
Transferring Activity Recognition Models for NewWearable
Sensors with Deep Generative Domain Adaptation

Ali Akbari
Texas A&M University
College Station, Texas
aliakbari@tamu.edu

Roozbeh Jafari
Texas A&M University
College Station, Texas
rjafari@tamu.edu

ABSTRACT
Wearable sensors provide enormous opportunities to identify ac-
tivities and events of interest for various applications. However,
a major limitation of the current systems is the fact that machine
learning algorithms trained on particular sensors need to be re-
trained upon any changes in configuration of the system, such as
adding a new sensor. In this paper, we aim to seamlessly train ma-
chine learning algorithms for the new sensors to identify activities
and observations that are detectable by the pre-existing sensors. We
create a domain adaptation method to expand training algorithms
from known wearable sensors to new sensors, eliminating the need
for manual training of machine learning algorithms. Specifically,
our proposed approach eliminates the need for capturing substan-
tial amount of data on new sensors. We propose the concept of
stochastic features for human activity recognition, and design a new
architecture of deep neural network to approximate the posterior
distribution of the features. This approximation aligns the feature
space of the new and old sensors by using limited, unlabeled data
from the new sensor so that the previously defined classifier can be
used with the new sensor. The experimental results show that (i)
stochastic features are more robust against additive noise compared
to typical convolutional neural networks based on deterministic
features (ii) our framework outperforms the state-of-the-art domain
adaptation algorithms. It can also achieve 10% improvement when
training new sensors with limited unlabeled training data compared
to training a model from scratch for the new sensor.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Machine learning;

KEYWORDS
Domain adaptation, Transfer learning, Activity recognition, Wear-
able sensors, Deep learning
ACM Reference Format:
Ali Akbari and Roozbeh Jafari. 2019. Transferring Activity Recognition
Models for New Wearable Sensors with Deep Generative Domain Adap-
tation. In The 18th International Conference on Information Processing in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IPSN ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6284-9/19/04. . . $15.00
https://doi.org/10.1145/3302506.3310391

Sensor Networks (co-located with CPS-IoT Week 2019) (IPSN ’19), April 16–18,
2019, Montreal, QC, Canada, Jennifer B. Sartor, Theo D’Hondt, and Wolf-
gang De Meuter (Eds.). ACM, Montreal, Canada, Article 4, 12 pages. https:
//doi.org/10.1145/3302506.3310391

1 INTRODUCTION
Wearable sensors are taking a bold stance in becoming the principal
interface and system for capturing human activities. Among diverse
wearable sensors, such as smartwatches, smartphones, wrist-band
sensors, sports shoes, and sensors embedded in clothing, some
types may have been used more frequently. However, in presence
of user’s diverse preference and requirement of various environ-
ments, changes in the configuration and type of sensors are highly
possible. For example, a user who has been using a smartphone
for a while may acquire a new smartwatch. Users may use safety
goggles with sensors when they enter work environment. Exercise
routines may require sensors with new placement on the body. Our
objective is to seamlessly train machine learning algorithms for
new sensors (e.g., smartwatch) to identify activities and observa-
tions that the prior sensor (e.g., smartphone) can detect. In other
words, we aim to create domain adaptation methods to leverage
the training algorithms on a known wearable sensor, and expand
them to new sensors, eliminating the need for manual training of
machine learning algorithms. With these adaptable algorithms, new
wearable sensors will eventually be capable of detecting activities
and events on their own, and essentially their respective machine
learning algorithms will be seamlessly trained without the need for
user’s intervention or offering labels manually for training data.

This work is significant because it specifically eliminates the
need for capturing substantial amount of data on new sensors. In
fact, with limited unlabeled new data from the new sensor as well
as the training data from the old sensors, the new machine learning
algorithms can be effectively trained. Training models for new
sensors, with the smallest amount of data possible, is crucial when
working with wearable sensors with limited computational capacity
and battery life. Training complicated models for these devices
requires extensive computational resources and often occurs offline,
for example on the cloud. Thus, wearable devices need to transmit
their data to the cloud.Machine learning algorithms are then trained
offline, and are uploaded to the wearable device to work online [2].
Therefore, to reduce interaction between the device and the cloud,
the machine learning algorithms for the new sensors should be
trained with minimal data. In addition, users often prefer for the
new sensors to become functional in terms of detection and do not
wish to spend significant amount of efforts and time in training the
signal processing units through manual labeling and annotations.
Furthermore, in IoT applications, new sensors can be arbitrarily

https://doi.org/10.1145/3302506.3310391
https://doi.org/10.1145/3302506.3310391
https://doi.org/10.1145/3302506.3310391

IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Akbari et al.

added to the environment and it is desired to support rapid training
of their associated signal processing algorithms. Thus, automating
the training phase with the limited data available, eliminating the
user’s burden, and accelerating the training, will enable seamless
training of signal processing modules for new wearable sensors as
users begin using them, which are all significant and timely.

We intuitively describe current practices and their limitations.
A new sensor, called target domain, that is added to an existing
sensor or set of sensors, called source domain, might capture a very
different signal (domain divergence) when it is placed on a different
part of the body. Various transfer learning and domain adapta-
tion techniques are proposed for solving the problem of domain
divergence in the field of human activity recognition [14, 21, 26].
However, the existing approaches have a few limitations: (i) Many
of these approaches require labeled training data to be available
from the new sensor; (ii) Even unsupervised domain adaptation
approaches need to have access to a large amount of data from the
new sensor to approximate the distribution of the data in two do-
mains and align them; (iii) Most of the current approaches assume
that the source and target domains can be modeled with the same
set of features, while it may not be valid when different sensors are
placed on different body locations; (iv) Most of these approaches
mainly rely on shallow models and do not address the needs of data
hungry deep learning models even though deep learning models
have shown promising results in recognizing human activities with
sensor data; (v) Most of the current approaches use deterministic
models and do not consider uncertainty in the signals.

In this paper, to train new sensors by using the knowledge of the
old sensors, we propose a framework that leverages deep neural net-
work, which has shown superior performance in terms of automatic
feature extraction and classification for human activity recogni-
tion [18]. We focus on the problem of activity recognition with
wearable motion sensors. We also assume that the deep learning
models are trained offline on powerful computers as training those
models with multiple hidden layers usually needs an extensive
computational power. Thus, the proposed approach is not aiming
for on-board training in particular in presence of low power micro-
controllers. These models can then be uploaded onto wearables
to perform online detection [2]. To use the knowledge from one
domain in another domain, a major challenge is to find a represen-
tation for instances of different domains such that the divergence
between the domains can be reduced. We first propose the concept
of stochastic feature extraction for activity recognition which takes
into account the uncertainty in the sensor readings. The features
are designed in such a way that they are not only discriminative in
the classification task but they can also retain the intrinsic struc-
ture of the input dataset in the source domain [15]. We drive the
statistical equations for this framework and show how the distri-
bution of the features can be approximated by a new structure of
deep neural network that basically combines typical discriminative
convolutional neural networks (CNN) with generative variational
autoencoders. We then approach the problem of training the model
for the new sensor as a domain adaptation problem in which the
distribution of the target domain’s features (i.e., the new sensor) is
enforced to be similar to the source (i.e., the old sensor) domain’s
by minimizing divergence between them. Therefore, the source
classifier, which is trained on the labeled training data of the source

domain, can easily be used in the target domain with no change
even if the domains are originally different. This leaves a smaller
neural network to be trained for the target domain so that it can be
achieved with smaller data compared to the initial training data in
the source. By using the training data in the source, our model can
learn how to approximate the distribution of the feature space for
each single datum. Accordingly, it can match distributions by using
corresponding data points in the two domains. Thus, in contrast to
the existing domain matching algorithms, we do not need to collect
lots of data to estimate the mean of the distributions to match them.

The contribution of this paper is as follows:
• We propose the concept of stochastic features for activity
recognition and propose a model for approximating the dis-
tribution of the features.

• Our approach allows the transfer of machine learning knowl-
edge from an existing wearable sensor to a new wearable
sensor with a small amount of new unlabeled data through
aligning the distribution of features between the source and
target domains.

• We show the effectiveness of our algorithm through various
set of experiments.

The remainder of this article is organized as follows. The related
work is reviewed in Section 2. Challenges of domain adaptation
for activity recognition are discussed in Section 3. Our proposed
approach is explained in Section 4 where we first introduce the con-
cept of stochastic feature extraction and then introduce the domain
adaptation algorithm for training new sensors. Experimental results
are provided in Section 5 followed by the conclusion in Section 6.

2 RELATEDWORKS
Based on the type of knowledge that is transferred between differ-
ent domains, domain adaptation and transfer learning works can be
categorized as instance-based [21, 29], feature representation-based
[9, 10, 14, 28], and classifier-based [13]. Based on the availability of
the data in two domains, the technical problems are divided into su-
pervised [17], semi-supervised [19], and unsupervised techniques
[9, 14, 16]. Finally, different transfer criteria including statistical
[10, 14, 24], geometric, [5, 17], correspondence-based [11], class-
based [17], and self-labeling criteria [21], are utilized for transfer-
ring the knowledge between domains. Our work falls into the class
of unsupervised, feature representation-based, transfer learning
with a mixture of statistical and correspondence-based criteria. In
this section we review prior works that perform unsupervised do-
main adaptation with statistical and geometric criteria as well as
correspondence-based criteria using both shallow and deep learn-
ing models for general applications. We then discuss the domain
adaptation techniques that are proposed for the specific task of
activity recognition.

The problem of unsupervised domain adaptation is widely in-
vestigated in the field of image recognition. The main hypothesis
in these approaches is that after aligning two domains in a higher
level representation, the classifier trained on the source data can
be used in the target domain with no change. A technique called
joint domain adaptation (JDA) is designed to jointly adapt both the
marginal and conditional distribution of the input data [16]. A sim-
ilar system called transfer component analysis (TCA) tries to learn

Transferring Activity Recognition Models IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

a representation in a reproducing kernel Hilbert space (RKHS) in
which distributions of different domains are close to each other [19].
Several researchers have tried to solve the domain adaptation prob-
lem for deep learning models, as it is a powerful tool for automated
feature extraction. The deep domain confusion (DDC) method adds
a feature adaptation layer to a regular deep CNN to learn features
that are both discriminative and domain invariant [24]. Another
technique called deep reconstruction-classification network learns a
shared encoding representation for both supervised classification of
labeled source data, and unsupervised reconstruction of unlabeled
target data [9]. Thus, the learned representation not only preserves
discriminability, but also encodes useful information from the tar-
get domain. All these works try to match the empirical mean of the
two datasets in a higher level representation space. However, these
techniques need a lot of data from both domains to estimate the
means of distributions more precisely. Moreover, they only match
the first moment of the data distributions, which negatively impacts
the generalizability because of ignoring higher order moments.

To avoid the aforementioned problems, a specific deep neural
network architecture is proposed by adding a new domain classifier
block, which distinguishes between the source and target samples,
to a simple CNN [8]. An adversarial discriminative domain adapta-
tion (ADDA) framework is created in another study [23]. This work
begins by training a model for the source domain and then trains an
adversarial adaptation network that tries to extract features from
the target domain that are similar to the source domain so that the
domain discriminator cannot distinguish them. During the testing
phase for the target domain, the target feature extractor module
is used along with the classifier that is trained on the source. This
algorithm also uses independent source and target feature extrac-
tor networks to allow more domain specific features to be learned.
In adversarial training-based domain adaptation techniques, avail-
ability of large amount of data from both domains is required to
effectively train the domain discriminator module.

Although less extensively, the research community have looked
at transfer learning and domain adaptation frameworks for specific
task of human activity recognition with wearable motion sensors.
A CNN-based method called heterogeneous deep convolutional
neural network (HDCNN) assumes that the relative distribution of
weights in the different CNN layers will remain invariant, as long as
the set of activities being monitored does not change [14]. Based on
this, the activation of all the layers of a CNN are enforced to have
the similar empirical mean on both source and target domains. This
technique, however, needs lot of data to be available from the target
domain to estimate the mean of distributions well. In another study,
a general cross-domain learning framework is designed that can
exploit the intra-affinity of classes to perform intra-class knowledge
transfer [26]. This technique, however, needs to have some basic
classifier trained on the target domain or it uses the source classifier
to assign pseudo labels. This is a limiting assumption especially
when two sensors are very different and the model trained on the
source does not perform better than assigning random labels to
the target data. In another study, a label propagation technique is
utilized to refine the labels using both old and new sensors’ data,
and then these labels are used for training a new model for the new
sensor [21]. Since this method needs to train a model from scratch
for the new sensor, it is not suitable for deep learning models.

Figure 1: An example of cross domain activity recognition.
The magnitude of the acceleration signal, which is captured
during the walking activity by wrist and chest sensors, have
different patterns.The difference in the signal of two do-
mains makes the source’s optimal classifier useless for the
target domain data.
Blue: source domain (wrist sensor), red: target domain (chest
sensor), green line: the optimal classifier in the source do-
main. Squares and stars illustrate two different activities.

To address the issues with the existing methods, namely relying
on lots of data from the target domain as well as sharing the param-
eters of feature extraction layers, which is not suitable when the
sensors’ signals are very different, we propose a new architecture of
deep neural network that approximates the posterior distribution
of the features given any single data point. This knowledge is then
used to align the distribution of two domains in the feature space.

3 DOMAIN ADAPTATION CHALLENGES FOR
ACTIVITY RECOGNITION

Performance of a machine learning algorithms trained on the data
of one wearable sensor (source sensor) will be reduced when it is
used with the data of a new sensor (target sensor) if two sensors
are placed on different body locations [26]. Figure 1 shows such a
scenario where two accelerometers placed on two different body
locations capture entirely different signals for the same activity. This
difference, also known as domain divergence, makes the classifier
that is trained in one domain to be useless when using it in the other
domain. One simple approach for increasing the performance could
be to train a new model with the data of the target sensor by using
the labels created by the source sensor [3]. However, when the
amount of new data is small, training an effective machine learning
algorithm will be challenging due to overfitting. This challenge
would be more significant when working with data-hungry deep
learningmodels as they havemany trainable parameters. This raises
the need for methods that can exploit the knowledge of existing
sensors to train a new sensor with minimal data.

Another challenge specific to activity recognition is variation in
the way that activities can be performed. First, different people may
have their own style of performing certain activities. In other words,
the same activity, may generate distinct sensor observations when
performed by different people. Second, even a single person could
perform the same activity in different ways due to change in time,
physical, or mental status. The difference between two repetitions

IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Akbari et al.

of a single activity can be observed as different speeds, different
intensity of body motions, or different patterns of doing the activity.
Third, wearable sensors suffer from various disturbances due to
sensor misplacement, noise, and sensor movements with respect to
the body. Thus, machine learning algorithms need to be robust to
address all these uncertainties in sensor signals.

4 METHODS
We propose a new architecture of deep neural network for activity
recognition that utilizes the concept of stochastic feature extraction
for sensors’ data. Deep learning has shown superior performance
for activity recognition with wearable sensors [18]. We use CNN,
which is the most commonly used type of deep neural networks
for human activity recognition with wearables, due to its ability to
extract features automatically from raw data acquired from sensors
[18]. We modify the structure of a typical CNN to extract stochastic
features from sensors’ raw signals instead of extracting single value
deterministic features. The intuition behind the stochastic feature
space is twofold: 1) it helps us to estimate distribution of the data
through a generative framework and 2) it takes into consideration
the uncertainty in the input data. The first property is extremely
helpful for any task that needs to model the distribution of the
data such as transfer learning, data augmentation, outlier detec-
tion, selecting representative samples of datasets, and classifying
previously unseen classes. In this work, we leverage this property
for transfer learning by estimating the posterior distribution of the
features given any single datum to align distributions between the
source and target domains. The second property of the stochastic
features helps to alleviate effect of the noise in classification tasks.

Figure 2 shows a general overview of the proposed framework.
Based on the fact that, ideally, a discriminative representation
should model both the label and the structure of the data [9], we
enforce the stochastic features to (i) be discriminative regarding the
classification task while (ii) retaining the intrinsic structure of the
input data regardless of their task-specific labels. After extracting
such features along with training the proper classifier for the source
domain, we train a new feature extractor network for the target
domain. The target feature extractor is enforced to obtain features
that have similar distribution as the corresponding source features.
To do this, we minimize Kullback-Leibler (KL) divergence, which is
a measure of comparing two probability distributions. When such
alignment between the target and source features is gained, we
can utilize the classifier that is trained on the source domain in the
target domain with no change. Training a smaller portion of the
neural network (only feature extraction layers), instead of training
the whole model from scratch, allows the model parameters to be
learned with smaller amount of data in the target domain.

4.1 Problem Formulation
Training dataset in the source domain is composed ofDs = {xsi ,y

s
i }

ns
i=1

where xi denotes ith sample of input, yi denotes the corresponding
label, andns shows the total number of training samples.We assume
xsi is generated by distribution function p(xs). Unlabeled target do-
main data is shown in form of Dt = {xti }

ns+nt
i=ns+1 and it is generated

by another distribution function p(xt) where p(xs) , p(xt). More-
over, we assume the new unlabeled data from the source domain for

Figure 2: Overview of the proposed framework for stochas-
tic feature extraction and domain adaptation

the same time period is available in form of Ds_new = {xsi }
ns+nt
i=ns+1.

Under these settings, the goal is to learn a discriminative function
F t : xt → y that can perform well on the data of the target domain
during testing time. In this work, we assume nt ≪ ns which means
training the new sensor should be done with significantly smaller
data available from the target domain.

4.2 Stochastic Feature Extraction
Given enough labeled training data (Ds) from a certain sensor (i.e.,
source domain), we can train a discriminative function F : xs →

y that maps the sensor readings x to their corresponding class
labels y. This is achieved through maximizing the joint probability
distribution of x and y, which can be accomplished by using a
deep neural network in which the trainable parameters are set
to minimize a conventional loss function such as cross entropy.
In a typical neural network with convolutional layers, F can be
written as F = f ◦ д where д : x → z is an embedding from
the raw inputs to the higher level feature space z and f : z →

y is a discriminative function that maps the features to desired
class labels. CNN, however, learns to extract a deterministic set of
features; in other words, it assigns single values as the features to
a certain input. However, one can argue that no two repetitions
of a single activity have exactly the same pattern of the signal. As
mentioned in the previous section, disruption in the signal can come
from sensor noises and the variations in human activities. To take
the aforementioned disruptions into account, instead of extracting
deterministic features, we treat the features (z) as random variables
and assign a probability distribution to them. This allows us to
model the uncertainty of our data in a systemic way. For these
stochastic features, we train the neural net to learn the posterior
distribution given input data. This can further be used to align
distribution of the features between the two domains for training
the sensor in the target domain.

Good features should not only be task specific (discriminative),
but they should also be able to retain the intrinsic structure of
the data regardless of their task-specific labels. We start by the
discriminative task where our goal is to maximize the log joint
probability of the label and input on the training data to find the
parameters of the F as Equation 1

max{logp(y,x |θ)} =max{logp(y |z,x ,θ).p(z |x ,θ).p(x)} (1)

where θ represents model parameters and z serves as the features.
Given a feature z, the label y would be independent of x ; this

means that if we have the feature, then we can retrieve the label
without needing to know raw input. So Equation 2 becomes:

max{logp(y,x |θ)} =max{logp(y |z,θ)} +max{logp(z |x ,θ)} (2)

Transferring Activity Recognition Models IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

also since the p(x) is a constant term not related to the model
parameters θ , it is removed from the equation above.

The model above can be implemented with a typical CNN using
Softmax activation function at the final layer [18]. In such a network,
the discriminability of the features is the only constraint that is
taken into account when optimizing the parameters of deep neural
network. However, to retain the intrinsic structure of the input
data, we put a constraint on z to make it capable of modeling
the distribution of the input data. We treat the features as latent
random variables, and try to estimate their posterior distribution
to maximize the marginal likelihood of the input data [15]:

p(x) =
p(x ,Z)

p(z |x)
⇒ logp(x) = logp(x , z) − logp(z |x) (3)

where p(z |x) is the posterior of the latent variable when x is ob-
served. This leads to an intractable integral, so we approximate
that with a variational distribution q(z |x) which is chosen from
the Gaussian distribution family as in Equation 4. When facing an
intractable integral such as that in Equation 3, variational approxi-
mation is one of the best solutions where the true distribution is
approximated with a family of known distribution and the parame-
ters are optimized to achieve the best approximation. In Equation
4, we seek the best Gaussian approximation for the true posterior.
Gaussian distribution is a general but reasonable approximation as
the features are normally distributed around the best value.

logp(x) = log (p(x , z) − logp(z |x) + logq(z |x) − logq(z |x)
⇒ logp(x) = logp(x |z)+logp(z)−logp(z |x)+logq(z |x)−logq(z |x)

⇒ logp(x) = Dkl {p(z |x)| |q(z |x)} + L(x) (4)

where
L(x) = logp(x |z) − Dkl {q(z |x)| |p(z)} (5)

and Dkl {q | |p} is the KL divergence between distributions p and
q [12]. The first term on the RHS of Equation 4 is the divergence
between the true and approximated posterior; since it is a positive
term, L(x) becomes the lower bound of p(x). Thus, to maximize
p(x) we need to maximize the lower bound. This lower bound is
equivalent to the variational auto-encoder’s loss function, so it can
be implemented in terms of a deep variational auto-encoder neural
network using reparameterization [15]. The encoder part, estimates
the second term on the RHS of Equation 5 and the decoder part
estimates the first term. We put the prior of p(z) equal to a Gaussian
distribution with mean of zero and standard deviation of one. It is
worthwhile to mention that, the output of the encoder is the mean
and standard deviation of a Gaussian distribution which serves as
the posterior of the latent variables, but not fixed value features.

Approximated posterior q(z |x) that comes from Equation 5 max-
imizes the marginal likelihood p(x); if we substitute logp(z |x ,θ) in
Equation 2 with thisq(z |x), we will have the following loss function:

max{loдp(y |z,q) + logq(z |x)} (6)

This is the final loss function that we use for training the source
model. The second term in the Equation 6 is an encoder that maps
the input to an appropriate latent variable (i.e., feature) that can
retain the structure of the data. The first term guarantees that those
latent variables are discriminative enough for the classification task,
if labeled training data is given. By training this framework, we

Figure 3: The architecture of the proposed neural network
for stochastic feature extraction

can approximate the distribution of the features for any single data
point which in turn can be leveraged for domain adaptation.

The loss function in Equation 6 can be implemented as a neu-
ral network as shown in Figure 3. The encoder, which serves as
feature extractor, estimates the mean and standard deviation of a
Gaussian distribution(i.e., the posterior of the features given data).
The decoder makes sure that the latent variable z is able to retain
the structure of the input data, and discarded after training. The
classifier samples from the distribution, which is approximated by
the encoder, and maps them to the class labels.

It is worth mentioning that this framework is in line with the
systems that pre-train an autoencoder and then replace the decoder
with a classifier to improve the performance [25]. The authors
argue that the features created by the autoencoder are a good
representative for certain datasets. This is because unsupervised
pre-training guides the learning towards basins of attraction of
minima that supports better generalization from the training data
set [7]. However, the difference of the current work is that we
are embedding the two processes of classifier learning and data-
dependent feature extraction in a single framework, which improves
the discriminative power of our features. Moreover, since we can
estimate the distribution for any single datum in the feature space,
we can align the distributions of two domains in this space with
small number of data points available from the target domain.

4.3 Label Prediction
Output of the encoder in Figure 3 is a Gaussian distribution that
serves as the posterior distribution of the features. To predict class
label for each input data, the classifier samples Nsample times from
this distribution and generates output for all the samples. Nsample
is a hyperparameter of the model that is determined in Section 5.3.
For each sample, the output of the classifier (output of the Softmax
function) is a vector of values between zero and one that indicates
the probability that any of the classes are true. The Monte-Carlo
estimation of the mean and standard deviation are then used to
predict the label and confidence of the classifier. In fact, to make
the final decision for each input data, we calculate the empirical
average of the outputs over all Nsample samples and then use the
class with the maximum average probability as the final label.

Additionally, standard deviation of these labels can be taken
as a measure of uncertainty (i.e., confidence) of the classifier. For
samples that the classifier is confident about, generated labels would
be more consistent, while for non-confident samples, the classifier

IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Akbari et al.

will generate distinct labels that leads to higher standard deviations.

4.4 Training the target model
In the target domain, we assume that the amount of the new data
in hand for which we have the corresponding data from the source
domain is very small compared to the initial training data in the
source (nt ≪ ns). Under this assumption, which is often the case
for new wearable sensors, it is almost impossible to train the whole
neural network in Figure 3 from scratch due to high chance of over-
fitting as the model has much more trainable parameters compared
to the training samples. There is no firm restriction on the amount
of new unlabeled data in our method. In fact, having more data
from the new sensor can lead to higher accuracy. However, if we
consider the convenience of the end users, restricting this condi-
tion becomes important as it can guarantee that the new sensor is
trained very fast without requiring the user to collect lots of data.

To address the aforementioned complication, we can keep the
classifier that is trained on the source domain unchanged and use
it for the target data if two domains have similar distributions in
the space of the latent features. In other words, if q(z |xs) ≈ q(z |xt),
then the source classifier can be used with the target data without
need to change. This means that only the feature encoder network
needs to be retrained on the target domain to align the distribution
of the features between the two domains.

The distribution of the latent feature space is aligned between
the two domains by minimizing the KL divergence between them
for the corresponding data points. For the ith pair (xsi , xti) from
the new data, the q(z |xsi) is calculated by the source encoder and
parameters of q(z |xti) are learned by enforcing it to be similar to
the q(z |xsi) measuring the KL divergence.

For the target domain, similar to [23], we train a separate feature
encoder network. In this way we allow the CNN feature extractor
layers to capture patterns of the signal in the target domain inde-
pendently; this is very important when signals look very different
in the source and target domain. In this case, sharing the weights
of two networks is not reasonable [23]. In the higher feature level
z, where distribution of the features is approximated, we enforce
the constraint to align the two domains. It is shown that a domain
adaptive representation should satisfy two criteria: i) classify the
source domain labeled data effectively and ii) reconstruct the target
domain unlabeled data successfully [9]. To consider the second cri-
teria, when training the target feature encoder, we not only enforce
the features to have a similar distribution to the source domain but
we also allow the features to capture the intrinsic structure of the
target data. Therefore, we propose to train a variational autoencoder
on the target domain with loss function similar to Equation 5 with
two essential modifications. First, we use the distribution of the fea-
tures from the given source data as the prior for z instead of using a
Gaussian distribution with mean of 0 and variance of 1. Using this
guides the feature extractor layers of the target domain to create
features that are similar to the source domain. Second, we add hy-
perparameter λ that determines the similarity between the source
features and generated features. λ is a constant value between 0
and 1 where values close to 1 mean that the model only creates
features similar to the source domain and ignores the structure of
the data in the target domain which is useful when two domains are

very different. On the other hand, when two domains have more
intrinsic similarity, λ close to 0 can be used. This value is tuned
empirically through our experiments. We also add a regularization
term to reduce overfitting as the amount of data for this training
is scarce. The loss function for training target model is shown in
Equation 7 including two modifications and the regularization term.

min(1−λ).p(xt |z)+λ.DKL(p(z |x
t)| |p(z |xs))+

L∑
l=1

ml∑
i=1

| |wl,i | |
2+| |bl,i | |

2

(7)
where L is the total number of layers in the encoder,ml is number
of the neurons in the lth layer, andwl,i and bl,i are the weight and
biases for ith neuron in lth layer.

In Equation 7, the knowledge from the source domain is trans-
ferred to the target as the prior over the latent features. After train-
ing the encoder for the target domain with this constraint, the same
classifier, which is trained on the source domain, is used for activity
recognition in the target domain. Figure 4 represents an overview
of the proposed domain adaptation for training new sensors.

In training phase, for every pair of the source and target data
(xsi ,x

t
i)we feed the source data to its own encoder, which is trained

on the initial training data, and getp(z |xsi). This is then used to train
the encoder for the target domain by minimizing the KL divergence
between the two domains by using p(z |xsi) as the prior in Equation
7. We initialize the target encoder weights and biases with the
weights of the source encoder. This also assists transferring the
knowledge from the source to the target, by helping themodel to use
similarities between the two domains. In testing phase, the target
encoder along with the classifier trained on the source domain is
used for recognizing the activities in the target sensor.

4.5 Implementation
In this section, we discuss the details of the neural networks used
in this study. For the encoder network as in Figure 3, we use three
layers of CNN followed by one fully connected (FC) layer for each of
mean and standard deviation estimation. It is worthmentioning that
based on our experiments using less number of layers did not end
upwith a reasonable accuracy. On the other hand, usingmore layers
increases complexity of the model and makes it difficult to be run on
wearable devices, while it does not make significant improvement
in the performance of the system. The classifier network consists of
three fully connected layers. A cross-entropy loss function is used
for training all the weights and biases in this network. In addition,
Dropout, a technique for improving overfitting in neural networks,
is applied with the rate of 0.2 before the last fully connected layer.
The detail of all encoder and classification layers can be found in
Table 1. The decoder is composed of three deconvolution layers,
and mean squared error is used as loss function. The encoder and
decoder have the same structure in both target and source domain.
However, the source parameters are initialized randomly while the
target parameters are initialized with the source parameters. The
re-parametrization trick is used for training this network [15]. This
trick is used to handle the sampling from a Gaussian distribution
when training the network with backpropagation algorithm. In fact,
this technique assumes that the sampling is done from a Gaussian
distribution with mean of 0 and standard deviation of 1 and it is

Transferring Activity Recognition Models IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

Figure 4: Overview of the proposed framework for transfer learning between the source and target domain in which solid
boxes show trainable blocks and dashed ones show fixed blocks

Table 1: Characteristics of the proposed deep neural net.

Layer # of kernels/ Activation
neurons function

Encoder

Conv2d_1 32 ReLU
Conv2d_2 64 ReLU
Conv2d_3 100 ReLU
FC_mean 20 Sigmoid
FC_std 20 Sigmoid

Classifier

FC_1 64 ReLU
FC_2 128 ReLU
FC_3 200 ReLU

FC_classifier Same as the Softmax# of classes

scaled with the true mean and variance. Therefore, the derivatives
with respect to the network parameters can be easily calculated
and leveraged in the backpropagation training algorithm.

In preprocessing phase, data collected by the motion sensors
is filtered and normalized with a 4th order low pass Butterworth
filter with cut-off frequency of 5Hz to remove high-frequency noise,
which is often an irrelevant frequency band for human motions.
The data is normalized to retain zero mean and single variance
(centered and scaled) and segmented prior to supplying it into the
CNN. We utilize a fixed-size window with a length of 3 seconds and
overlap of 50%. This was large enough to capture details of each
activity and small enough not to have overlap of different activities
in the datasets. A gradient descent optimizer with learning rate of
0.05 is utilized with a batch size of 64 through 50 epochs. Using
small learning rate helps to reduce the chance of overfitting though
it slows down the training process. We use the Keras library [4]
with TensorFlow backend on an NVIDIA GeForce GTX 950M GPU.

5 RESULTS
To demonstrate the effectiveness of our proposed framework, we
use three publicly available datasets including HHAR [22], PAMAP2
[20], and MoST [1]. We first investigate the effectiveness of the
stochastic feature extraction for recognizing activities in the source
domain by comparing it to traditional machine learning algorithms
and typical deep CNN. We visualize the stochastic features and
assess its effectiveness against noisy sensor readings by adding
artificial noise to the sensor data. The performance of the proposed
method in terms of training the new sensor via domain adaptation
versus different sizes of new data (nt) is investigated next. We also
study how adding a few labeled data affects the performance of the

Table 2: Activities in different datasets
HHAR PAMAP2 MoST
Biking Biking Sit-to-stand
Sitting Sitting Sitting
Standing Standing Standing
Walking Walking Walking

Stair climbing Stair climbing Grasping floor
Lying down Lying down
Running Turning 90◦

Vacuum cleaning Eating/Drinking
Ironing Kneeling down

Rope jumping Jumping
of 15700 19800 9440samples

model that is trained for the new sensor. Finally, we investigate the
effect of hyperparameters λ and Nsample on the performance.

HHAR dataset contains accelerometer and gyroscope data from
eight smartphones and four smartwatches captured during six dif-
ferent locomotive activities. Data was collected at the frequency
of 200 Hz from nine users, with the smartphones placed in a waist
pouch, and smartwatches mounted on each arm. PAMAP2 physical
activity monitoring dataset contains data of 18 different physical
activities, performed by nine subjects wearing three inertial mea-
surement units (IMUs) with the sampling frequency of 100 Hz
placed on the chest, ankle and wrist. Some classes in this dataset
contain small number of training data so we removed them from
our analysis. MoST dataset, contains 23 daily activities captured by
six IMUs working at the frequency of 200 Hz placed on the arm,
wrist, chest, ankle, and both legs. The data was collected from 20
healthy subjects. Since, several activities in this dataset are simi-
lar, we grouped them as one activity and once again, removed the
classes with small training data. Table 2 shows the list of activities
along with total number of samples in each dataset. Each sample
denotes a window of data that is fed to the deep neural network.
We use 3-axis acclerometer and gyroscope signals for all datasets.

5.1 Classification Performance on the Source
Domain

5.1.1 Comparing accuracy of different methods. On the source do-
main we assume that a large amount of annotated training samples
are available which can be used to train an effective machine learn-
ing model. 5-fold and leave-one-user-out cross validations are used
to assess the accuracy of the classifier that is described in Sections

IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Akbari et al.

Table 3: The accuracy of activity recognition in the source domain

Dataset Sensor KNN SVM CNN Our method
5-fold cross-user 5-fold cross-user 5-fold cross-user 5-fold cross-user

HHAR Smartphone 92.1 71.5 89.2 78.4 95.2 92.1 94.3 91.5
Smartwatch 85.2 75.3 74.0 68.8 88.4 82.4 87.5 81.1

PAMAP2
Chest 81.6 77.4 85.7 80.5 87.2 80.6 86.7 81.1
Ankle 79.7 73.6 82.1 78.0 83.1 78.7 82.8 79.6
Wrist 82.1 79.3 84.9 78.2 85.5 79.8 87.6 81.4

MoST

Chest 88.4 80.5 88.6 82.1 91.7 86.1 93.0 88.8
Right Leg 84.9 77.6 84.6 78.1 88.6 83.4 93.5 89.3
Wrist 89.2 84.8 90.1 85.4 94.1 85.7 95.3 91.3
Arm 90.0 82.3 91.7 86.6 94.9 89.2 97.0 91.4
Ankle 88.7 81.5 87.9 82.1 91.1 86.8 92.1 87.4

4.2 and 4.3. It should be noted that in the next sections, for assess-
ing the performance of training the new sensor, we use only 5-fold
cross validation to remove the effect of cross subject domain shifts
and only concentrate on the cross-sensor variations. However, in
this section, we show the results of the leave-one-user-out (cross-
user) validation only to demonstrate the strength of the classifiers
in terms of their generalizability. Table 3 compares the results of
our activity recognition model in the source domain, which uses
stochastic features (Sections 4.2 and 4.3), to a normal CNN with
three convolutional layers same as [27]. We also compared the
deep learning models with traditional machine learning algorithms.
For this comparison, we extracted standard statistical features and
used SVM and KNN classifiers similar to [22]. As demonstrated
in Table 3 , generally deep learning models outperform the tradi-
tional machine learning algorithms, especially in case of cross-user
validation. A typical deep CNN achieves 4.5% higher accuracy on
average compared to the traditional machine learning models. The
reason for this could be the fact that the features created by the con-
volutional layers in deep neural networks are more generalizable
compared to the hand-crafted features. The other observation is
that the performance of our activity recognition method based on
stochastic features (Sections 4.3 and 4.4) is slightly better (1.7% on
average) than the typical CNN. However, a more important advan-
tage of our method over the typical CNN is the fact that the features
in CNN are only designed for the specific classification task while
our features can retain the internal structure of the data. Moreover,
CNN extracts single-value features, while our method works with
stochastic features that are important for the task of domain adapta-
tion. Furthermore, treating the features as random variables allows
us to better handle noise in the data as next subsection shows.

5.1.2 Stochastic features. Figure 5 illustrates one stochastic feature
from the sensors on the wrist (right figure) and the chest sensor (left
figure) while 10 samples of three activities are depicted. As the figure
shows, the features of different classes are relatively well separated.
This is one out of 20 features to merely demonstrate the concept.
This intuitively shows the ability of the features for discriminating
the classes. Moreover, for each sample, the system approximates
the distribution of each feature which is a Gaussian with the mean
and standard deviation learned by the feature encoder. Finally,
comparing two sensors against each other reveals the problem of
domain divergence when a new sensor observes the same activity

Figure 5: Stochastic features are discriminative for activity
recognition but features of the same activity captured by dif-
ferent sensors are dissimilar. Y-axis is nonnormalized PDF

but on a different body position. For instance, this feature has
entirely different values for instances of eating activity (red curves)
in two different sensors. This describes the need for aligning the
features of the target sensor with the source because otherwise the
model trained on the source cannot work well for the target.

We then aim to investigate the effectiveness of the stochastic
features in terms of handling noise in the sensor readings. To do
this, we add artificial white Gaussian noise, which mimics typical
noise in IMU measurements [6], to the sensor readings and assess
the performance of the classifier for those noisy data (Equation 8).

xnoisy = xclean + α .ϵ , ϵ ∼ N (0, 1) (8)

where 0 ≤ α ≤ 1 is the amplitude of the added noise. Note that
the clean data is used for training the classifier and noisy data is
only used for testing it. We compare our method, which uses the
stochastic features, with a typical CNN that assigns single value fea-
tures to the input data [27]. Figure 6 shows the degradation in the
performance of the classifier versus different amplitudes of added
noise. As the figure illustrates, degradation in the performance of
the classifier is more severe, 2.3 % higher on average in typical
CNNs, showing its less robustness compared to our method with
stochastic features. In other words, for any given amplitude of the
noise, our method is more robust than the typical CNN. Moreover,
accuracy of our model is higher than the typical CNN model that
uses deterministic features (4.8% on average over all amplitudes of
the noise). Note that since the data is normalized to have standard
deviation of 1, α close to 1 means the signal is entirely corrupted
and there is no more information in it. Based on Figure 6 as the

Transferring Activity Recognition Models IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Noise amplitude (α)

0
5

10
15
20
25
30
35
40
45

Pe
rfo

rm
an
ce
 d
eg
ra
da
tio

n
(%

)
Typical CNN
Our method

Figure 6: Accuracy degradation due to adding noise to data

amplitude of the noise increases the performance difference be-
tween the two methods becomes larger. However, Figure 6 proves
the superior ability of the stochastic features in handling limited
amount of noise in the data (5% higher accuracy when the ampli-
tude of the noise is 0.2). The reason behind this is the fact that in
our framework each input data is mapped to a region in the feature
space, and the classifier learns to map the whole area to the final
label, whereas,each feature in a typical CNN is a point in the feature
space, and the classifier learns to map the points to the final classes.
As a result, in the presence of the noise, our method provides added
robustness because it knows how the vicinity of a clean data point
should be mapped to the class labels, while it is not necessarily true
for the models that rely on single-value features.

5.2 Training the Target Sensor
To demonstrate the performance of our proposed algorithm for
training the new sensor with domain adaptation technique (Section
4.4), we assume one of the sensors is the source and another one
is the new or target sensor in each dataset. We change the source
and target sensors to cover all possible combinations. For the MoST
dataset we chose only wrist, chest, and leg sensors and removed
the ankle and arm sensors from our analysis as the ankle sensor
was similar to the leg and the arm sensor was similar to the wrist
in terms of the results. To assess the performance of the domain
adaptation method for training the new sensor, we divide the whole
samples of each dataset into three parts. 70% of the samples (ns)
in each dataset is used for supervised training of the source sen-
sor (Section 4.2). The remaining 30% is divided into new training
data(nt) that is used for training the new sensor (Section 4.4) and
the test data, which is used to assess the performance of the model
trained for the new sensor. It should be noted that for the new data
in this section, we do not use labeled information (unsupervised).
We compare our method of domain adaptation for training the new
sensor (Section 4.4) with the following cases:

• Using the source model with no modification for the target
domain. This comparison reveals the necessity of domain
adaptation for training the new sensor. We label this para-
digm as naive approach.

• Training the whole model (feature encoder + classifier) from
scratch for the target sensor by using the labels that are
created by the source. This is a baselinemodel to be compared
to our method, and we call it baseline method.

• Using state-of-the-art algorithms including HDCNN [14],
ADDA[23], and DDC[24]. We implemented these algorithms

that deal with domain adaptation to provide a comparison
with our proposed approach.

Results of training the target sensor through domain adaptation
method (the method described in Section 4.4) are shown in Table 4
and they are compared to aforementioned techniques. In this table
only 5% of the data in each dataset is used as the new data (for
training the new sensor) and remaining 25% is used for testing.
Table 4 also shows the number of the samples of the new data that
is used for training the new sensor. As the table illustrates, our
proposed method could outperform naive approach in all cases and
the state-of-the-art algorithms in most of the cases. On average the
accuracy of our method is 3.2% better than HDCNN, 2% better than
ADDA and 14.6% better than DDC. This improvement is achieved
due to its ability to estimate and align distributions with very small
amount of data. Additionally, based on the Table 4, the accuracy of
training a model from scratch for the new sensor (baseline model)
is low when using brief new data. This is due to the overfitting of
the new model to the new training data because the number of
parameters that should be trained for the whole network (Figure 3)
is very large compared to the training data. However, our model
does not need to retrain all the model parameters. In fact, it keeps
the classifier weights fixed and only modifies the feature extractor
weights to align the distribution of the features in two domains. As
shown in Table 4, using the model trained on the source with the
data of the new sensor (naive approach in the table) ends up with a
very low accuracy due to domain divergence. Finally, comparing
Table 3 and 4 shows that the accuracy of the target sensor is less
than the source (2-15%). The reason is that the source domain is
trained with lots of labeled data while the target domain is trained
with a few unlabeled data points. This loss (from source to the
target) is unavoidable, but the amount of loss is typically more in
other transfer learning methods in comparison to ours.

Figure 7 demonstrates how accuracy of the new sensor improves
by increasing the amount of the new data. As the figure shows,
our method has a faster learning rate compared to other methods
as it reaches to the maximum possible accuracy with less amount
of new data. This shows the ability of this method to align two
domains with brief data as it can estimate the distribution of the
features for every single datum. According to Figure 7, with a small
amount of the new data themodel can achieve a reasonable accuracy
close to the maximum possible. This amount, on average, is less
than 3% of the initial training data that is used to train the source
sensor, which demonstrates a substantial advantage of our proposed
technique. ADDA has also a fast learning rate as it can match the
features with even single samples from two domains; however, its
total accuracy is lesser as it matches single-value deterministic
features for every pair, while our algorithm matches distributions.
The overall accuracy of ADDA is less than our method on average
(1.9-5%) as shown in Figure 7. In addition to this gain, an important
advantage of the stochastic features, as proposed in our study, over
deterministic features, which is used in ADDA and other state-
of-the-art methods, is its robustness against noise, as shown in
Section 5.1. The noisier the dataset is, the further improvement in
the performance of our method compared to others is observed.

To fairly compare our proposed method with state-of-the-art
transfer learning methods, we have implemented and tested a few

IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Akbari et al.

Table 4: The accuracy of training new sensor

Dataset Transfer # of new Naive Baseline HDCNN ADDA DDC Our
samples Approach Model Method

HHAR Smartwatch → Smartphone 780 33.1 68.4 75.7 76.2 69.8 78.6
Smartphone→ Smartwatch 780 32.5 71.2 76.1 77.5 70.8 80.8

PAMAP2

Wrist→ Chest 990 43.6 67.9 76.5 77.3 68.9 80.9
Wrist → Ankle 990 44.2 61.8 75.2 80.1 70.2 79.1
Chest→Wrist 990 41.0 67.9 75.9 79.2 70.0 78.6
Chest→ Ankle 990 38.4 64.3 77.2 76.4 71.4 78.9
Ankle →Wrist 990 40.2 66.2 75.6 76.0 70.8 75.3
Ankle → Chest 990 36.8 65.7 74.3 74.1 69.6 74.6

MoST

Wrist→ Chest 470 49.5 73.2 80.1 80.2 73.2 82.4
Wrist → Leg 470 40.7 71.8 76.7 76.9 70.4 83.0
Chest→Wrist 470 42.4 73.6 78.8 79.2 72.5 82.4
Chest→ Leg 470 39.8 70.0 77.5 78.3 70.9 80.1
Leg→Wrist 470 36.6 72.4 76.9 79.7 69.8 79.5
Leg→ Chest 470 38.7 71.3 78.4 79.6 68.6 79.2

0 150(2%)

300(4%)

750(10%)

1000(13%)

1250(17%)

1500(20%)

1800(25%)

30

35

40

45

50

55

60

65

70

75

80

85

90

Ac
cu
rac

y (
%)

MoST

0 200(1%)
400(2%)
600(4%)
750(5%)
1000(6.5%)
1250(8.5%)
1500(100%)

2000(13.5%)

3000(20%)

3700(25%)

Number of new samples nt (ratio between number of new and initial training samples)

30

35

40

45

50

55

60

65

70

75

80

85

90 PAMAP2

0 150(1.4%)
300(2.8%)

600(5.5%)
750(7%)

1000(9%)

1250(11.4%)

1500(13.6%)

2000(18%)

2650(25%)

30

35

40

45

50

55

60

65

70

75

80

85

90 HHAR

Our method
HDCNN
ADDA
DDC

Figure 7: Accuracy of training new sensor versus the amount of the new data shows that our algorithm can learn to detect the
activities faster than the other algorithms.

of them with our experimental setup as shown in Table 4. However,
there are a few investigations that use similar datasets for the task
of transfer learning; The HDCNN [14] worked with HHAR dataset,
but they used some labeled data from the new sensor while our tech-
nique provided 2% higher accuracy without using any labeled data
from the target sensor. Another study used the PAMAP2 dataset
and investigated transfer learning fromwrist to chest sensors. Their
accuracy is significantly lower than our method (around 25%) [26].

To highlight limitations of our study we should note that our
method requires the two sensors (source and target) to be of the
same type (motion sensors here) and synchronized. First, if the types
of sensors are different, further effort will be required to extract
relevant features form each modality. Second, if the two sensors are
not synchronized, our approach cannot match the features between
the two domains. Thus, issues with different sampling rate or data
aggregation should be addressed prior to using our method.

Table 5 compares average amount of time required for training
the source sensor, and training the new sensor using 5% of the
data as the new data (same as Table 4). This timing is reported for
the hardware that was described in Section 4.5. As shown in Table

5, for the source sensor, the training time for each step in which
one batch of samples is introduced to the network and weights
are updated is 1.5 times larger than the time required for training
the new sensor. The reason is that we exclude classification layers
when training the new sensor and keep their weights constant.
Furthermore, the total time for training the new sensor is far lesser
than the time of original training of the source since the number of
samples required for training the new sensor is much less than the
number of samples required for training the source model.

5.2.1 Effect of adding a few labeled data for the new sensor. We also
studied how the performance of our model for training the new
sensor is affected by the availability of small amount of labeled data
in the target domain. Here, we assume that only for small number of
samples of the new data, the system solicits user for the labels and
uses this knowledge to boost the accuracy of the model for the new
sensor. For this objective, we first use the uncertainty measurement
introduced in Section 4.3 to detect samples that are suspected to be
misclassified, and ask for true labels of those samples. Those labels
are used to retrain the classification layers of the network. In fact,

Transferring Activity Recognition Models IPSN ’19, April 16–18, 2019, Montreal, QC, Canada

Table 5: Comparing the time required for training the source
sensor and the new sensor

Dataset Training Time per batch Total training
of samples time

HHAR Source sensor 4.5 ms 120 minutes
New sensor 3 ms 60 s

PAMAP2 Source sensor 2.6 ms 90 minutes
New sensor 1.9 ms 74 s

MoST Source sensor 4.5 ms 75 minutes
New sensor 3 ms 39 s

MoST PAMAP2 HHAR
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Un
ce

rta
in

ty
 o

f t
he

 c
la

ss
ifi

er
 (s

ta
nd

ar
d

de
vi

at
io

n
of

 p
re

di
cit

io
ns

) Correctly classified samples
Misclassified samples

Figure 8: Average standard deviation of estimations (for
Nsample) as a metric of uncertainty shows that the confi-
dence of the classifier is lower (i.e., uncertainty is higher) for
misclassified samples.

the unlabeled new data from both source and new sensor are used
to align the domains by retraining the feature extraction layers. On
the other hand, those few labeled data are used to only fine tune
the classification layers while feature extraction layers are frozen.

Figure 8 compares the standard deviation of the predictions
(averaged over all test samples in all datasets), as the measure of
uncertainty of the classifier (Section 4.3), for the samples that are
misclassified and the samples that the classifier correctly classifies.
Higher standard deviationmeans higher uncertainty of the classifier
and accordingly higher chance of misclassification. As Figure 8
illustrates, this value on average is higher for misclassified samples,
which shows the ability of model to estimate the critical samples
that may potentially be misclassified. This supports usefulness of
this value as a metric for measuring the confidence of predictions.
When training the new sensor with the new data, we assume that
the true labels are provided by the user (or any external source)
only for the k samples with the highest uncertainty. In this section
we demonstrate the results for the case that 5% of the data in each
dataset is used as the new data for training the new sensor. We
also choose k = 50 for all three datasets which is around 10% of
the new data for MoST dataset and around 5% of the new data
for other two datasets, and is a reasonable number of queries that
could be solicited from the users over several days of use. These
samples are used to fine tune the weights of the classifier network.
Figure 9 presents the improvement achieved by this fine-tuning.
Additionally, in this figure, we compare case of getting labels for

MoST PAMAP2 HHAR
70
72
74
76
78
80
82
84
86
88
90
92
94

Ac
cu

ra
cy

 (%
)

Without labeled data
With labeled data for random samples
With labeled data for uncertain samples

Figure 9: Using brief labeled data (50 samples) improves the
accuracy. Moreover, getting labels for samples for which the
classifier is uncertain leads to more improvement.

Figure 10: The effect of λ on accuracy of training new sensor

samples with highest uncertainty to the case of getting labels for
random samples. As shown in the Figure 9, adding a few labeled data
improves the accuracy by 6.3% on average. Furthermore, according
to the figure, asking for labels based on the uncertainty of the
system is more efficient compared to asking for random samples as
it leads to 4.3% more improvement in the accuracy on average.

5.3 Effect of λ and Nsample
First we investigate the effect of hyperparameter λ that determines
how much information from the target domain should be kept
when training the new sensor with domain adaptation algorithm.
As Figure 10 shows, when the amount of the data in the target
domain is very small, using smaller λ will reduce the performance
drastically since small data is not enough to train both encoder
and decoder in the target domain. The other observation in this
figure is that in general, λ smaller than 0.7 is not a good choice
since it leads the model to mostly learn the structure of the target
data and to ignore the domain adaptation constraint. Based on this,
we fixed λ = 0.9 in our experiments. As the amount of new data
increases, good accuracy can be achieved even with smaller values
of λ (middle right values). The reason is that with larger amount of
new data the model can better learn the features that are similar to
the source while they retain the structure of the target data.

Another hyperparameter that impacts the performance isNsample .
For every input data, we sample Nsample times from the feature

IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Akbari et al.

Figure 11: Effect of Nsample on the accuracy
space and take the average of the outputs of the classifier over all
these samples as the final decision of the classifier (Section 4.3).
Figure 11 shows the accuracy versus Nsample for both the source
and target classifier with nt

ns = 5%. As the figure shows, either with
noisy or clean data, increasing Nsample leads to better performance
because taking the average over more samples gives a more accu-
rate estimation. We chose Nsample = 50 for all our experiments.

6 CONCLUSION
We proposed a domain adaptation technique based on deep learning
that is able to train activity recognition models for new wearable
sensors by using a small amount of new unlabeled data and exploit-
ing the knowledge from an old sensor. The proposed domain adapta-
tion method seeks to align the distribution of the features between
two sensors. This was done by introducing the stochastic features
and approximating their posterior distribution through combining
a generative autoencoder with typical CNN discriminative models.
In presence of the heterogeneity of sensors, our proposed method
that automatically adapts to new sensing paradigms provides new
opportunities to scale the deployment of such activity recognition
systems. If such activity recognition systems are deployed on a
large scale with sufficient accuracy, they can provide important
and useful contextual information about the users to mobile appli-
cations, and can unlock many new mobile sensing and computing
paradigms. Active and on-line learning will also provide additional
opportunities to bootstrap our proposed techniques.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Founda-
tion, under grants CNS-1734039 and EEC-1648451. Any opinions,
findings, conclusions, or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the funding organizations.

REFERENCES
[1] Terrell R Bennett, Hunter C Massey, Jian Wu, Syed Ali Hasnain, and Roozbeh

Jafari. 2016. MotionSynthesis Toolset (MoST): An Open Source Tool and Data
Set for Human Motion Data Synthesis and Validation. IEEE Sensors Journal 16,
13 (2016), 5365–5375.

[2] Sourav Bhattacharya and Nicholas D Lane. 2016. From smart to deep: Robust
activity recognition on smartwatches using deep learning. In Pervasive Computing
and Communication Workshops (PerCom Workshops), 2016 IEEE International
Conference on. IEEE, 1–6.

[3] Alberto Calatroni, Daniel Roggen, and Gerhard Tröster. 2011. Automatic transfer
of activity recognition capabilities between body-worn motion sensors: Training

newcomers to recognize locomotion. In Eighth international conference on net-
worked sensing systems (INSS’11). Eighth International Conference on Networked
Sensing Systems (INSS’11).

[4] François Chollet et al. 2015. Keras. https://keras.io. (2015).
[5] Zhen Cui, Hong Chang, Shiguang Shan, and Xilin Chen. 2014. Generalized

unsupervised manifold alignment. In Advances in Neural Information Processing
Systems. 2429–2437.

[6] Naser El-Sheimy, Haiying Hou, and Xiaoji Niu. 2008. Analysis and modeling of
inertial sensors using Allan variance. IEEE Transactions on instrumentation and
measurement 57, 1 (2008), 140–149.

[7] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas-
cal Vincent, and Samy Bengio. 2010. Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Research 11, Feb (2010), 625–660.

[8] Yaroslav Ganin and Victor Lempitsky. 2014. Unsupervised domain adaptation by
backpropagation. arXiv preprint arXiv:1409.7495 (2014).

[9] Muhammad Ghifary,W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, andWen
Li. 2016. Deep reconstruction-classification networks for unsupervised domain
adaptation. In European Conference on Computer Vision. Springer, 597–613.

[10] Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, and Daniel Cremers.
2017. Associative domain adaptation. In International Conference on Computer
Vision (ICCV), Vol. 2. 6.

[11] De-An Huang and Yu-Chiang Frank Wang. 2013. Coupled dictionary and feature
space learningwith applications to cross-domain image synthesis and recognition.
In Proceedings of the IEEE international conference on computer vision. 2496–2503.

[12] James M Joyce. 2011. Kullback-leibler divergence. In International encyclopedia
of statistical science. Springer, 720–722.

[13] Alireza Karbalayghareh, Xiaoning Qian, and Edward R Dougherty. 2018. Optimal
Bayesian Transfer Learning. IEEE Transactions on Signal Processing (2018).

[14] Md Abdullah Hafiz KHAN, Nirmalya Roy, and Archan Misra. 2018. Scaling
human activity recognition via deep learning-based domain adaptation. (2018).

[15] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[16] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.
2013. Transfer feature learning with joint distribution adaptation. In Proceedings
of the IEEE international conference on computer vision. 2200–2207.

[17] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. 2017.
Unified deep supervised domain adaptation and generalization. In The IEEE
International Conference on Computer Vision (ICCV), Vol. 2. 3.

[18] Francisco Javier Ordóñez and Daniel Roggen. 2016. Deep convolutional and lstm
recurrent neural networks for multimodal wearable activity recognition. Sensors
16, 1 (2016), 115.

[19] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2011. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural Networks
22, 2 (2011), 199–210.

[20] Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked dataset
for activity monitoring. InWearable Computers (ISWC), 2012 16th International
Symposium on. IEEE, 108–109.

[21] Seyed Ali Rokni and Hassan Ghasemzadeh. 2017. Synchronous dynamic view
learning: a framework for autonomous training of activity recognition mod-
els using wearable sensors. In Proceedings of the 16th ACM/IEEE International
Conference on Information Processing in Sensor Networks. ACM, 79–90.

[22] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow,
Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen.
2015. Smart devices are different: Assessing and mitigatingmobile sensing het-
erogeneities for activity recognition. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems. ACM, 127–140.

[23] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversarial
discriminative domain adaptation. In Computer Vision and Pattern Recognition
(CVPR), Vol. 1. 4.

[24] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[25] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. Journal of machine
learning research 11, Dec (2010), 3371–3408.

[26] JindongWang, Yiqiang Chen, Lisha Hu, Xiaohui Peng, and Philip S Yu. 2017. Strat-
ified Transfer Learning for Cross-domain Activity Recognition. arXiv preprint
arXiv:1801.00820 (2017).

[27] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiaoli Li, and Shonali Krish-
naswamy. 2015. Deep Convolutional Neural Networks on Multichannel Time
Series for Human Activity Recognition.. In Ijcai, Vol. 15. 3995–4001.

[28] Jing Zhang, Wanqing Li, and Philip Ogunbona. 2017. Joint geometrical and
statistical alignment for visual domain adaptation. arXiv preprint arXiv:1705.05498
(2017).

[29] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. 2013.
Domain adaptation under target and conditional shift. In International Conference
on Machine Learning. 819–827.

https://keras.io

	Abstract
	1 Introduction
	2 Related Works
	3 domain adaptation challenges for activity recognition
	4 Methods
	4.1 Problem Formulation
	4.2 Stochastic Feature Extraction
	4.3 Label Prediction
	4.4 Training the target model
	4.5 Implementation

	5 Results
	5.1 Classification Performance on the Source Domain
	5.2 Training the Target Sensor
	5.3 Effect of and Nsample

	6 Conclusion
	Acknowledgments
	References

