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Abstract—This paper presents a fusion approach for improv-
ing human action recognition based on two differing modality
sensors consisting of a depth camera and an inertial body sen-
sor. Computationally efficient action features are extracted from
depth images provided by the depth camera and from accelerom-
eter signals provided by the inertial body sensor. These features
consist of depth motion maps and statistical signal attributes. For
action recognition, both feature-level fusion and decision-level fu-
sion are examined by using a collaborative representation classi-
fier. In the feature-level fusion, features generated from the two
differing modality sensors are merged before classification, while
in the decision-level fusion, the Dempster–Shafer theory is used
to combine the classification outcomes from two classifiers, each
corresponding to one sensor. The introduced fusion framework is
evaluated using the Berkeley multimodal human action database.
The results indicate that because of the complementary aspect of
the data from these sensors, the introduced fusion approaches lead
to 2% to 23% recognition rate improvements depending on the
action over the situations when each sensor is used individually.

Index Terms—Depth motion map (DMM), fusion of depth
camera and inertial sensor, human action recognition, wearable
inertial sensor.

I. INTRODUCTION

HUMAN action recognition is used in human–computer
interaction (HCI) applications, including gaming, sports

annotation, content-based video retrieval, health monitoring, vi-
sual surveillance, and robotics. For example, game consoles
such as Nintendo Wii or Microsoft Kinect rely on the recog-
nition of gestures or full-body movements for gaming interac-
tions. Human action recognition is also a part of fitness training
and rehabilitation, e.g., [1], [2]. Some human action recognition
approaches are based on a depth camera or wearable inertial
sensors, e.g., [3]–[5].

Since the release of Microsoft Kinect depth cameras, research
has been conducted regarding human action recognition using
them. Depth images generated by a structured light depth sensor,
in particular the Kinect depth camera, are insensitive to changes
in lighting conditions and provide 3-D information toward dis-
tinguishing actions that are difficult to characterize using in-
tensity images. For example, an action graph was employed in
[6] to model the dynamics of actions, and a collection of 3-D
points from depth images was used to characterize postures. In
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[7], a depth motion map (DMM)-based histogram of oriented
gradients was utilized to compactly represent body shape and
movement information followed by a linear support vector ma-
chine (SVM) to recognize human actions. In [8], the so-called
random occupancy pattern features were extracted from depth
images using a weighted sampling scheme and used for action
recognition. In [9], a 4-D histogram overdepth, time, and spatial
coordinates were used to encode the distribution of the surface
normal orientation, which was then used for action recognition.
In [10], a filtering method extracted the spatiotemporal interest
points, followed by a depth cuboid similarity feature for action
recognition.

Several action recognition systems involve wearable inertial
sensors. For example, in [5], wearable inertial sensors were
employed to recognize daily activities and sports in unsuper-
vised settings by using artificial neural networks within a tree
structure. In [11], a sparse representation classifier (SRC) was
introduced for human daily activity modeling and recognition
using a single-wearable inertial sensor. In [12], a hierarchical-
recognition scheme was proposed to extract features based on
linear discriminant analysis from a single triaxial accelerome-
ter. Artificial neural networks were then used for human activity
classification. In [13], a wireless body area network composed
of multiple wearable inertial sensors monitored position and
activity of upper and lower extremities for computer-assisted
physical rehabilitation. In [14], a fall detection system was pre-
sented based on wearable inertial sensors.

Depth sensors and wearable inertial sensors have been used
individually for human action recognition. However, simulta-
neous utilization of both depth and wearable inertial sensors
for human action recognition are less common [15]–[18]. In
[15], an inertial sensor and a Kinect were used to monitor a
person’s intake gesture. The position and angular displacement
of arm gestures captured by the Kinect and the acceleration of
arm gestures captured by the inertial sensor were analyzed sep-
arately. No information was published about how the data from
the two sensors were fused together to achieve more accurate
monitoring. Moreover, the application involved intake gestures
not human action recognition. In [16], a Kinect depth sensor and
a sensor consisting of an accelerometer and a gyroscope were
used together to detect falls using a fuzzy inference approach.
More specifically, the acceleration data from the accelerometer,
the angular velocity data from the gyroscope, and the center of
gravity data of a moving person from the Kinect were used as
inputs into a fuzzy inference module to generate alarms when
falls occurred. However, in the paper, only one action (falling)
was considered and no distinction between different actions was
considered. In [17], a Kinect depth sensor and five three-axis
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accelerometers were used for indoor activity recognition. The
acceleration data from the accelerometers and the position data
from the Kinect were merged as the input to an ensemble of bi-
nary neural network classifiers. However, only feature-level fu-
sion was performed, and the input signals to the classifiers were
raw acceleration and position data without feature extraction.
In [18], a Hidden Markov Model (HMM) classifier was used
for hand gesture recognition with raw data from both a Kinect
depth camera and an inertial body sensor (position data of the
hand joint from a Kinect depth camera, as well as acceleration
data and angular velocity data from an inertial body sensor). No
feature extraction was conducted, and only feature-level fusion
was used.

Depth and wearable inertial sensors are used to achieve im-
proved human action recognition, compared with the sensors
when used individually, while each of these sensors has its own
limitations when operating under realistic conditions, utilizing
them together provides synergy. In addition, our recognition so-
lution is devised to be computationally efficient, so as to run in
real time on desktop platforms.

In this paper, both feature-level and decision-level fusion
are considered. The decision-level fusion is performed via the
Dempster–Shafer theory. The introduced fusion approach is
evaluated using a publicly available multimodal human action
database (MHAD), the Berkeley MHAD [19]. Performance is
compared in situations when using each modality sensor indi-
vidually. Depth and wearable inertial sensors are low cost, easy
to operate, and can be used in darkness. These attributes make
their joint utilization practical in many HCI applications.

The rest of the paper is organized as follows. In Section II
mathematical techniques used in our fusion approach are stated.
In Section III, the MHAD is described. The details of our fusion
approach are presented in Section IV. The results are reported
in Section V. The conclusion is drawn in Section VI.

II. MATHEMATICAL TECHNIQUES

A. Sparse Representation Classifier

Sparse representation (or sparse coding) has received atten-
tion due to success in face recognition [20], [21]. The idea is to
represent a test sample according to a small number of atoms
sparsely chosen out of an overcomplete dictionary formed by
all available training samples. Let us consider C distinct classes
and a matrix X = {xi}n

i=1 ∈ Rd×n formed by n d-dimensional
training samples arranged column wise to form the overcom-
plete dictionary. For a test sample y ∈ Rd , let us express y as a
sparse representation in terms of matrix X as follows:

y = Xα (1)

where α is a n × 1 vector of coefficients corresponding to all
training samples from the C classes. One cannot directly solve
for α, since (1) is typically underdetermined [21]. However, a
solution can be obtained by solving the following �1-regularized
minimization problem:

α̂ = argmin
α

‖y − Xα‖2
2 + λ‖α‖1 (2)

where λ is a regularization parameter, which balances the influ-
ence of the residual and the sparsity term. According to the class
labels of the training samples, α̂ can be partitioned into C sub-
sets α̂ = [α̂1 , α̂2 , . . . , α̂C ] with α̂j (j ∈ 1, 2, . . . , C) denoting
the subset of the coefficients associated with the training sam-
ples from the jth class, i.e., Xj . After coefficients partitioning,
a class-specific representation ỹj is computed as follows:

ỹj = Xj α̂j . (3)

The class label of y can be identified by comparing the closeness
between y and ỹj via

class(y) = argmin
j∈{1,2,...,C }

rj (y) (4)

where rj (y) = ‖y − ỹj‖2 indicates the residual error.; see
Algorithm 1.

Algorithm 1 The SRC Algorithm

Input: Training samples X = {xi}n
i=1 ∈ Rd×n , class label

ωi (used for class partitioning), test sample y ∈ Rd , λ, C
(number of classes)
Calculate α̂ via �1-minimization of (2)
for all j ∈ {1, 2, . . . , C} do

Partition Xj , αj

Calculate rj (y) = ‖y − ỹj‖2 = ‖y − Xj α̂j‖2
end for
Decide class(y) via (4)
Output: class(y)

B. Collaborative Representation Classifier

As suggested in [22], it is the collaborative representation,
i.e., the use of all the training samples as a dictionary, but not
the �1-norm sparsity constraint, that improves classification ac-
curacy. The �2-regularization generates comparable results, but
with significantly lower computational complexity [22]. The
collaborative representation classifier (CRC) [22] swapped the
�1 penalty in (2) with an �2 penalty, i.e.,

α̂ = argmin
α

‖y − Xα‖2
2 + θ‖α‖2

2 . (5)

The �2-regularized minimization of (5) is in the form of the
Tikhonov regularization [23] leading to the following closed
form solution:

α̂ = (XT X + θI)−1XT y (6)

where I ∈ Rn×n denotes an identity matrix. The general form of
the Tikhonov regularization involves a Tikhonov regularization
matrix Γ. As a result, (5) can be expressed as

α̂ = argmin
α

‖y − Xα‖2
2 + θ‖Γα‖2

2 . (7)

The term Γ allows the imposition of prior knowledge on the solu-
tion using the approach in [24]–[26], where the training samples
that are most dissimilar from a test sample are given less weight
than the training samples that are most similar. Specifically, the
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following diagonal matrix Γ ∈ Rn×n is considered:

Γ =

⎡

⎢

⎣

‖y − x1‖2 0
. . .

0 ‖y − xn‖2

⎤

⎥

⎦
. (8)

The coefficient vector α̂ is then calculated as follows:

α̂ = (XT X + θΓT Γ)−1XT y. (9)

C. Dempster–Shafer Theory

DST introduced by Demspter was later extended by Shafer
[27]. DST is able to represent uncertainty and imprecision and
can effectively deal with any union of classes and has been
applied to many data fusion applications, e.g., [28], [29].

Let Θ be a finite universal set of mutually exclusive and
exhaustive hypotheses, which is called a frame of discernment.
In classification applications, Θ corresponds to a set of classes.
The power set 2Θ is the set of all possible subsets of Θ. A mass
function or basic probability assignment (BPA) is a function
m : 2Θ → [0, 1], which satisfies the following properties:

∑

A⊆Θ

m(A) = 1 (10)

m(∅) = 0 (11)

where ∅ is the empty set. A subset A with nonzero BPA is
called a focal element. The value of m(A) is a measure of
the belief that is assigned to set A, not to subsets of A. Two
common evidential measures, belief, and plausibility functions,
respectively, are defined as follows (A ⊆ Θ, B ⊆ Θ):

Bel(A) =
∑

B⊆A

m(B) (12)

Pl(A) =
∑

B∩A �=∅
m(B),Pl(∅) = 0. (13)

These two measures have the following properties:

Bel(A) ≤ Pl(A) (14)

Pl(A) = 1 − Bel(Ā) (15)

where Ā is the complementary set of A: Ā = Θ − A.
For combining the measures of evidence from two indepen-

dent sources, the Dempster’s rule for combining two BPAs m1
and m2 is given by

m1,2(∅) = 0 (16)

m1,2(A) =
1

1 − K

∑

B∩C =A �=∅
m1(B)m2(C) (17)

K =
∑

B∩C =∅
m1(B)m2(C). (18)

The normalization factor K provides a measure of conflict be-
tween the two sources to be combined. This rule is commutative
and associative. If there are more than two sources, the combi-
nation rule can be generalized by iteration. A joint decision is

Fig. 1. Example of depth images of the actions (left to right) jumping jacks,
punching, and throwing a ball.

made based on the combined BPA by choosing the class with
the maximum Bel or Pl [27].

III. HUMAN ACTION DATABASE

The Berkeley MHAD [19] contains temporally synchronized
and geometrically calibrated data from a motion capture system,
stereo cameras, Kinect depth cameras, wireless wearable ac-
celerometers, and microphones. After removing one erroneous
sequence, it consists of 659 data sequences from 11 actions per-
formed five times by seven male and five female subjects (11
aged 23–30 years and one elderly). The 11 actions are: jumping
in place (jump), jumping jacks (jack), bending-hands up all the
way down (bend), punching (punch), waving two hands (wave2),
waving right hand (wave1), clapping hands (clap), throwing a
ball (throw), sit down and stand up (sit+stand), sit down (sit),
stand up (stand). The database incorporates the intraclass vari-
ations. For example, the speed of an action was different for
different subjects.

There are five sensor modalities in the Berkeley MHAD,
from which only the depth and inertial data are considered here.
Furthermore, only the data from the Kinect camera placed in
front of the subject are considered.

IV. FUSION APPROACH

A. Feature Extraction From Depth Data

Fig. 1 shows three example depth images of the actions jump-
ing jacks, punching, and throwing a ball. A depth image can be
used to capture the 3-D structure and shape information. Yang
et al. [7] proposed to project depth frames onto three orthogo-
nal Cartesian planes for the purpose of characterizing an action.
In [30], we considered the same approach to achieve human
action recognition based on depth images. Before performing
depth image projections, first the foreground that contains the
moving human subject needs to be extracted. Most of the dy-
namic background subtraction algorithms involve background
modeling techniques [31], or spatiotemporal filtering to extract
the spatiotemporal interest points corresponding to an action
[32]. To make this task computationally efficient, with the con-
sideration that a human subject is expected to be in front of
the camera at a certain distance range, the mean depth value
μ for each M0 × N0 depth image is computed and, then, the
foreground region is selected according to

da,b =

{

da,b , if |da,b − μ| ≤ ε

0, otherwise
(19)
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Fig. 2. Depth image foreground extraction. Original depth image (left). Fore-
ground extracted depth image (right).

Fig. 3. Three projection views of a depth image.

where da,b(a = 1, 2, . . . ,M0 , b = 1, 2, . . . , N0) is the depth
value (indicating the distance between the Kinect camera and
the object) of the pixel in the ath row and bth column of the
depth image, ε is a threshold for the depth value with unit mil-
limeter. We examined all depth video sequences in the Berkeley
MHAD and found that the foreground can be removed by set-
ting ε ∈ [800, 900]. In our experiments, ε = 850 was chosen.
An example of the foreground extracted depth image is shown
in Fig. 2.

Each foreground extracted depth image is then used to gen-
erate three 2-D projected maps corresponding to the front,
side, and top views (see Fig. 3), denoted by mapv , where
v ∈ {f, s, t}. For a point (x, y, z) in the depth image with z de-
noting the depth value in a right-handed coordinate system, the
pixel values in the three projected maps (mapf ,maps,mapt)
are indicated by z, x, and y, respectively. For each projection
view, the absolute difference between two consecutive projected
maps is accumulated through an entire depth video sequence
forming the so-called DMM [30]. Specifically, for each pro-
jected map, the motion energy is calculated as the absolute
difference between two consecutive maps. For a depth video se-
quence with N frames, the DMMv is obtained by stacking the
motion energy across an entire depth video sequence as follows:

DMMv =
N −1
∑

q=1

∣

∣mapq+1
v − mapq

v

∣

∣ (20)

Fig. 4. DMM′
f generated from a waving two hands depth video sequence.

Fig. 5. Body placement of the six accelerometers in the Berkeley MHAD.

where q represents the frame index, and mapq
v is the projected

map of the qth frame for the projection view v. To keep the
computational cost low, only the DMM generated from the front
view, i.e., DMMf is used as the feature in our case.

A bounding box is set to extract the nonzero region, as the
region of interest (ROI) in each DMMf . Let the ROI extracted
DMMf be denoted by DMM′

f . Fig. 4 shows an example DMM′
f

generated from a waving two hands depth video sequence. As
seen here, DMM is able to capture the characteristics of the
motion. Since DMM′

f of different action video sequences may
have different sizes, bicubic interpolation is used to resize all
DMM′

f to a fixed size in order to reduce the intraclass variations.

B. Feature Extraction From Acceleration Data

In the Berkeley MHAD, six three-axis wireless accelerom-
eters A1 , . . . , A6 were placed on the subjects (see Fig. 5) to
measure movements at the wrists, ankles, and hips. The ac-
celerometers captured the motion data with the frequency of
about 30 Hz. Here, each accelerometer sequence is partitioned
into Ns temporal windows as suggested in [19]. Statistical
measures including mean, variance, standard deviation, and
root mean square are computationally efficient and useful for
capturing structural patterns in motion data. Therefore, these
four measures are computed here along each direction in each



CHEN et al.: IMPROVING HUMAN ACTION RECOGNITION USING FUSION OF DEPTH CAMERA AND INERTIAL SENSORS 55

TABLE I
RECOGNITION RATES (%) WHEN USING DIFFERENT ACCELEROMETERS

Accelerometer Recognition rate (%)

A 1 86.67
A 2 85.15
A 3 71.49
A 4 72.42
A 5 56.43
A 6 57.88

temporal window. For each accelerometer, concatenating all
measures from Ns windows results in a column feature vector
of dimensionality 4 × 3 × Ns .

Although six accelerometers were used in the Berkeley
MHAD, we consider only two accelerometers because of prac-
ticality. To select the two accelerometers, an analysis was con-
ducted by using the first six subjects for training and the re-
mainder for testing. We set Ns = 15 (an analysis of choosing
the number of segments is provided in Section V and employed
SVM to classify the 11 actions. Based on the recognition perfor-
mance and the positions of the accelerometers, the accelerom-
eters A1 and A4 were found to be the most effective for the
human actions in the database (see Table I). Note that A1 and
A4 are placed on the left wrist and right hip, respectively, where
people may wear a watch and a cell phone pouch in a nonin-
trusive manner. Neither A5 nor A6 were chosen because they
were placed on the ankles, and were not able to generate useful
information because of the relatively static foot movements in
the actions.

C. Feature-Level Fusion

Feature-level fusion involves fusing feature sets of differ-
ent modality sensors. Let U = {ul}n

l=1 in Rd1 (d1-dimensional
feature space) and V = {vl}n

l=1 in Rd2 (d2-dimensional fea-
ture space) represent the feature sets generated, respectively,
from the Kinect depth camera and the accelerometer for n train-
ing action samples. Column vectors ul and vl are normalized
to have the unit length. Then, the fused feature set is repre-
sented by F = {fl}n

l=1 inRd1 +d2 with each column vector being
fl = [uT

l ,vT
l ]T . The fused feature set is then fed into a classifier.

D. Decision-Level Fusion

As noted earlier, for the C action classes and a test sample y,
the frame of discernment is given by Θ = {H1 ,H2 , . . . ,HC },
where Hj : class(y) = j, j ∈ {1, 2, . . . , C}. The classification
decision of the classifiers SRC or CRC is based on the residual
error with respect to class j, rj (y) using (4). Each class-specific
representation ỹj and its corresponding class label j constitute
a distinct item of evidence regarding the class membership of y.
If y is close to ỹj according to the Euclidean distance, for small
rj (y), it is most likely that Hj is true. If rj (y) is large, the class
of ỹj will provide little or no information about the class of y.
As demonstrated in [33] and [34], this item of evidence may be

represented by a BPA over Θ defined as follows:

m(Hj |ỹj ) = βφj (rj (y)) (21)

m(Θ|ỹj ) = 1 − βφj (rj (y)) (22)

m(D|ỹj ) = 0,∀D ∈ 2Θ \ {Θ,Hj} (23)

where β is a parameter such that 0 < β < 1, and φj is a de-
creasing function satisfying these two conditions:

φj (0) = 0 (24)

lim
r(yj )→∞

φj (rj (y)) = 0. (25)

However, as there exist many decreasing functions satisfying
the two conditions, Denoeux [33] suggests to choose this φj

φj (rj (y)) = e−γj rj (y)2
(26)

with φj being a positive parameter associated with class j. In
[34], a method for tuning the parameter γj was proposed. To
gain computational efficiency, γj is set to 1 in our case, which
makes φj a Gaussian function

φj (rj (y)) = e−rj (y)2
. (27)

Since there are C class-specific representations ỹj ’s, the final
belief regarding the class label of y is obtained by combining
the C BPAs using the Dempster’s rule of combination. The
resulting global BPA mg was shown in [33] to be

mg (Hj ) =
1

K0
(1 − {1 − βφj (rj (y))}) ·

∏

p �=j

{1 − βφp

×(rp(y))} p ∈ {1, . . . , C} (28)

mg (Θ) =
1

K0

C
∏

j=1

{1 − βφj (rj (y))} (29)

where K0 is a normalization factor

K0 =
C

∑

j=1

∏

p �=j

{1 − βφp(rp(y))}

+(1 − C)
C
∏

j=1

{1 − βφj (rj (y))}. (30)

In our decision-level fusion here, SRC or CRC is first applied
to the depth feature set U and acceleration feature set V, re-
spectively. Therefore, two corresponding global BPAs mg,1 and
mg,2 are generated. The combined BPA from mg,1 and mg,2
is then obtained via (17). The class label of a new test sam-
ple is determined, which corresponds to the maximum value of
Bel(Hj ), i.e., max(Bel(Hj )).

V. RESULTS

A. Experimental Setup

The size of the depth images in the database is 480 × 640
pixels. After the foreground extraction from each depth image,
the foreground extracted image was downsampled to 1/4 of the
original size, i.e., 120 × 160, to reduce the dimensionality and,



56 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 1, FEBRUARY 2015

Fig. 6. Recognition rates (%) using different number of segments for ac-
celerometer features. (a) SVM classifier. (b) CRC classifier.

thus, the computational complexity. Then, the DMM generation
was performed on the reduced size images. To have a fixed size
for the DMM′

f , the sizes of these maps for all action samples
in the database were found. The fixed size of each DMM′

f was
set to the mean value of all of the sizes, which was 65 × 50.
Therefore, each feature vector ul had a dimensionality of 3250.

The number of segments Ns for the acceleration data was
determined via experimentation using the first six subjects for
training and the rest for testing. SVM and CRC were employed
as the classifiers, and the performance was tested using differ-
ent Ns (see Fig. 6). In this figure, A1 denotes only using the
accelerometer A1 , A4 denotes only using the accelerometer A4 ,
and A1&A4 denote using both of the accelerometers A1 and
A4 together, where the features from the two accelerometers
are stacked. Average denotes the mean accuracy of using the
three accelerometer settings: A1 , A4 , and A1&A4 . The setting
Ns ∈ [13, 17] produced a consistent recognition performance
under three accelerometer settings. Thus, Ns = 15 was chosen
for the experiments. Each feature vector vl had the dimension
of 180 and 360 for the single-accelerometer setting and the
two-accelerometer setting, respectively.

Although downsampling was used to reduce the dimensional-
ity of the features generated from the depth images, the dimen-
sionality of ul and the fused feature fl was greater than 3000.
To gain computational efficiency, principal component analysis
(PCA) was applied to fl to reduce the dimensionality. The PCA
transform matrix was calculated using the training feature set
and, then, applied to the test feature set. The principal compo-
nents that accounted for 95% of the total variation of the training
feature set were considered.

B. Recognition Outcome

For evaluation purposes, the leave-one-subject-out cross val-
idation test (CV test) was considered. The recognition outcome
was found for each subject as the left-out subject, and the final
recognition outcome was averaged over all subjects to remove
any bias. Five classifiers consisting of SVM, SRC, CRC, k-
nearest neighbor (k-NN), and HMM were employed to evaluate
the effectiveness of the proposed fusion approach. SVM was
implemented using the LIBSVM toolbox1 with an RBF kernel.
Additionally, the package solver l1_ls2 was used to calculate
the sparse approximations for SRC. The optimal parameters for
SVM and the regularization parameters, λ and θ, for SRC and
CRC were assigned to be those that maximized the training ac-
curacy via a fivefold cross validation. The parameter k = 3 was
used in k-NN, as it generated the best outcome among different
ks. The left-to-right topology with eight states [18] was used for
HMM.

We compared the recognition performance of our feature-
level fusion framework with the performance of each individual
modality sensor (see Table II). By combining the features from
the two differing modality sensors, the overall recognition rate
was improved over the Kinect camera alone and over the ac-
celerometer alone. This improved performance was consistent
for all five classifiers. The overall recognition rate of accelerom-
eter A1 was found to be higher than that of accelerometer A4 ,
mainly due to the type of actions in the database consisting of
hand movements. Fusing the Kinect data with A1 data achieved
similar recognition rates as fusing the Kinect data with A4 data
(except for the case when the k-NN classifier was used) due
to the complementary nature of the data from the two differ-
ing modality sensors. For example, the accelerometer A4 was
not able to capture the hand movement of the action waving two
hands; however, the DMM′

f generated from the depth images as
shown in Fig. 4 could capture the characteristics of this action.
As seen in Table II, using the two accelerometers A1 and A4
in the fusion approach did not lead to a substantial recognition
improvement over the situation when using a single accelerom-
eter A1 or A4 . For the five classifiers, the recognition accuracy
of Kinect + A1&A4 came close to that of Kinect + A1 (less
than 1%), as the accelerometer A4 did not provide any addition-
ally useful data to distinguish certain actions, in particular, the
actions that involved moving hands and arms.

Tables III–V show three recognition confusion matrices cor-
responding to using Kinect only, using accelerometer A1 only,
and using Kinect and A1 fusion, respectively, with the SVM
classifier. As it can be seen from Table III, the misclassifica-
tions mostly occurred among the actions sit down and stand
up, sit down, and stand up. As illustrated in Fig. 7, the DMMs
(representing shape and motion) of these actions appeared quite
similar; however, the shape and motion of the actions sit down
and stand up occurred in different temporal orders. The action
sit down and stand up is a complex movement composed of
sit down and stand up. The failure of the DMM to distinguish
the shape and motion cues occurred in different temporal orders

1http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/
2http://www.stanford.edu/ ∼boyd/l1_ls
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TABLE II
RECOGNITION RATES (%) FOR THE LEAVE-ONE-SUBJECT-OUT CVT

Method Kinect A 1 Kinect+A 1 A 4 Kinect+A 4 A 1 &A 4 Kinect+A 1 &A 4

SVM 92.39 91.77 98.48 79.03 98.18 94.20 99.24
SRC 84.93 92.38 98.79 72.03 97.57 95.73 99.54
CRC 87.52 93.00 98.18 82.19 97.11 96.81 99.13
k -NN 65.04 86.91 91.17 65.65 82.57 89.08 91.85
HMM 84.80 90.43 97.57 78.12 96.50 93.77 98.18

TABLE III
CONFUSION MATRIX WHEN USING KINECT ONLY FOR THE LEAVE-ONE-SUBJECT-OUT CVT

Action jump jack bend punch wave2 wave1 clap throw sit+stand sit stand

jump 98.33 - - - - - - 1.67 - - -
jack - 95 - - - - - 5 - - -
bend - - 100 - - - - - - - -
punch - - - 100 - - - - - - -
wave2 - 8.33 - - 91.67 - - - - - -
wave1 - - - - - 100 - - - - -
clap - - - 11.67 - - 86.67 1.67 - - -
throw - - - 1.69 1.69 - - 96.61 - - -
sit+stand - - - - - - - - 88.33 3.33 8.33
sit - - - - - - - - 8.33 86.67 5
stand - - - - - - - - 13.33 13.33 73.33

TABLE IV
CONFUSION MATRIX WHEN USING ACCELEROMETER A1 ONLY FOR THE LEAVE-ONE-SUBJECT-OUT CVT

Action jump jack bend punch wave2 wave1 clap throw sit+stand sit stand

jump 93.33 1.67 - 1.67 - - 3.33 - - - -
jack 11.67 88.33 - - - - - - - - -
bend - - 100 - - - - - - - -
punch 6.67 - - 75 - - 18.33 - - - -
wave2 - - - - 100 - - - - - -
wave1 - - - - - 100 - - - - -
clap 1.69 - - 3.39 - - 93.22 1.69 - - -
throw 1.69 - - - - 10.17 1.69 76.27 - - 10.17
sit+stand - - - - - 1.67 - 1.67 96.67 - -
sit - - - - - 1.67 - 1.67 - 96.67 -
stand - - - - - 3.33 - 1.67 - 5 90

TABLE V
CONFUSION MATRIX WHEN USING KINECT AND ACCELEROMETER A1 FUSION FOR THE LEAVE-ONE-SUBJECT-OUT CVT

Action jump jack bend punch wave2 wave1 clap throw sit+stand sit stand

jump 100 - - - - - - - - - -
jack 1.67 98.33 - - - - - - - - -
bend - - 100 - - - - - - - -
punch - - - 98.33 - - 1.67 - - - -
wave2 - 1.67 - - 98.33 - - - - - -
wave1 - - - - - 100 - - - - -
clap 1.69 - - - - - 98.31 - - - -
throw - - - 1.69 - - - 98.31 - - -
sit+stand - - - - - - - - 100 - -
sit - - - - - - - - - 100 -
stand - - - - - - - - 8.33 - 91.67
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Fig. 7. DMMs for the actions (left to right) sit down and stand up, sit down,
and stand up.

Fig. 8. Three-axis acceleration signals corresponding to the actions. (a) Sit
down. (b) Stand up.

of these actions, which demonstrated a disadvantage of using
the Kinect alone.Table IV shows the confusion matrix associ-
ated with using accelerometer A1 alone. The accuracies of the
actions sit down and stand up, sit down, and stand up were
improved noticeably (over 10% for these three actions) as com-
pared with the Kinect only situation. The three-axis acceleration
data were able to distinguish similar motions that occurred in
different temporal orders, since the trend of the three-axis ac-
celeration data for the action sit down was opposite to that for
the action stand up as illustrated in Fig. 8. However, some of the
actions, e.g., punch, produced much lower accuracy than using
the Kinect alone. The action punch was mostly misclassified
with the action clap. From Fig. 9, one sees that the features

Fig. 9. Features generated from three-axis acceleration data for the actions
punch and clap.

generated from the three-axis acceleration data for the two ac-
tions were similar. By integrating the Kinect depth images with
the acceleration data, the fused features were more discrimina-
tory leading to the improved recognition rates over the Kinect
alone and the accelerometer alone situations. Table V shows
that the low-recognition rates for those actions when using one
modality sensing improved when the Kinect and accelerometer
data were used together due to the complementary nature of the
data from these two differing modality sensors. For example, the
overall recognition rate for the action sit was improved by 13%
over the Kinect alone, and the accuracy for the action punch was
improved by 23% over the accelerometer alone.

To investigate training data size, we conducted a random
test experiment by randomly choosing half of the subjects for
training and the remaining subjects for testing. Each test was
repeated 20 times, and the mean performance (mean recogni-
tion rate ± standard deviation) was computed. As can be seen
from Table VI, our fusion approach produced the same perfor-
mance as the CV test. Again, the overall recognition rate of the
fusion approach was improved over the Kinect alone and the ac-
celerometer alone (the improvement was even greater than that
of the CV test). This trend was consistent for the four different
classifiers.

We also tested the effectiveness of our decision-level fusion
approach. We used CRC rather than SRC because of its com-
putational efficiency. As suggested in [33], we set β = 0.95 for
the BPA in (21). Table VII shows that the feature-level fusion
outperformed the decision-level fusion in most cases. How-
ever, the decision-level fusion involving the Kinect camera and
accelerometer still achieved better performance than each indi-
vidual modality sensor. One disadvantage of the decision-level
fusion is that CRC needs to be applied to both the depth feature
and the acceleration feature. In other words, CRC has to be run
twice.

We conducted a comparison of our fusion approach with the
one described in [19], where multiple kernel learning (MKL)
was employed to fuse information from different modality sen-
sors. In [19], each depth video was first divided into eight dis-
joint depth-layered multichannel (DLMC) videos by dividing
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TABLE VI
RECOGNITION RATES (%) FOR RANDOM TEST

Method Kinect A 1 Kinect+A 1 A 4 Kinect+A 4 A 1 &A 4 Kinect+A 1 &A 4

SVM 86.34±1.92 87.69±2.95 97.02±1.33 70.52±2.98 96.41±1.43 90.30±2.27 98.23±0.70
SRC 79.20±2.01 87.05±2.82 97.41±0.94 65.65±3.24 94.64±1.97 90.64±2.64 98.14±0.83
CRC 81.61±2.00 88.09±3.12 96.87±1.09 73.59±3.43 94.89±2.01 92.01±2.84 97.94±0.93
k -NN 63.81±2.06 84.02±3.71 90.65±2.08 62.71±3.31 81.52±3.16 86.16±3.26 90.93±1.64
HMM 78.83±2.24 86.12±2.47 95.70±1.38 69.13±2.75 93.42±1.82 89.62±2.06 96.68±1.14

TABLE VII
RECOGNITION RATES (%) COMPARISON BETWEEN FEATURE-LEVEL FUSION

(CRC) AND DECISION-LEVEL FUSION (CRC)

Method Kinect+A 1 Kinect+A 4 Kinect+A 1 &A 4

CV test
Feature-level fusion 98.18 97.11 99.13
Decision-level fusion 98.05 97.38 98.97

Random test
Feature-level fusion 96.87 94.89 97.94
Decision-level fusion 96.04 95.36 97.31

TABLE VIII
COMPARISON OF RECOGNITION RATES (%) BETWEEN OUR FEATURE-LEVEL

FUSION AND THE MULTIPLE KERNEL LEARNING METHOD IN [19]

Method Kinect+A 1 Kinect+A 4 Kinect+A 1 &A 4

CV test
Ours 98.48 98.18 99.24
[19] 92.65 91.93 93.77

Random test
Ours 97.02 96.41 98.23
[19] 90.59 88.87 91.43

the depth range into eight equal depth layers and by keeping
the pixels within the depth range of the corresponding depth
layer. The first two depth layers and the last depth layer were
discarded due to a lack of depth information. Histogram of
gradients (HOGs) and histogram of flow (HOF) features [35]
were then extracted from each DLMC video. Then, the bag-
of-features representation in [36] was employed to code the
DLMC videos into histograms to serve as the features. Note
that the type of fusion in [19] was a feature-level fusion and
SVM was employed in MKL. Therefore, our feature-level fu-
sion with the SVM classifier is compared with the approach in
[19]. As listed in Table VIII, our approach led to higher recogni-
tion rates. For the acceleration data, only variance was utilized
to extract features from the temporal windows as described in
[19]. For the depth videos, HOG/HOF features were computed
at the space-time interest points (STIPs). Due to the noise in
the depth videos, the detected STIPs contained many points that
were not related to the actions. In addition, the feature extraction
method in [19] calculates the HOG/HOG descriptors for each
DLMC video, which is computationally expensive and poses
real-time implementation challenges.

Fig. 10. Real-time action recognition timeline of our fusion framework.

TABLE IX
AVERAGE AND STANDARD DEVIATION OF PROCESSING TIME OF THE

COMPONENTS OF OUR FUSION APPROACH

Component Processing time (ms)

1 2.1±0.3/frame
2 2.5±0.1/frame
3 1.4 ±0.3/action sequence
4 2.4 ±0.6/action sequence
5 1.3 ±0.2/action sequence
6 3.2 ±0.4/action sequence

Finally, the computational aspect of our solution is consid-
ered (see Fig. 10). An action is normally completed approx-
imately within a 2-s time duration. The numbers in Fig. 10
indicate the main components in our fusion approach. More
specifically, the components are as follows. 1) Depth image
foreground extraction and image downsampling. 2) DMMf =
DMMf + |mapq+1

f − mapq
f | computation. 3) Acceleration fea-

ture extraction captured within a time window. 4) ROI extrac-
tion from the DMMf and resizing the DMM′

f to a fixed size
via bicubic interpolation. 5) Applying PCA dimensionality re-
duction on the fused feature vector. 6) Performing classification
using SVM. The components (1) and (2) are executed right after
each depth frame is captured, while the components (3)–(6) are
performed after an action sequence completes. Since the PCA
transform matrix is calculated using the training feature set, it
can be directly applied to the feature vector of a test sample. Our
code is written in MATLAB, and the processing time reported
is for an Intel i7 Quadcore 2.67-GHz PC platform with 8-GB
RAM. The average processing time of each component is listed
in Table IX.
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VI. CONCLUSION

In this paper, a fusion framework was introduced that utilizes
data from two differing modality sensors [a Kinect camera and
a wearable inertial sensor (accelerometer)] for the purpose of
achieving human action recognition. Using data from the Berke-
ley multimodality human action database, improved recognition
rates were achieved by using these two differing modality sen-
sors together compared with the situations when each sensor
was used individually. This was found to be due to the com-
plementary aspect of data from these two differing modality
sensors.
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