main operation, e.g., computation of extension degrees
in rehabilitation systems (see Section VI-B), detection
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of activity in an activity recognition system (see Section
VI-A), and detection of a handshake in a handshake de-
tection system (see Section VI-F).

2) Protocol Level: At this level, the main affecting parameters
are the bandwidth and delay which depend on the sensor
sampling rates, sensor- and application-specific generated
data, and obviously on the communication protocol itself.
Moreover, specific synchronization requirements among
sensor nodes can be accommodated by the selected pro-
tocol, e.g., by using a time-division multiplexing access
technique, whereas more complex synchronization con-
straints are usually handled at application level.

3) Device Level: At this level, the main affecting param-
eters are the energy consumption, the required mem-
ory, and the required computing power (see Sections IV
and V). The energy consumption depends on duty cy-
cle, sensor type and sampling rates, communication ac-
tivity (both in terms of radio transmission and reception),
and application-specific signal processing. The required
memory (i.e., RAM and Flash) depends on the software
platform tailoring (i.e., which TinyOS and SPINE com-
ponents are wired in), the sampling parameters (sampling
rate), the buffering parameters for sensor data storing and
computation (number of buffers, window and shift), and
also on application-specific signal processing (e.g., mean,
variance, classification trees, and total energy). Finally,
the computing power essentially depends on the defined
application-specific signal processing.

C. Process Schema

The schema of Fig. 11, sketched in the standard OMG SPEM
(Software & Systems Process Engineering Metamodel speci-
fication) 2.0 notation [44], shows the SPINE-based platform
design process schema. The process is iterative and consists of
the following steps (which can be carried out by different roles,
modeler, designer, and developer).

1) Requirements Analysis produces a set of functional and
nonfunctional requirements that will drive the design
activity.

2) HLD produces an HLD of the BSN system on the basis
of the identified requirements. In particular, an HLD is
an instance of the reference SPINE framework integrated
with selected protocols and sensor/platforms.

3) Performance Estimation of HLD allows us to analyze the
HLD by estimating the HLD performance by using avail-
able analytical/simulation methods (see the SPINE Emu-
lator in Section IV-C). Results cannot be precise at this
stage; however, they provide insights on the feasibility of
the HLD to be translated into an effective DD. If the re-
quirements are not fulfilled, the HLD activity is rexecuted.

4) DD produces the DD of the defined HLD. The HLD is re-
fined at the different three layers of SPINE-based DM and,
specifically, at application level by following the pattern-
driven design described in the previous subsection.

5) Performance Estimation of DD allows us to analyze the
DD by testing/estimating the DD performance by using

Fig. 11. SPINE DM process schema.
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available analytical/simulation methods (see the SPINE
Emulator in Section IV-C) and by mapping some compo-
nents of the DD onto the device level and testing them.
Results should be more precise than those obtained in the
performance estimation HLD task; they should provide
more valuable insights on the feasibility of the DD to be
translated into an effective and efficient implementation.
If the requirements are not fulfilled, either the DD or HLD
activities are reexecuted.

6) Implementation produces the implementation of the de-
fined DD. The BSN system is now ready to be deployed
and fully executed and tested.

7) Deployment allows to define the deployment of the BSN
systems by uploading the code and tuning the most im-
portant system parameters.

8) System Performance Evaluation allows to carefully test
the BSN system and extract all performance measure-
ments and results for its validation. The obtained results
will provide a full-fledged test of the system. If the require-
ments are not fulfilled, either the implementation, DD, or
HLD activities are reexecuted.

VIII. LESSON LEARNED

Releasing SPINE as an open-source framework, along with
a dedicated website and developer mailing list [27], has been
very helpful for creating a community of both contributors to the
code and users of the framework. Among many others, the most
relevant external contributions and feedback have come from the
EECS Department of the University of California at Berkeley,
the Aarhus University in Denmark, the CES Laboratory—ENIS
in Tunisia, and the Department of Biomedical Engineering at
Tampere University of Technology in Finland.

SPINE is being used in several research projects, spanning
from human activity recognition, to physical rehabilitation, to
heart-rate and respiratory monitoring, and even in an agriculture
scenario for monitoring animals in a stable.

Also thanks to the feedback we received, we have sum-
marized a number of perceived pros and cons while using
the SPINE framework. The lack of a packet acknowledg-
ment/retransmission system has been reported as probably the
biggest limitation, as it can cause run-time sensor network con-
figuration failure, especially when configuring many nodes in
a noisy environment. Although SPINE actually provides a lim-
ited packet acknowledgment/retransmission mechanism, this is
based on a very simple approach and available only for messages
sent by the coordinator to the sensor nodes. The rationale of this
design choice is that SPINE is an application-level framework;
hence, network-level functionalities should be provided by the
exploited sensor platforms (e.g., ZigBee provides packet ac-
knowledgment/retransmission, as well as some medium access
control (MAC) implementation in TinyOS). Another perceived
limitation is due to the lack of a configuration mechanism that
allow for starting up the sensing/processing routines on individ-
ual nodes. Currently, SPINE provides straightforward support
for the configuration of different sensing and on-board pro-
cessing functionalities on each individual sensor node, but the

actual start-up of these functionalities is synchronized over all
the nodes forming the BSN. Some users reported the need for
persistent on-node storage, as in some application scenarios, the
person wearing the system might not be within the radio range
of the coordinator station all the time. It is worth noting, how-
ever, that the reference application scenario is typically based
on the use of personal and portable BSN coordinator devices
such as smartphones and tablets that users carry, e.g., in their
pocket while using the system during their daily activities.

Fortunately, the main features of the SPINE framework ap-
pear to be widely acknowledged among the SPINE community
as important and very useful to rapidly build BSN applica-
tions. In particular, the integration of new, custom-defined sen-
sor drivers and signal-processing functionalities has found to be
very easy and straightforward (see Section IV-A). The higher
level communication APIs at both the sensor node and the coor-
dinator side have also been mentioned frequently as an impor-
tant advantage of SPINE. In one instance, a BSN prototype was
reimplemented as a SPINE-based prototype, at savings in devel-
opment time of 80%, as demonstrated with the implementation
of the research prototypes shown in Section VI.

IX. CONCLUSION

In this paper, we have identified and discussed the funda-
mental requirements that a designer should take into account,
while developing an effective and efficient domain-specific
framework for programming BSN applications. We have
described the SPINE middleware, which is an open-source
domain-specific framework to support rapid development of
BSN applications. We have also highlighted how the distinctive
characteristics of the framework fully address all the identified
requirements. In addition, we have emphasized the wide
support of SPINE for heterogeneous sensor and coordinator
platforms, which allows sufficient freedom for selecting the
most appropriate hardware and software infrastructure during
application design. We have also evaluated the performance of
SPINE under different dimensions (execution time, memory
usage, energy consumption, communication bandwidth) to
demonstrate its programming effectiveness and practical usabil-
ity on most of the popular sensor node platforms. Furthermore,
we defined an application profile benchmark and implemented
it on SPINE, CodeBlue, and Titan to compare the performance
and the programming effectiveness of these frameworks in
the BSN domain, showing that the system implemented with
SPINE reaches higher performance with less programming
efforts. We have also reported a few applications that have been
built atop SPINE, such as physical activity recognition and
rehabilitation support, handshake detection, emotional stress
indication, physical energy expenditure estimation, and gait
analysis. Although these application scenarios require different
sensing and signal-processing capabilities, the flexibility
and modularity of SPINE allowed uniform support for their
development. With consideration of the feedback, suggestions,
and critiques of many academic and industrial developers that
used SPINE to implement BSN applications, we have provided
a summary of lessons learned. Their feedback gave us important
information about the perceived advantages and limitations of
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using our framework, allowing us to define a number of critical
improvements that are currently being finalized. In particular,
the next release of SPINE will address the limitations that were
reported to us, also including support for multi-base-station
BSN configuration and sensor data gathering, persistent
(on-demand and automatic) local sensor data storage when a
BSN is out of the radio range of its coordinator, an optimized
mechanism to support two-way message acknowledgment and
retransmissions, and, for the TinyOS implementation, the use
of the “TKN 15.4 MAC”. TKN 15.4 MAC is a fully compliant
implementation of the IEEE 802.15.4 standard, developed in the
context of CONET (a EU-funded project under ICT, Framework
7) by the Telecommunication Networks Group at the Faculty of
Electrical Engineering and Computer Science at the Technische
Universität Berlin. In particular, multi-base-station BSN config-
uration and sensor data gathering would allow for much higher
mobility and freedom of the users. It enables scenarios in which,
for instance, multiple base stations are deployed as a backbone
infrastructure, and human beings wearing a BSN may move in
the environment without losing connectivity with the system,
even though they are not carrying their personal coordinator
device all the time. Finally, the SPINE-based DM is being
released to the SPINE community to receive feedback of its
application for the development of SPINE-based BSN systems.
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