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Abstract 
A face detection algorithm based on maximal rejection 
classification and skin color model is proposed. It is then 
computationally optimized by using an edge detector and a 
neural network.  
The obtained architecture is then implemented on Xilinx 
Virtex-II Pro FPGA. At first we divide the algorithm into 
two parts: The first part is implemented using FPGA's 
internal logic such as slices and flip-flops. This makes a 
highly parallel structure for performing regular 
computations in a very small period of time. For the second 
part of the algorithm which requires irregular computations, 
internal PowerPC embedded processor of the FPGA is 
used.  
Additional optimizations in the face detection algorithm 
itself, together with optimum design partitioning, and 
sophisticated assignment of tasks to each part of FPGA, 
create a really high performance face detector. The 
algorithm may also be modified for detection of other non-
face objects. 
 
Overall System Architecture 
Our face detection system consists of four important parts 
[9]: 

1- A skin color filter, which omits the parts of an image 
except those with skin color.  

2- An edge detector that transforms each pixel of the 
image to a 0 or 1 value. 

3- Rotation and sub frame generation: takes the main 
frame and generates different sub frames with 
different sizes and degrees of rotation. 

4- MLP: detects if a sub frame contains any faces. 
5- A decision system to merge and analyze the results of 

MLP. 
Figure 1 shows different parts of the system and their 
connection. Arbitration and Decision will be implemented 
using Virtex-II Pro's embedded PowerPC microprocessor; 
all of the remaining parts will use normal FPGA's 
resources.  
Input images first are transmitted to a buffer, which is 
mainly a fast memory outside FPGA. They go through 
three steps; Illumination correction tries to balance the 
illumination for different parts of the image. A lookup table 
is used for omitting portions of the image with no skin 

color, the result finally goes, through an edge detector, and 
then, it is stored in buffer. (In practice however, skin color 
filtering and edge detection are done simultaneously.)  
Sub frame generation system then, generates lots of sub 
frames with different sizes from the edge detected image. 
Each sub frame is then, rotated and scaled to the 
appropriate size for the neural network. Neural network 
generates a real value to indicate if this sub frame contains 
a face image. This value is stored and used for the final 
arbitration. 
Using FPGA resources such as slices, block memories and 
hardware multipliers we build different parts of our system. 
A fast wide memory interface provides low latency fast 
access to a memory outside FPGA. Hardware multipliers 
are used for required computations in the neural network 
and finally block memories are used either as cache 
memories or look up tables. The rest of the circuit is built 
using normal FPGA flip flops, gates and look up tables.  
The entire system, works as a pipeline. Some units in this 
pipeline are more complicated. They need a larger time 
period to finish their tasks. This makes a bottleneck for the 
performance of entire system. Considering this, neural 
network and sub frame generation seems to be the most 
important parts of the system; therefore we focus on the 
design of these two. 
 
 
 
 
 
 
 
 

Figure 1. Overall system architecture. 
 
Illumination Correction 
Since illumination variation influences color characteristics 
of the image (i.e. color of the object changes if the 
illuminant color changes),which in turn influences the skin 
color detection and subsequently  face detection, some 
algorithms are applied to the image in order to achieve 
adaptation to different lighting and illumination.  
There are two main groups of algorithms for reducing the 

Input 
 

image 

Illumination 
Correction 

Skin 
Filter 

Edge 
Detection 

Sub 
Frame 

Generation 

Scale 
& 

Rotation 

Neural 
Network 

Arbitration 
& 

Decision 

Output 
face 

locations 



effect of illumination condition on the image [3]: color 
constancy methods (i.e. color by correlation) and color 
compensation methods.  Color by correlation method seems 
to be more robust [4] [5], however the second group is 
easier to implement [5]. 
Gray World algorithm is used for illumination correction in 
our design. This algorithm is based on the presumption that 
the average color, which is reflected from the surfaces, 
corresponds to the color of the illumination [3]. We do not 
describe the hardware design details for this part of the 
system in this paper. 
 
Skin Color Filter 
A lookup table is used to eliminate regions in the image that 
have no faces. Another technique is to use distinct ranges 
on the R, G and B or H, S and V value of color map and 
omit each pixel with values outside this range. Employing 
look up tables however yields more precise results [6].  
Lookup table is a one-dimension array that uses one bit for 
each color of the color map to show if it is a skin color or 
not. 
Using both RGB and HSV lookup tables in parallel helps us 
to select regions containing faces more reliably and it can 
reduce the effect of illumination as well [7]. 
Using 8 bit values for each of R, G and B, makes a look up 
table of 16Mbits, which should be implemented using off 
chip memory. 
 
Edge Detection 
Input color image should be converted into a gray scale 
image. Gray scale image then goes through a simple edge 
detector.  
For each pixel of gray scale image, the gray value is equal 
to 3 .. BGR . This computation is intensive however it is 
possible to use an approximation for the above formula.  

dxdf / and dydf / values for each pixel of the gray scale 
image are computed by using a sobel filter. A simple 
module can be used for computing the deference values. 
The gradient value is then computed. Gradient computation 
needs hardware multipliers. Putting some thresholds on the 
obtained image results an output with each pixel to be a one 
bit 0 to 1 value.  
 
Sub Frame Generation 
To detect the portions of the image which contain faces, a 
window will sweep the entire image. Each segment is 
scaled and analyzed. Different windows with different sizes 
should be used. Sub frame generation process is as follows: 

1- The initial window with size SubFramex  is selected. 
2- Begin from the top left most pixel of the image. 
3- A complete window of SubFrameSubFrame xx ×  pixels is 

read from memory and goes to scaling module. 

4- The window moves by J  pixels. If reached the end of 
a row, it jumps to beginning of the next row. Vertical 
and horizontal jump values are both J  pixels.  

5- When reached the end of picture, the next window 
size is chosen, and we go to 2. 

The produced sub frames are then scaled by a factor of 2S  
to make a smaller picture. For each degree of rotation, a 
distinct area of this picture is sent to the neural network.  
The total number of sub frames can be computed as 
follows: 
Total number of sub frames = 
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In the above formula WSN  is the total number of different 
sizes for square windows. Tx  is the input image width and 

Ty  is height. J  is equal to jump value for each window 
size. 
 
FPGA Based Scaling and Rotation 
Input to neural network should contain a fixed number of 
pixels. All of the produced sub frames with different sizes 
should be scaled to a proper size. For each sub frame, we 
send total number of R  borders to MLP. Each border 
contains xy  elements and indicates a portion of the main 
edge detected image. The width and the height of this 
portion is x and y respectively. Figure 2 shows this. 
 
 
 
 
 
 
 
 
 
 

Figure 2. Scaling and rotation operations 
 

For each of window sizes, a complete sub frame should first 
be read from the main memory outside FPGA. Scaling is 
performed for each sub frame. For the second, third and the 
rest of sub frames, however, we do not read the entire sub 
frame from outside memory. We only read the difference.  
Each complete sub frame divides into smaller parts with 
width and height of J  and 'Sx  respectively. In each 
memory access, we only read one of these slices. This slice 
is transferred to a dual port block memory inside FPGA. 
Then, it's pixels are sent to the scaling system. This leads to 
a very low number of clock cycles for doing memory 
access and scaling operations.  
For z scale factor of S , we should choose one pixel O  
from each group of 2S  pixels. Each pixel is represented by 
one bit. e.g 7=S  means that from a group of 7 pixels, we 
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should choose one pixel, and transfer this to the scaled 
image. The value for O  is computed using the following 
method: 
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This method for scaling operation is relatively accurate. In 
practice an input slice of a sub frame is segmented so that 
each segment contains 22 SS ×  pixels, and each segment is 
a square area. From each group of 4S  pixels, 2S of them 
are chosen as the output. Figure 3 shows this. 
 
 
 
 
 
 
 
 
 

 
Figure 3. Grouping for scale operation. 

 
Each slice of a sub frame consists of 'SxJ ×  pixels and 

4/' SJSx  segments. We choose J  to be always an integer 
multiplicand of S ( 321, ororkkSJ == ). For each value 
of S , scaling module reads a square of  22 SS ×  pixels 
from block memory into an array of flip flops. Afterwards, 
it counts the number of ones for each of the areas shown in 
figure 3. The output of each area is one if the count is 
greater than 1K . As illustrated in figure 4, scaling module 
contains an array of ( )max

2S registers. 
Memory read operations is performed as twice fast as the 
normal clock frequency of the chip. This is feasible because 
block memories are faster than other modules. All 
operations in scaling module can be done in one clock 
cycle; therefore, there is no need to increase the clock 
frequency of the scaling module itself.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Rotation and grouping operations. 
 
Each output of scaling module contains 2S  pixels and final 
output for each input slice is a   '/ xSJ  pixels slice of the 

'' xx×  square. Output pixels from scaling module should be 

placed in proper locations in the final scaled slice. We again 
use the same technique as shown in figure 3 in order to 
place pixels in proper locations. Figure 5 illustrates how 
this is done. 
We choose max1 JW = . In the worst case, the total number 
of clock cycles required to read one complete slice from the 
outside memory is '2Sx .  
We also max

2
2 )(SW =  bits, hence, total number of clock 

cycles for reading one complete slice from block memory 
(and so scaling it) is:  
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In which 2/ SJ  is the number of segments in each row and 
2/' SSx  is the total number of segment rows. If the neural 

network module is capable of accepting x  pixels in each 
clock cycle, then total numbers of yR.  clock cycles are 
needed for each complete sub frame. So these inequalities 
should be met: 
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Inequalities (4) and (5) state that scaling module should 
work faster than the neural network. The second term in (4) 
indicates the latency of grouping and writing scaled outputs 
to the second block memory. 
After executing the scaling operations, the output is 
represented with a matrix of size '' xx× . A special set of 
pixels must be chosen from this matrix and sent to the MLP 
module. Input to MLP is mainly a yx.  pixels segment of 
scaled image. Figure 2 shows how we obtain this segment 
for each degree of rotation.  
Rotation module has a very simple architecture [8]. It has a 
total number of 2)2/'(xπ  flip-flops. The architecture of 
rotation module is not complex however it utilizes a large 
portion of FPGA flip-flops as well as routing resources. 
Each register in the rotation chain requires a multiplexer 
which enables to perform either load or shift operations. 
Registers are connected to each other, so that in each clock 
cycle, the image in the circle shown in Figure 5 is rotated 
by r  degrees. Rotation with various degrees can be 
performed by continuing the rotation operation for multiple 
clock cycles. 
 
An FPGA Based MLP 
A simple MLP [13] is used to detect if an area in the picture 
contains a face. The following is the problem description: 
Suppose that we need an MLP to be implemented on an 
FPGA, with the following conditions and limitations: 

- Topology of the MLP: one input layer with 1N  nodes, 
one hidden layer with 2N  nodes, and one output layer. 
Nonlinear functions are used for the input and hidden 
layer, and linear function for output. 

 

7*7 segments 
72 =S  

4*4 
segments 

42 =S  
10*10 segments 

102 =S  

Scaling module 
output pixels 

Shift 
register 

3W  

bits 

S2 & 
write 

address 

Dual 
port  

block 
memory 

Rotation shift 
register 

'x  

'x 
'

max

max x
S
J








  

registers 

x 

y

To MLP 

3W bits 

One 
Flip-Flop  



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Sub frame generation and scaling in detail 

 
- MLP must produce 1 for faces and -1 for non face 

inputs. 
- For i-th scale value, input frame is )(ix  pixels in width 

and )(iy  pixels in height.  
- To compute the final output of the MLP for each input, 

K  pixels are read in each FPGA clock cycle. 
- MLP weights: q  bits signed, fractional format. 
- Weights are stored in FPGA block memories.  
- Clock frequency for weight memories: Mf  and for the 

rest of the circuit : f   
- Each block of memory provides up to W  bits of data 

in each clock cycle.  
- For each input node of the MLP, M  blocks of 

memories are used for weight storage. 
The input layer has the largest logic and is the main bottle 
neck for the speed of our system, so we mainly consider the 
design of this layer for optimization. Each node in the first 
layer has yx.  inputs, and there is a weight for each input, 
however only K  pixels are read each clock cycle. 
Therefore we have the total number of KN .1  weights in 
each clock cycle which is equal to qK.  bits of data for each 
node.  
Equation (6) represents the required memory width and 
total number of block memories for each node in input 
layer: 

MW
f

fqK M .. =  (6) 

Equation (6) demonstrates how decreasing the running 
frequency of memory modules increases memory width and 
the total number of memory blocks. In practice memory 
width is limited to 72 bits for Virtex-IIP devices. Thus, for 
large values of qK .  we need to increase Mf  or M  
however, the total number of available block memories in 
each FPGA is limited and they are one of the most valuable 
logic resources. In Virtex-IIP, Mf  can be increased up to 

400MHz. Equation (7) shows the number of clock cycles 
required to process each input. 

Clock cycles required for one input =
K

iyix )()(  (7) 

Our MLP works for two different dimension sizes: 18*22 
pixels and 36*44 pixels. All obtained frames are scaled to 
one of the two dimensions stated.  
(1) Shows total number of sub frames for each input. If we 
have R different degrees of rotation exists for each sub 
frame, the total number of FPGA clock cycles, needed for 
processing one complete image by MLP is: 
Cycles per frame  
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Since the neural network is the slowest module in the face 
detection pipeline, it determines the speed of the entire 
system: 
Frames per second =  

).(. frameperCyclesqK
WMf

frameperCycles
f M=  

(9) 

Top most important limitations of implementing an MLP 
on FPGA are: 

1- Large number of simultaneous multiplication and 
addition operations. 

2- Large number of weight values which yields large 
number of block memories working in parallel for 
providing needed data bits. Total number of 

KqN1 bits of data should be read from memory 
simultaneously. 

As described in the previous sections, the inputs to the MLP 
are only zero and one values. Thus, the multiplication does 
not have to be performed in the input layer of the MLP.  
This saves greatly on the consumption of FPGA hardware 
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resources. The input layer contains only simple addition 
circuitry. 
In each 1N  nodes, K  additions should be done in each 
clock cycle. K  input bits to MLP indicate which one of the 
loaded K  weights should participate in addition. A pipeline 
is implemented to maximize the speedup of the system.  
As we mentioned, weight memory frequency, Mf  is 
different from f , which is the clock frequency of the rest of 
the neural network. There should be a relation between f  
and Mf . Usually 3,2,. == kfkfM . This means that, for 
each normal clock cycle, two or three weight values are 
read from the memory. So, the real limitation on the 
execution frequency of the entire face detection system is 
imposed by the frequency of block memories and in fact, 
not the normal FPGA logic.  
Performing addition on )().( iyix  input numbers, each with 
q  bits of data, results a  )()(log2 iyixq +  bits value. But 
the nonlinear function, used for each neuron, limits the 
number of required bits. For instance, using tansig 
nonlinear function enables us to store the result of addition 
in the range of:   

998.3)(4
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Results out of this range can be simply replaced by these 
limits. This poses a limit on the number of bits for storing 
the result of accumulation in each node. This can greatly 
decrease the amount of hardware. 
Implementation of non-linear function is done through the 
memory blocks. One or two memory blocks are used to 
perform look up operations for all of the nodes in the input 
and hidden layer. As mentioned above, the input value to 
non-linear look up tables is expressed with kq +  bits in 
which k  is a small value (2 or 3) and the output is again a 
q -bit value. Accordingly, non-linear look up operations 
consume a small amount of block memory resources.  
Computations in the second layer needs embedded 
hardware multipliers of Virtex-IIP. Each of the nodes in the 
hidden layer can use one dedicated hardware multiplier. 
Each of the multipliers in a Virtex-IIP FPGA is capable of 
doing a single cycle pipelined 18*18 bits multiplication. In 
practice, q  is in the range of 7 to 12 and therefore, one 
multiplier suffices for each hidden node.  
The result of each multiplication is 2q  bits, which can be 
converted into a q  or kq +  bits value by omitting LSB 
bits. Accumulation logic is similar to the circuitry in the 
input layer. Non-linear look up is also the same. Total 
number of 1N  clock cycles is required for computing the 
accumulation values in hidden layer.  
Output layer has a linear function and therefore, special 
look up circuitry is not needed. Output value can be kq +  
bits. Output value will be passed to arbitration module. 
 
 

Arbitration and Decision  
Initially arbitration module normalizes input values to 
either one or zero using a special threshold. This threshold 
depends on the rate of detection against false positive. The 
outputs of the MLP for each scale value are stored in a 
separate array. Values in this array indicate the output of 
the MLP for that special location of the image.  
The network has some invariance for scaling and 
positioning which may result in multiple answers for a 
particular face. False detections often occur with less 
consistency [9]. Thus for each detection we count the 
number of other detections within a specified neighborhood 
of that detection. If the number is above a threshold, then 
that location is classified as a face. In order to prevent 
overlaps, once each location is considered as a face any 
other detection in a specified neighborhood are discarded.  
The above analysis is performed for each array. Final 
results are merged into one output array, indicating the 
location for face objects.  
A program running under embedded processor in Virtex-IIP 
device is responsible for the above task. Embedded 
PowerPC processor operates with the same clock frequency 
as the rest of the chip. Since there is a small amount of 
computations, for each of the scales, processing time for 
this module is less than the processing time of the MLP and 
therefore, this part of the system will not limit the final 
frame rate. 
 
Practical Results 
We implemented most of the parts of our system in real 
hardware. Table 1 shows chosen values for jumps, window 
sizes and scales. As described before, neural network 
accepts two different dimensions: 18*22 pixels and 36*44. 
Table 1 shows which mode is used for every window size. 
For every input with size of 800*600 pixels, the total 
number of 112780 sub frames is generated. Each individual 
sub frame is analyzed with 10 different degrees of rotation 
in 22.5 degrees increments. 
Total numbers of 710099.2 ×  cycles is required to analyze 
one complete frame ( 36=K ). Running at 200MHz clock 
frequency, the face detector can process up to 9 complete 
frames per second.  
In practice, however, it is not required to process the entire 
frame. Usually face objects have a very smaller area 
compared to the total area of the image. Thus, the skin color 
filter output is zero most of the time. Our face detection 
system can gain a significant speed-up. For instance, if only 
25% of an image contains face objects, the system is able to 
process up to 27 frames per second.  
Number of rotation angles for which we analyze the image, 
is another important factor. For instance, if only vertical 
direction is considered, the processing speed would reach 
up to 90 frames per second.  
 



Frame size FF yx ,  18*22 26*32 32*39 36*44 51*63 63*77 72*88 81*99 96*117 114*140 
Surrounding rectangle size 

SubFramex  29*29 42*42 51*51 57*57 82*82 100*100 114*114 128*128 152*152 181*181 

MLP input size 18*22 18*22 18*22 36*44 36*44 36*44 36*44 36*44 36*44 36*44 
2s  1 2 3 1 2 3 4 5 7 10 

Jump value ( J ) 3 4 6 6 8 9 12 15 21 30 
Table1. Window sizes, jump and scale values. 

 
Experimental results show that 8 or 9 precision bit is 
sufficient for neural network weights. Using 9 bits for 
weight values and a neural network with 9 neurons in 
input layer, 6 neurons in hidden layer and 1 in output 
layer, the total number of 9369 ××  bits data must be 
loaded from memory ( 36=K ). This means 21 block 
memories (two blocks per node) with maximum possible 
output port width of 72 bits [12] should be used in parallel 
to provide the needed weight values. Each block stores 55   
values, and therefore, 25% of available space in each 
block memory is consumed.  
Design parameters, yet can be simply modified to 
accommodate various special tasks. For example if we 
assume MHzf 100=  and MhzfM 400= , only 11 blocks 
of memory is utilized. Changing the jump value or scale 
values or number of scales can greatly change the 
resource utilization and frame per second speed. A SVM 
can be used instead of our simple MLP to obtain better 
classification results [10] [11].  
Experimental results show that the neural network 
consumes approximately 3105×  LUTs, Rotation uses 

3105.2 ×  LUTs while scaling and grouping module 
use 310  and 3105.2 ×  respectively. Since the rest of the 
system consumes up to 3107×  LUTs an XC2VP20 
device [12] can hold the entire implementation.  
Out tests show that the system can reach very good 
accuracy in detecting faces if a good skin color filter and 
well trained MLP are used.  
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6. 800*600 Input image, simulation outputs for 
our system. 

 
 
 

 
9 Bits quantized 

weights Output – Real weights Output – Quantized 
weights 

Face object 1.0006 0.9685 
Non Face object 0.0396 0.0073 
Table 2. Shows the weight quantization effect in MLP. 
 

 
Figure 7. Input image to sub-frame generation 
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