
An FPGA Based Fast Face Detector

Mohammad S. Sadri, Nasim Shams, Masih Rahmaty, Iraj Hosseini,
Reihane Changiz, Shahed Mortazavian, Shima Kheradmand, Roozbeh Jafari

FPGA Lab, Department of Computer and Electrical Engineering,
Isfahan University of Technology, Isfahan, Iran, Tel: +98-311-391-5428,
3514 Boelter Hall, UCLA, Los Angeles, CA 90095, Tel: 310-267-5243

sadri@sarv-net.com, {nasim, masih, iraj, reihane, shahed, shima}@mamsadegh.com, rjafari@cs.ucla.edu

Abstract
A face detection algorithm based on maximal rejection
classification and skin color model is proposed. It is then
computationally optimized by using an edge detector and a
neural network.
The obtained architecture is then implemented on Xilinx
Virtex-II Pro FPGA. At first we divide the algorithm into
two parts: The first part is implemented using FPGA's
internal logic such as slices and flip-flops. This makes a
highly parallel structure for performing regular
computations in a very small period of time. For the second
part of the algorithm which requires irregular computations,
internal PowerPC embedded processor of the FPGA is
used.
Additional optimizations in the face detection algorithm
itself, together with optimum design partitioning, and
sophisticated assignment of tasks to each part of FPGA,
create a really high performance face detector. The
algorithm may also be modified for detection of other non-
face objects.

Overall System Architecture
Our face detection system consists of four important parts
[9]:

1- A skin color filter, which omits the parts of an image
except those with skin color.

2- An edge detector that transforms each pixel of the
image to a 0 or 1 value.

3- Rotation and sub frame generation: takes the main
frame and generates different sub frames with
different sizes and degrees of rotation.

4- MLP: detects if a sub frame contains any faces.
5- A decision system to merge and analyze the results of

MLP.
Figure 1 shows different parts of the system and their
connection. Arbitration and Decision will be implemented
using Virtex-II Pro's embedded PowerPC microprocessor;
all of the remaining parts will use normal FPGA's
resources.
Input images first are transmitted to a buffer, which is
mainly a fast memory outside FPGA. They go through
three steps; Illumination correction tries to balance the
illumination for different parts of the image. A lookup table
is used for omitting portions of the image with no skin

color, the result finally goes, through an edge detector, and
then, it is stored in buffer. (In practice however, skin color
filtering and edge detection are done simultaneously.)
Sub frame generation system then, generates lots of sub
frames with different sizes from the edge detected image.
Each sub frame is then, rotated and scaled to the
appropriate size for the neural network. Neural network
generates a real value to indicate if this sub frame contains
a face image. This value is stored and used for the final
arbitration.
Using FPGA resources such as slices, block memories and
hardware multipliers we build different parts of our system.
A fast wide memory interface provides low latency fast
access to a memory outside FPGA. Hardware multipliers
are used for required computations in the neural network
and finally block memories are used either as cache
memories or look up tables. The rest of the circuit is built
using normal FPGA flip flops, gates and look up tables.
The entire system, works as a pipeline. Some units in this
pipeline are more complicated. They need a larger time
period to finish their tasks. This makes a bottleneck for the
performance of entire system. Considering this, neural
network and sub frame generation seems to be the most
important parts of the system; therefore we focus on the
design of these two.

Figure 1. Overall system architecture.

Illumination Correction
Since illumination variation influences color characteristics
of the image (i.e. color of the object changes if the
illuminant color changes),which in turn influences the skin
color detection and subsequently face detection, some
algorithms are applied to the image in order to achieve
adaptation to different lighting and illumination.
There are two main groups of algorithms for reducing the

Input

image

Illumination
Correction

Skin
Filter

Edge
Detection

Sub
Frame

Generation

Scale
&

Rotation

Neural
Network

Arbitration
&

Decision

Output
face

locations

effect of illumination condition on the image [3]: color
constancy methods (i.e. color by correlation) and color
compensation methods. Color by correlation method seems
to be more robust [4] [5], however the second group is
easier to implement [5].
Gray World algorithm is used for illumination correction in
our design. This algorithm is based on the presumption that
the average color, which is reflected from the surfaces,
corresponds to the color of the illumination [3]. We do not
describe the hardware design details for this part of the
system in this paper.

Skin Color Filter
A lookup table is used to eliminate regions in the image that
have no faces. Another technique is to use distinct ranges
on the R, G and B or H, S and V value of color map and
omit each pixel with values outside this range. Employing
look up tables however yields more precise results [6].
Lookup table is a one-dimension array that uses one bit for
each color of the color map to show if it is a skin color or
not.
Using both RGB and HSV lookup tables in parallel helps us
to select regions containing faces more reliably and it can
reduce the effect of illumination as well [7].
Using 8 bit values for each of R, G and B, makes a look up
table of 16Mbits, which should be implemented using off
chip memory.

Edge Detection
Input color image should be converted into a gray scale
image. Gray scale image then goes through a simple edge
detector.
For each pixel of gray scale image, the gray value is equal
to 3 .. BGR . This computation is intensive however it is
possible to use an approximation for the above formula.

dxdf / and dydf / values for each pixel of the gray scale
image are computed by using a sobel filter. A simple
module can be used for computing the deference values.
The gradient value is then computed. Gradient computation
needs hardware multipliers. Putting some thresholds on the
obtained image results an output with each pixel to be a one
bit 0 to 1 value.

Sub Frame Generation
To detect the portions of the image which contain faces, a
window will sweep the entire image. Each segment is
scaled and analyzed. Different windows with different sizes
should be used. Sub frame generation process is as follows:

1- The initial window with size SubFramex is selected.
2- Begin from the top left most pixel of the image.
3- A complete window of SubFrameSubFrame xx × pixels is

read from memory and goes to scaling module.

4- The window moves by J pixels. If reached the end of
a row, it jumps to beginning of the next row. Vertical
and horizontal jump values are both J pixels.

5- When reached the end of picture, the next window
size is chosen, and we go to 2.

The produced sub frames are then scaled by a factor of 2S
to make a smaller picture. For each degree of rotation, a
distinct area of this picture is sent to the neural network.
The total number of sub frames can be computed as
follows:
Total number of sub frames =

()()∑
=

−−
=

WSN

i

SubFrameTSubFrameT

iJ
ixyixx

1
2)(

)()((1)

In the above formula WSN is the total number of different
sizes for square windows. Tx is the input image width and

Ty is height. J is equal to jump value for each window
size.

FPGA Based Scaling and Rotation
Input to neural network should contain a fixed number of
pixels. All of the produced sub frames with different sizes
should be scaled to a proper size. For each sub frame, we
send total number of R borders to MLP. Each border
contains xy elements and indicates a portion of the main
edge detected image. The width and the height of this
portion is x and y respectively. Figure 2 shows this.

Figure 2. Scaling and rotation operations

For each of window sizes, a complete sub frame should first
be read from the main memory outside FPGA. Scaling is
performed for each sub frame. For the second, third and the
rest of sub frames, however, we do not read the entire sub
frame from outside memory. We only read the difference.
Each complete sub frame divides into smaller parts with
width and height of J and 'Sx respectively. In each
memory access, we only read one of these slices. This slice
is transferred to a dual port block memory inside FPGA.
Then, it's pixels are sent to the scaling system. This leads to
a very low number of clock cycles for doing memory
access and scaling operations.
For z scale factor of S , we should choose one pixel O
from each group of 2S pixels. Each pixel is represented by
one bit. e.g 7=S means that from a group of 7 pixels, we

Main obtained
sub frame

Scale
by S2

To MLP

x

y

'x

'x

Sx’

22' yxx +=

Output generation for 0, 22.5 . . .
degrees of rotation.

Sx’

should choose one pixel, and transfer this to the scaled
image. The value for O is computed using the following
method:



 >

=
Otherwise

KgrouptheinsofNumber
O

0
11 1 (2)

This method for scaling operation is relatively accurate. In
practice an input slice of a sub frame is segmented so that
each segment contains 22 SS × pixels, and each segment is
a square area. From each group of 4S pixels, 2S of them
are chosen as the output. Figure 3 shows this.

Figure 3. Grouping for scale operation.

Each slice of a sub frame consists of 'SxJ × pixels and

4/' SJSx segments. We choose J to be always an integer
multiplicand of S (321, ororkkSJ ==). For each value
of S , scaling module reads a square of 22 SS × pixels
from block memory into an array of flip flops. Afterwards,
it counts the number of ones for each of the areas shown in
figure 3. The output of each area is one if the count is
greater than 1K . As illustrated in figure 4, scaling module
contains an array of ()max

2S registers.
Memory read operations is performed as twice fast as the
normal clock frequency of the chip. This is feasible because
block memories are faster than other modules. All
operations in scaling module can be done in one clock
cycle; therefore, there is no need to increase the clock
frequency of the scaling module itself.

Figure 5. Rotation and grouping operations.

Each output of scaling module contains 2S pixels and final
output for each input slice is a   '/ xSJ pixels slice of the

'' xx× square. Output pixels from scaling module should be

placed in proper locations in the final scaled slice. We again
use the same technique as shown in figure 3 in order to
place pixels in proper locations. Figure 5 illustrates how
this is done.
We choose max1 JW = . In the worst case, the total number
of clock cycles required to read one complete slice from the
outside memory is '2Sx .
We also max

2
2)(SW = bits, hence, total number of clock

cycles for reading one complete slice from block memory
(and so scaling it) is:





=×





S
xJS

S
Sx

S
J '' 2

22
 (3)

In which 2/ SJ is the number of segments in each row and
2/' SSx is the total number of segment rows. If the neural

network module is capable of accepting x pixels in each
clock cycle, then total numbers of yR. clock cycles are
needed for each complete sub frame. So these inequalities
should be met:

yR
S
J

S
xJ .

2
'

2
<+



 (4)

yRSx .'2 < (5)
Inequalities (4) and (5) state that scaling module should
work faster than the neural network. The second term in (4)
indicates the latency of grouping and writing scaled outputs
to the second block memory.
After executing the scaling operations, the output is
represented with a matrix of size '' xx× . A special set of
pixels must be chosen from this matrix and sent to the MLP
module. Input to MLP is mainly a yx. pixels segment of
scaled image. Figure 2 shows how we obtain this segment
for each degree of rotation.
Rotation module has a very simple architecture [8]. It has a
total number of 2)2/'(xπ flip-flops. The architecture of
rotation module is not complex however it utilizes a large
portion of FPGA flip-flops as well as routing resources.
Each register in the rotation chain requires a multiplexer
which enables to perform either load or shift operations.
Registers are connected to each other, so that in each clock
cycle, the image in the circle shown in Figure 5 is rotated
by r degrees. Rotation with various degrees can be
performed by continuing the rotation operation for multiple
clock cycles.

An FPGA Based MLP
A simple MLP [13] is used to detect if an area in the picture
contains a face. The following is the problem description:
Suppose that we need an MLP to be implemented on an
FPGA, with the following conditions and limitations:

- Topology of the MLP: one input layer with 1N nodes,
one hidden layer with 2N nodes, and one output layer.
Nonlinear functions are used for the input and hidden
layer, and linear function for output.

7*7 segments
72 =S

4*4
segments

42 =S
10*10 segments

102 =S

Scaling module
output pixels

Shift
register

3W

bits

S2 &
write

address

Dual
port

block
memory

Rotation shift
register

'x

'x
'

max

max x
S
J










registers

x

y

To MLP

3W bits

One
Flip-Flop

Figure 4. Sub frame generation and scaling in detail

- MLP must produce 1 for faces and -1 for non face

inputs.
- For i-th scale value, input frame is)(ix pixels in width

and)(iy pixels in height.
- To compute the final output of the MLP for each input,

K pixels are read in each FPGA clock cycle.
- MLP weights: q bits signed, fractional format.
- Weights are stored in FPGA block memories.
- Clock frequency for weight memories: Mf and for the

rest of the circuit : f
- Each block of memory provides up to W bits of data

in each clock cycle.
- For each input node of the MLP, M blocks of

memories are used for weight storage.
The input layer has the largest logic and is the main bottle
neck for the speed of our system, so we mainly consider the
design of this layer for optimization. Each node in the first
layer has yx. inputs, and there is a weight for each input,
however only K pixels are read each clock cycle.
Therefore we have the total number of KN .1 weights in
each clock cycle which is equal to qK. bits of data for each
node.
Equation (6) represents the required memory width and
total number of block memories for each node in input
layer:

MW
f

fqK M .. = (6)

Equation (6) demonstrates how decreasing the running
frequency of memory modules increases memory width and
the total number of memory blocks. In practice memory
width is limited to 72 bits for Virtex-IIP devices. Thus, for
large values of qK . we need to increase Mf or M
however, the total number of available block memories in
each FPGA is limited and they are one of the most valuable
logic resources. In Virtex-IIP, Mf can be increased up to

400MHz. Equation (7) shows the number of clock cycles
required to process each input.

Clock cycles required for one input =
K

iyix)()((7)

Our MLP works for two different dimension sizes: 18*22
pixels and 36*44 pixels. All obtained frames are scaled to
one of the two dimensions stated.
(1) Shows total number of sub frames for each input. If we
have R different degrees of rotation exists for each sub
frame, the total number of FPGA clock cycles, needed for
processing one complete image by MLP is:
Cycles per frame

∑
=

−−
=

WSN

i

SubFrameTSubFrameT

K
iyix

iJ
iyyixxR

1
2

)()(
)(

))())((((8)

Since the neural network is the slowest module in the face
detection pipeline, it determines the speed of the entire
system:
Frames per second =

).(. frameperCyclesqK
WMf

frameperCycles
f M=

(9)

Top most important limitations of implementing an MLP
on FPGA are:

1- Large number of simultaneous multiplication and
addition operations.

2- Large number of weight values which yields large
number of block memories working in parallel for
providing needed data bits. Total number of

KqN1 bits of data should be read from memory
simultaneously.

As described in the previous sections, the inputs to the MLP
are only zero and one values. Thus, the multiplication does
not have to be performed in the input layer of the MLP.
This saves greatly on the consumption of FPGA hardware

Previous sub
frame

New sub
frame

New slice of a
sub frame

Memory outside FPGA FPGA dual port width converter block memory

Input width:
1W bits

22 SS × pixels
segment

22 SS × register
array

Count
and

threshold

Count
and

threshold

Total number of four blocks

Total number of
ten blocks

...

4

...

1

10

To grouping
& rotation

shift register

2S

Running clock freq: f Running clock freq: 2f Running clock freq: f

Output width:
2W bits

resources. The input layer contains only simple addition
circuitry.
In each 1N nodes, K additions should be done in each
clock cycle. K input bits to MLP indicate which one of the
loaded K weights should participate in addition. A pipeline
is implemented to maximize the speedup of the system.
As we mentioned, weight memory frequency, Mf is
different from f , which is the clock frequency of the rest of
the neural network. There should be a relation between f
and Mf . Usually 3,2,. == kfkfM . This means that, for
each normal clock cycle, two or three weight values are
read from the memory. So, the real limitation on the
execution frequency of the entire face detection system is
imposed by the frequency of block memories and in fact,
not the normal FPGA logic.
Performing addition on)().(iyix input numbers, each with
q bits of data, results a  )()(log2 iyixq + bits value. But
the nonlinear function, used for each neuron, limits the
number of required bits. For instance, using tansig
nonlinear function enables us to store the result of addition
in the range of:

998.3)(4
)()(

1
<<− ∑

=

iyix

j
jw

Results out of this range can be simply replaced by these
limits. This poses a limit on the number of bits for storing
the result of accumulation in each node. This can greatly
decrease the amount of hardware.
Implementation of non-linear function is done through the
memory blocks. One or two memory blocks are used to
perform look up operations for all of the nodes in the input
and hidden layer. As mentioned above, the input value to
non-linear look up tables is expressed with kq + bits in
which k is a small value (2 or 3) and the output is again a
q -bit value. Accordingly, non-linear look up operations
consume a small amount of block memory resources.
Computations in the second layer needs embedded
hardware multipliers of Virtex-IIP. Each of the nodes in the
hidden layer can use one dedicated hardware multiplier.
Each of the multipliers in a Virtex-IIP FPGA is capable of
doing a single cycle pipelined 18*18 bits multiplication. In
practice, q is in the range of 7 to 12 and therefore, one
multiplier suffices for each hidden node.
The result of each multiplication is 2q bits, which can be
converted into a q or kq + bits value by omitting LSB
bits. Accumulation logic is similar to the circuitry in the
input layer. Non-linear look up is also the same. Total
number of 1N clock cycles is required for computing the
accumulation values in hidden layer.
Output layer has a linear function and therefore, special
look up circuitry is not needed. Output value can be kq +
bits. Output value will be passed to arbitration module.

Arbitration and Decision
Initially arbitration module normalizes input values to
either one or zero using a special threshold. This threshold
depends on the rate of detection against false positive. The
outputs of the MLP for each scale value are stored in a
separate array. Values in this array indicate the output of
the MLP for that special location of the image.
The network has some invariance for scaling and
positioning which may result in multiple answers for a
particular face. False detections often occur with less
consistency [9]. Thus for each detection we count the
number of other detections within a specified neighborhood
of that detection. If the number is above a threshold, then
that location is classified as a face. In order to prevent
overlaps, once each location is considered as a face any
other detection in a specified neighborhood are discarded.
The above analysis is performed for each array. Final
results are merged into one output array, indicating the
location for face objects.
A program running under embedded processor in Virtex-IIP
device is responsible for the above task. Embedded
PowerPC processor operates with the same clock frequency
as the rest of the chip. Since there is a small amount of
computations, for each of the scales, processing time for
this module is less than the processing time of the MLP and
therefore, this part of the system will not limit the final
frame rate.

Practical Results
We implemented most of the parts of our system in real
hardware. Table 1 shows chosen values for jumps, window
sizes and scales. As described before, neural network
accepts two different dimensions: 18*22 pixels and 36*44.
Table 1 shows which mode is used for every window size.
For every input with size of 800*600 pixels, the total
number of 112780 sub frames is generated. Each individual
sub frame is analyzed with 10 different degrees of rotation
in 22.5 degrees increments.
Total numbers of 710099.2 × cycles is required to analyze
one complete frame (36=K). Running at 200MHz clock
frequency, the face detector can process up to 9 complete
frames per second.
In practice, however, it is not required to process the entire
frame. Usually face objects have a very smaller area
compared to the total area of the image. Thus, the skin color
filter output is zero most of the time. Our face detection
system can gain a significant speed-up. For instance, if only
25% of an image contains face objects, the system is able to
process up to 27 frames per second.
Number of rotation angles for which we analyze the image,
is another important factor. For instance, if only vertical
direction is considered, the processing speed would reach
up to 90 frames per second.

Frame size FF yx , 18*22 26*32 32*39 36*44 51*63 63*77 72*88 81*99 96*117 114*140
Surrounding rectangle size

SubFramex 29*29 42*42 51*51 57*57 82*82 100*100 114*114 128*128 152*152 181*181

MLP input size 18*22 18*22 18*22 36*44 36*44 36*44 36*44 36*44 36*44 36*44
2s 1 2 3 1 2 3 4 5 7 10

Jump value (J) 3 4 6 6 8 9 12 15 21 30
Table1. Window sizes, jump and scale values.

Experimental results show that 8 or 9 precision bit is
sufficient for neural network weights. Using 9 bits for
weight values and a neural network with 9 neurons in
input layer, 6 neurons in hidden layer and 1 in output
layer, the total number of 9369 ×× bits data must be
loaded from memory (36=K). This means 21 block
memories (two blocks per node) with maximum possible
output port width of 72 bits [12] should be used in parallel
to provide the needed weight values. Each block stores 55
values, and therefore, 25% of available space in each
block memory is consumed.
Design parameters, yet can be simply modified to
accommodate various special tasks. For example if we
assume MHzf 100= and MhzfM 400= , only 11 blocks
of memory is utilized. Changing the jump value or scale
values or number of scales can greatly change the
resource utilization and frame per second speed. A SVM
can be used instead of our simple MLP to obtain better
classification results [10] [11].
Experimental results show that the neural network
consumes approximately 3105× LUTs, Rotation uses

3105.2 × LUTs while scaling and grouping module
use 310 and 3105.2 × respectively. Since the rest of the
system consumes up to 3107× LUTs an XC2VP20
device [12] can hold the entire implementation.
Out tests show that the system can reach very good
accuracy in detecting faces if a good skin color filter and
well trained MLP are used.

Figure 6. 800*600 Input image, simulation outputs for
our system.

9 Bits quantized

weights Output – Real weights Output – Quantized
weights

Face object 1.0006 0.9685
Non Face object 0.0396 0.0073
Table 2. Shows the weight quantization effect in MLP.

Figure 7. Input image to sub-frame generation

References
1. Muthukumar Venkatesan and Daggu Venkateshwar Rao, Hardware
Acceleration of Edge Detection Algorithm on FPGAs,
2. J. F. Canny, A computational approach to edge detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence, (6):769–798,
November 1986.
3. Jure Kova·c, Peter Peer, Franc Solina , Eliminating the Influence of
Non-Standard, Illumination from Images,
4. Kobus Barnard, Lindsay Martin, and Brian Funt, Colour by
Correlation in a Three-Dimensional Colour Space, Sixth European
Conference on Computer Vision 26th June - 1st July, 2000
5. Brian Funt, Kobus Barnard and Lindsay Martin , Is Machine Colour
Constancy Good Enough?, 5th European Conference on Computer
Vision (ECCV '98) 2-6 June, 1998
6. Jeonghee Park; Jungwon Seo; Dongun An; Seongjong Chung;
Detection of human faces using skin color and eyes, Multimedia and
Expo, 2000. ICME 2000. 30 July-2 Aug. 2000
7. Ikeda, O.; Segmentation of faces in video footage using HSV color for
face detection and image retrieval, International Conference on Image
Processing, 14-17 Sept. 2003
8. Robert D. Turney and Chris H. Dick, Real Time Image Rotation and
Resizing, Algorithms and Implementations,CORE SOLUTIONS
GROUP, XILINX, INC.
9. H. A. Rowley, S. Baluja, and T. Kanade, Rotation invariant neural
network-based face detection, Computer Science Technical Report,
CMU, Pittsburgh, 1997.
10. Haizhou Ai,L. Ying,Guangyou Xu, A Subspace Approach To Face
Detection With Support Vector Machines, ICPR 2002, August 11-15
11. R.A. Reyna-Rojas et all , Implementation of the SVM Generalization
Function on FPGA, GSPx 2003
12. Xilinx Inc., Virtex II Pro Platform FPGAs Complete data sheet,
13. Howard demuth, Mark Beale, Neural Network Toolbox for use with
Matlab, Version 4.0, July 2002.

