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Abstract—Activity/gesture recognition using wearable motion 

sensors, also known as inertial measurement units (IMUs), 

provides an important context for many ubiquitous sensing 

applications. The design of the activity/gesture recognition 

algorithms typically requires information about the placement 

and orientation of the IMUs on the body, and the signal 

processing is often designed to work with a known orientation 

and placement of the sensors. However, sensors could be worn or 

held differently. Therefore, signal processing algorithms may not 

perform as well as expected. In this paper, we present an 

orientation independent activity/gesture recognition approach by 

exploring a novel feature set that functions irrespective of how 

the sensors are oriented. A template refinement technique is 

proposed to determine the best representative segment of each 

gesture thus improving the recognition accuracy. Our approach 

is evaluated in the context of two applications: activity of daily 

living recognition and hand gesture recognition. Our results show 

that our approach achieves 98.2% and 95.6% average accuracies 

for subject dependent testing of activities of daily living and 

gestures, respectively. 

 
Index Terms—Activity/Gesture recognition, dynamic time 

warping (DTW), orientation independent, template refinement, 

wearable motion sensors 

I. INTRODUCTION 

HE  recognition of activities of daily living (ADLs) and 

the recognition of hand gestures have attracted much 

attention in recent years due to its importance in the 

development of various applications such as healthcare and 

rehabilitation[1, 2]. Vision-based recognition techniques have 

been widely investigated for this purpose [3, 4, 5, 6, 7]. These 

techniques typically require cameras mounted in the 

environment which inherently suffer from a limited range of 

vision. Further, the required infrastructure may not be 

available at all the desired locations or may be too expensive 

to implement. Issues associated with users’ privacy also limit 

the utility of vision-based techniques. As an alternative 

solution, wearable sensors capable of activity/gesture 

recognition are gaining popularity due to their minimal cost, 

ubiquitous nature and ability to provide sensing opportunities 
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at any time and place [8, 9, 10, 11].  

Activity/gesture recognition algorithms based on IMUs 

typically assume that the configuration (e.g., location and 

orientation) of the sensors is known and does not change 

throughout the deployment. However, accidental displacement 

of the sensors may occur due to the user’s movements. 

Moreover, there is no guarantee that the user will place the 

sensors precisely at the expected orientation and location each 

time they put them on, as is required by most activity 

recognition algorithms. As internet of things (IoT) emerges, 

besides the form factor of wearables, low cost IMUs can be 

embedded in a lot of daily objects (e.g. pen, mouse, 

smartphone and so on). This enables a ubiquitous gesture 

interface whenever these handheld devices are available. For 

example, the user can hold his wireless mouse, which is 

equipped with IMU, to perform gestures and to interact with 

smart devices with his gestures recognized when wearables 

are not available. However, the sensor configuration of IMUs 

on these devices could be different due to different 

manufacturer and different form factor. If the algorithm is 

designed to work with a known sensor orientation, significant 

retraining and model development will be required for every 

new orientation and configuration requiring substantial 

amount of data. 

To address this issue, two approaches were proposed 

previously. The first technique calibrates the displacement of 

the sensor orientation so that the sensor readings are 

transformed to the original orientation in which the algorithm 

is trained [12, 13]. This technique has two weaknesses. First, 

the calibration requires extra efforts. Data will need to be 

generated for a variety of configurations which further 

complicates the calibration. Second, if the calibration cannot 

be done at the moment the displacement occurs, the algorithm 

does not work unless the calibration is completed. The second 

approach builds classification algorithms on top of the 

orientation independent features [14, 15, 16, 17]. Our work 

belongs to the second category. Specifically, our approach 

applies dynamic time warping (DTW) to perform 

segmentation and a thresholding technique to complete the 

classification. It requires simple fixed-point arithmetic and 

less computational resources than the traditional classification 

algorithms (e.g., support vector machine using large feature 

sets, Bayesian networks or hidden Markov model (HMM)). 

Furthermore, our proposed model operates in presence of 

orientation changes in IMUs. All these characteristics are 

suitable for low-power wearable computers.  

Orientation Independent Activity/Gesture 
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In addition to addressing the sensor rotational displacement, 

the activity/gesture recognition system could be enhanced by 

considering the consistent portions of movements, when 

movement can be performed in various ways or the movement 

has consistent and inconsistent segments across multiple 

executions. For many gestures, we observe that parts of the 

movement may remain consistent and parts may yield in 

inconsistent signals. If the system considers one gesture as a 

whole and performs the recognition based on the complete 

gesture signal, the inconsistent portion will negatively impact 

the recognition performance. One example is drinking coffee. 

This gesture typically includes three segments: 1) picking up 

the cup, 2) a set of arbitrary movements in middle that may or 

may not be present at every instance of drinking, and 3) 

bringing the cup to the mouth and tilting it to drink the coffee. 

We observe that the first and the third segments are always 

present with predictable/consistent signals captured by sensors 

while the second segment may not offer a great deal of 

consistency. Our system and algorithms will identify the 

consistent segments of the signal and use this information to 

enhance the gesture recognition accuracy. 

The major contributions and innovation in our manuscript 

include: 

 An orientation independent, speed independent 

activity/gesture recognition system is proposed. 

The gyroscope readings are used to obtain total 

angular change series of a certain movement. 

DTW is used to do the segmentation and 

thresholding technique is used to do the 

classification.  This technique will significantly 

reduce the requirements on the amount of data for 

model training. 

 A template refinement technique is applied to 

determine consistent segments of a movement and 

the inconsistent segments are eliminated using a 

variation of DTW called star-padding. The 

recognition accuracy could be enhanced by this 

technique. 

The remainder of the paper is organized as follows: 

background and related works are introduced in Section II, 

followed by preliminaries and challenges in Section III. Our 

approach is explained in Section IV and the experimental 

setup and experimental results are discussed in Section V and 

Section VI, respectively. The discussion and limitations are 

introduced in Section VII before the paper is concluded in 

Section VIII.  

II. BACKGROUND AND RELATED WORKS 

It is generally known that sensor displacement affects the 

accuracy of the activity/gesture recognition algorithms. The 

impact of sensor translation and rotation on a sample activity 

recognition algorithm based on DTW has been discussed 

previously [18]. Researchers explored the impact of rotational 

and translational displacements on the recognition algorithms 

and provided recommendations on how to deal with the sensor 

displacement [19].  

Three different approaches are proposed to address the issue 

when sensor rotational displacement will affect the result of 

the recognition algorithm. The first approach is to study the 

statistical distribution of the features, and adjust the features 

adaptively. The possibility of system self-calibration through 

the adjustment of the classifier decision boundaries is 

proposed [20]. Similarly, a method to compensate for the data 

distribution shift caused by sensor displacements using an 

expectation-maximization algorithm and covariance shift 

analysis is discussed [21]. These approaches adjust the feature 

space for small displacement ranges. However, they cannot 

calibrate for more substantial displacements and if a major 

displacement occurs, the recognition algorithm will exhibit 

poor accuracy.  

The second approach is to recalibrate the sensor orientation 

and to transform the sensor readings to the original space in 

which the system is trained. An orientation independent 

approach that calculates the transformation rotation matrix 

with respect to a reference frame and transforms the 

accelerometer data vector back to this reference frame is 

proposed [13]. In this investigation, the researchers assume 

one of the sensor axes is fixed and the rotation occurs along 

this axis. This is not always true in reality and moreover, this 

technique estimates the gravity from a period of the same 

activity or posture (e.g., walking, cycling and standing). This 

technique does not work for transitional movements, like sit-

to-stand or sit-to-lie. In another investigation, the use of signal 

average to estimate the gravity component and determine the 

vertical axis of the device is proposed [14].  The vertical axis 

is determined and the sensor readings are projected onto this 

axis [17]. Since the vertical axis alone cannot define a frame, 

the technique extracts the signal magnitude which is 

perpendicular to the vertical axis and is along the horizontal 

axis. The complete frame orientation is calculated from a 

period of walking [12]. The vertical axis is estimated using the 

method in [14], while the horizontal axis is calculated as the 

first component of the PCA, which corresponds to the 

direction in which the majority of movement occurs. The 

disadvantage of these approaches is that they require a period 

of 10 seconds or more of forward-backward movements to 

estimate the vertical and horizontal axes. The estimation will 

be incorrect if non-bipedal movements are present and 

moreover, the recognition algorithm will fail if the calibration 

is not performed in a timely manner.  

The third approach explores the orientation independent 

features. The relative energy distribution over five different 

parts of the body is investigated to classify four different 

activities [15]. This approach performs well to distinguish 

dynamic activities that have different energy distribution on 

different body parts. However, for those activities that have 

similar energy distribution on different parts, (e.g., walking 

and running), it may not exhibit acceptable performance. In 

another study, features in frequency domain are used to 

distinguish the periodic dynamic activities by analyzing the 

periodicity between different movements [22]. However, the 

frequency resolution is a concern when identifying the 

difference between activities that have similar periodicity. 
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Moreover, these features are not suitable to detect short term 

transitional movements (e.g., sit-to-stand, stand-to-sit).  

In our work, we use the total angle change series as a time 

domain feature; our approach can recognize either dynamic 

movements or transitional movements as long as they have 

different angle change series. This discriminant feature is 

inherently present in all distinct movements. Our feature set is 

unique in the sense that we create a time series of total angle 

change in the duration of an activity at different time scales 

and we use it as a template for the activity. 

As for location displacement of the sensors on body, the 

literature has considered two scenarios. The first scenario 

concerns displacement across different body parts; for 

example, the sensor should be worn in the trouser pocket 

whereas it is worn in the shirt pocket instead. The on-body 

location of the wearable sensor can be identified by classifying 

the accelerometer data when the user is walking [23]. In 

another work, the sensor location is determined by leveraging 

concurrent vision-based Kinect sensor skeleton information 

[24]. Our approach does not attempt to address this type of 

sensor location displacement and the existing proposed 

techniques could be leveraged. The second scenario of 

location displacement is the displacement that occurs on the 

same body link. The acceleration will be different if the sensor 

is placed in a different location of the same body link, 

however, the rotation angles will always be the same for the 

rigid body links. As a result, our approach will be robust to 

location displacements of this type. This analogy also holds 

when handheld devices are used for gesture recognition.  

For template refinement and matching, several studies have 

been proposed to select the best representative signals to cover 

the variations in user gestures/activities [25, 26]. Generally, 

these systems will achieve better performance if a larger 

number of templates from training set is constructed. 

However, due to the computational constraints of wearable 

computers, only a smaller subset of templates should be 

considered. A template that has minimum distance to all other 

instances in the training set can be selected as the 

representative template [26]. To address the dynamically 

changing nature of human gestures, the templates are updated 

when a more recent gesture is detected or an incorrect gesture 

is observed by the user [25]. All these studies assume that the 

entire template provides a good representation for the 

gesture/activity. However, in reality, movements may include 

consistent and inconsistent segments. The system performance 

can be further enhanced if the inconsistent segments are 

identified and discarded during the template matching. To the 

best of our knowledge, this is the first time the notion of 

template refinement and discarding the inconsistent segments 

of the templates is considered for gesture/activity recognition. 

III. PRELIMINARIES AND CHALLENGES 

A. Challenges 

Activity/gesture recognition using wearable motion sensors 

(e.g., accelerometers and gyroscopes) has several challenges 

in real-world applications. The first challenge is the sensor 

orientation displacement. When sensors are attached to human 

body, the sensor orientation impacts sensor readings. If the 

sensors are attached in different orientations, the directions of 

all three axes will be different. As a result, for the same 

movement, the signals along each axis will be different. 

Therefore, accuracy of the classification algorithms which use 

the features derived from each axis will be dramatically 

affected. The second challenge is the activity/gesture speed 

variation. In real life, people will perform the same movement 

with different speeds in various scenarios. This variation will 

cause differences in the signals generated by wearable sensors 

and the signal processing algorithms should be able to handle 

this variation. The third challenge is related to the 

inconsistencies present in the movements. For many gestures, 

parts of the movement may remain consistent and parts may 

yield in inconsistent signals across various executions of the 

movements. If the signal processing considers one gesture as a 

whole and performs the recognition based on the complete 

activity/gesture signal, the inconsistent portion will negatively 

impact the recognition performance. Our proposed template 

refinement technique determines the consistent portion of the 

signal and use this information to enhance the recognition 

accuracy. 

B. Preliminaries 

In this paper, a customized 6-axis wearable IMU is used for 

the study. The IMU has a 3-axis accelerometer and 3-axis 

gyroscope. The 3-axis accelerometer measures gravity and 

dynamic acceleration which is caused by the motion. The 3-

axis gyroscope measures 3-axis angular velocity. The symbols 

used in this paper are defined in Table I.  At each time 

corresponding to sample number i, both accelerometer and 

gyroscope generate a 3 by 1 vector 𝒂𝒊 and 𝒘𝒊. They are the 

raw sensor data input for our system. A and W represent time 

series of accelerometer and gyroscope readings, respectively.𝐼�̃� 

denotes a set of feature vector instances constructed during the 

training phase. 𝐼𝑖𝑗 refers to i-th feature vector instance of j-th 

class. The construction of  𝐼𝑖𝑗 is introduced in section IV.A.  

𝐴𝑖 denotes the amplitude of acceleration  
𝒂𝒊 at time i. M is a time series of acceleration amplitude with n 

TABLE I 

SYMBOL DEFINITIONS 

Symbol Definition Explanation 

𝒂𝒊 [𝑎𝑖𝑥 , 𝑎𝑖𝑦 , 𝑎𝑖𝑧] 3 by 1 vector, accelerometer 

readings along x-axis, y-axis and z-

axis at time i 

𝒘𝒊 [𝑤𝑖𝑥 , 𝑤𝑖𝑦 , 𝑤𝑖𝑧] 3 by 1 vector, angular velocity along 

x-axis, y-axis and z-axis at time i 

A 𝒂𝟏, 𝒂𝟐, ⋯ , 𝒂𝒊, ⋯ , 𝒂𝒏 Time series of accelerometer 

readings with n samples 

W 𝒘𝟏, 𝒘𝟐, ⋯ , 𝒘𝒊, ⋯ , 𝒘𝒏 Time series of angular velocity with 

n samples 

𝐼�̃� {𝐼𝑖𝑗 , 𝑖 = 1,2, ⋯ 𝑛} A set of instances of j-th class 

constructed during the training 

phase; 𝐼𝑖𝑗 represents i-th feature 

vector instance of j-th class  

𝐴𝑖 ‖𝒂𝒊‖ The magnitude of i-th accelerometer 

reading 

M 𝐴1, 𝐴2, ⋯ , 𝐴𝑛 Accelerometer magnitude series 
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samples. 

IV. PROPOSED APPROACH 

 
Fig. 1. System diagram. 

 

Fig. 1 shows our proposed recognition technique which 

addresses all aforementioned practical challenges. A novel 

orientation independent time series feature set is extracted 

from the gyroscope data by integrating the 3-axis angular 

velocity during a short period covering one action, gesture or 

human movement. Then a first stage DTW-based classifier is 

used to recognize the gesture/activity. Intuitively, we consider 

the series of total angle change during this period. Most 

activities have the same series of angle change irrespective of 

the speed at which the activities are performed. Thus, the first 

stage classification is orientation independent and speed 

independent because the changes are independent of the 

sensor orientation and movement speed. The inconsistent 

segments are also analyzed and discarded by applying zero-

padding DTW in this stage. However, our first stage classifier 

cannot distinguish the reversible activities (e.g., sit-to-stand 

and stand-to-sit) because they have the same angle changes. 

We further propose a second stage decision tree classifier to 

distinguish the reversible activities by determining the 

magnitude of the acceleration which is also orientation 

independent. The second stage decision tree classifier is only 

deployed for the reversible activities and is not required for 

many activities such as hand gestures if they are not 

reversible.  

A. Feature Extraction 

 
Fig. 2. Feature vector creation. 

 

Human movements or gestures can be classified by a 

feature set derived from the total angle change observed on 

each body segment, independent of orientation and speed. The 

total angle change will be an integration of the total angular 

velocity over a short period of time (i.e., covering one 

activity). Given an angular velocity time series W with n 

samples, the total angle change ∆𝜃𝑛 during the whole period 

can be obtained. However, only one feature value is not 

enough to uniquely describe the entire movement. Therefore, 

we construct a feature vector for a movement. This feature 

vector is constructed with total angle changes during different 

time periods. Fig. 2 provides an illustrative example for this 

feature set . ∆𝜃𝑖 elements in the figure are calculated as in (1).  

∆𝜃𝑖 = 

√(∑ 𝑤𝑗𝑥 ∗ ∆𝑡𝑖
𝑗=1 )2 + (∑ 𝑤𝑗𝑦 ∗ ∆𝑡𝑖

𝑗=1 )2 + (∑ 𝑤𝑗𝑧 ∗ ∆𝑡𝑖
𝑗=1 )2                      

(1) 

∆𝑡 is the time duration between two samples, which is the 

reciprocal of the sampling frequency. ∆𝜃1 is the total angle 

change during the first ∆𝑡 seconds. ∆𝜃2 is the total angle 

change during the first 2∆𝑡 seconds and ∆𝜃𝑛 represents the 

total angle change during the first 𝑛∆t seconds. A feature 

vector of a movement is called an instance of this movement. 

This instance captures important rotation characteristics and 

details during the movement. In the feature vector, all n angle 

changes are speed and orientation independent. However, the 

size of the feature vector varies because the length of a 

movement is not likely fixed and can be shorter or longer. 

This challenge of varying length of the movement is addressed 

by the DTW. 

B. First-stage DTW-based Classifier 

1) DTW with auto-segmentation 

DTW is a template matching algorithm for measuring 

similarity between two time series with different durations 

[27, 28]. By investigating the warping distance, the algorithm 

can perform the segmentation automatically which will be an 

inherently challenging task for classic classification 

algorithms. Given two time series 𝑋 =  𝑥1, 𝑥2, ⋯ , 𝑥𝑖 , ⋯ , 𝑥𝑛, 

and 𝑌 =  𝑦1, 𝑦2, ⋯ , 𝑦𝑖 , ⋯ , 𝑦𝑛 , the cumulative distance is 

calculated as in (2). 

𝐷(𝑥𝑖 , 𝑦𝑗) = 𝑑(𝑥𝑖 , 𝑦𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑥𝑖−1, 𝑦𝑗)

𝐷(𝑥𝑖 , 𝑦𝑗−1)

𝐷(𝑥𝑖−1, 𝑦𝑗−1)

              (2) 

𝑑(𝑥𝑖 , 𝑦𝑗) is the distance between 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑗. Any suitable 

distance function can be used to estimate this, and we use the 

following distance function in our investigation.  

𝑑(𝑥𝑖 , 𝑦𝑗) = ‖𝑥𝑖 − 𝑦𝑗‖                           (3) 

By recording the minimum cumulative distance path, D, the 

warping path between two signals is obtained. 

 In traditional classification paradigms, we first perform the 

segmentation so that the feature extraction and classification 

are performed for a certain segment. One popular 

segmentation technique is sliding window, in which a segment 

of signal in a fixed-size window is classified. This window 

moves through the whole incoming signal and time series in 

each window is classified as a certain target movement or non-

target movement. However, due to the speed variation and the 

fact that different activities/gestures have different lengths, a 

fixed-size window cannot cover the exact duration of an 

activity/gesture. Thus, the accuracy of classification will be 

negatively impacted. In this paper, DTW is applied to 

complete the segmentation. A feature vector is constructed in 

a window with size that is slightly larger than the longest 

activities/gestures and the segments of potential 

3-D
Accelerometer

Feature
Extraction

First stage 
DTW-based 

classifier

Second stage 
decision tree 

classifier

3-D 
Gyroscope
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activities/gestures within this window will then be determined. 

Subsequently, the potential segments are supplied to the 

DTW. In this paper, we construct the feature vector in a 

window whose size is set to 2.5 seconds, about 1.5 times of 

the longest movement duration (sit-to-lie) for activity 

recognition. For gesture recognition, the window size is 

chosen as 14 seconds, which is 1.5 times of the longest gesture 

duration (drinking coffee). This guarantees that the time series 

feature vector covers all target movements even if they are 

performed at a slower speed. From the cumulative distance 

table between the template and the incoming time series 

feature vector, the matching part will be selected, thereby 

realizing segmentation automatically.  

 

 
Fig. 3. Auto-segmentation by DTW. 

 

Fig. 3 shows an example of the auto-segmentation function 

of DTW. Assume that the template T has m samples and that 

the incoming feature series R (incoming unknown movement) 

has n samples, where n > m.  The table in Fig. 3 provides the 

cumulative distance table D, as described in (2), of the two 

series [29].  

The minimum cumulative distance, without loss of 

generality as the mth column in the distance table, is 

considered as the warping distance and the corresponding row 

index will be the last sample of the matched series M within R. 

The warping distance and index are defined in (4). 

[𝐷𝑤𝑎𝑟𝑝, 𝑖𝑛𝑑𝑒𝑥] = min(𝐷𝑖), ∀𝑖 ∈ [1, 𝑛]                  (4) 

𝐷𝑖 is the ith element in the mth column in the distance table. In 
the example in Fig. 3, D4 will be selected as the Dwarp, which 

is the warping distance between template T and series M. 

2) Template selection 

Selecting multiple templates with larger variations covers 

more cases and may provide a better accuracy for the DTW. 

However, this increases the computational complexity of the 

signal processing. Considering the resource constrained nature 

of the processing units in wearable computers, we only choose 

one template for each activity. This assumption however does 

not necessarily need to be enforced and one may choose to 

consider multiple templates representing each movement. The 

template for j-th movement/gesture is chosen from a collection 

of n instances of the movement/gesture according to the 

criterion in (5). 

𝑇 = argmin
𝐼𝑖𝑗⊆𝐼�̃�

(∑ 𝐷(𝐼𝑖𝑗, 𝐼𝑘𝑗)𝑛
𝑘=1 )                             (5) 

Where 𝐼𝑖𝑗 represents i-th feature vector instance of class j. All 

these instances are constructed during the training phase with 

annotated activity/gesture data. D represents the DTW 

distance. The selected template is essentially closest to all the 

other instances of the movement and serves as the best 

representative template. 

3) Threshold choice based on maximum-margin hyperplane 

To distinguish the target movements from the non-target 

movements, a threshold is chosen for the DTW distance. If the 

threshold is too tight, certain target movements may not be 

detected resulting in a higher false negative rate. If the 

threshold is too loose, non-target movements may be classified 

as target leading to a large false positive rate. In this paper, we 

use a 5% maximum-margin hyperplane (MMH) as the 

threshold [30]. The MMH is the best separation margin 

between two classes. The 5% MMH is explained in Fig. 4. 

The X-axis represents movement instances (and their indices) 

and the Y-axis shows the DTW distance between target 

movement template and movement instances. The black dots 

and white dots represent DTW distances of non-target and 

target instances, respectively. The Y-axis value of the top red 

line is the mean of the smallest 5% distance samples between 

target movement template and non-target instances. The 

bottom black line is the mean of the largest 5% distance 

samples between the target movement template and target 

movement instances. The MMH is the average of these two 

lines represented as the dash-dotted line. We choose the mean 

of 5% instead of the largest or smallest sample to eliminate the 

effect of outliers. 

 
Fig. 4. Maximum-margin hyperplane definition. 

C. Inconsistent Segment Analysis and Star-padding DTW 

For the activities of daily living considered in this paper, 

there are typically no inconsistent segments during movements 

since the durations of activities are typically short. For the 

gestures, however, like “Drinking coffee”, “Picking up cell 

phone” or “Eating” certain inconsistent segments are present. 

The algorithm proposed in this section detects the inconsistent 

segments. Once we determine the inconsistent segment in the 

template, the star-padding DTW is used to complete the 

recognition [31]. The samples of inconsistent segment is 

replaced by special value (‘*’), which has zero distance with 
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all other samples in distance matrix. This will eliminate the 

effect of inconsistent segments when calculating the warping 

distance.  

 

 
Fig. 5. Inconsistent analysis example. 

 

The first step is to identify consistent and inconsistent 

segments. Fig. 5 shows an example of the inconsistent 

movement analysis. In this figure, there are two instances  𝐼𝑏𝑗 

and 𝐼2𝑗 from j-th class. Two consistent segments and one 

inconsistent segment exist among these two instances. The 

consistent segment 1 is determined by the starting point 𝑠1 and 

the ending point 𝑒1 and the consistent segment 2 is determined 

by the starting point 𝑠2 and the ending point 𝑒2. The solid 

black lines that connect samples of the two instances show the 

warped samples of the consistent segments after DTW is 

applied. The dashed red lines show the warped samples of the 

inconsistent segment after DTW is applied. In the consistent 

segments, the warped samples from the two instances are 

close to each other and thus, the distances between all warped 

samples should be small. On the other hand, the warped 

samples of the inconsistent segment could be much different 

and thus, the distances between all warped samples could be 

larger. Our goal is to determine all the consistent segments 

guided by the DTW sample-wise distance.  

To formally define the objective, for a given set of 

movement instances 𝐼�̃�, we want to determine a set of 

consistent segment sample indices F=
 {(𝑠1, 𝑒1), (𝑠2, 𝑒2), ⋯ , (𝑠𝑖 , 𝑒𝑖), ⋯ ((𝑠𝑛 , 𝑒𝑛))} for a beacon 

instance 𝐼𝑏𝑗. 𝑠𝑖 and 𝑒𝑖 represents starting sample index and 

ending sample index of i-th consistent segment of the instance. 

In our approach, a random instance is picked as the beacon 

instance 𝐼𝑏𝑗. 𝐼𝑏𝑗 is the beacon instance for j-th class. After 

applying DTW between beacon instance and any other 

instance, the sample distance along the warping path of the 

consistent segment should be small and consistent while the 

sample distance along the path of the inconsistent segment 

could be large and inconsistent. Let 𝑑𝑖𝑘  denote sample 

distance between i-th sample of beacon instance and the 

warped sample from k-th instance. It is possible that i-th 

sample from beacon instance is warped to several samples of 

k-th instance. In this case, the first warped sample distance is 

chosen as 𝑑𝑖𝑘 . Now that we obtain the sample distances 

between the beacon instance and all the other instances, a 

unique distance for i-th sample of the beacon instance is 

calculated as in (6). 

𝑑𝑖 =
∑ 𝑑𝑖𝑘

𝑛
𝑘=1

𝑛
                                       (6) 

In order to determine F, an unsupervised-learning technique 

hierarchical clustering is applied [32]. Since all 𝑑𝑖’s from 

consistent segments should be small and consistent, they will 

be clustered to the same cluster while all 𝑑𝑖’s from 

inconsistent segments will not be grouped immediately with 

consistent 𝑑𝑖’s. In the meantime, for grouping and clustering, 

a spatial constraint must be enforced to avoid clustering 

samples that have small distance but come from different 

segments of the movement. For example, the 4-th sample 

should be clustered with 5-th sample before it will be clustered 

with 216-th sample if all of them are from the same consistent 

segment. Therefore, we refine the distance function for 

clustering to accommodate this objective:  

𝑓(𝑑𝑖 , 𝑑𝑗) = (𝑑𝑖 − 𝑑𝑗)2 + 𝛼 ∗ |𝑖 − 𝑗|2              (7) 

In (7), the first term indicates that all distances from 

consistent segment tend to be small and the second term adds 

a spatial constraint. 𝛼 is a weight parameter that controls the 

spatial constraint for various applications. After the clustering 

is completed, the largest size clusters that exhibit small intra-

cluster distances are used to determine the 𝑠𝑖 and 𝑒𝑖 for each 

consistent segment to construct the F vector. The samples in 

each selected cluster should come from the same segment and 

the average linkage distance for this cluster should not be 

large. This algorithm is summarized in Algorithm 1.  

D. Second Stage Decision Tree Classifier 

With the first stage DTW distance threshold based 

classifier, we can classify different activities except for the 

reversible instances. For example, sit-to-stand and stand-to-sit 

have similar angular change patterns, and they will exhibit 

small DTW distance to each other considering our proposed 

feature set. In order to distinguish between the reversible 

movements, the amplitude of the accelerometer reading is 

considered.  

ALGORITHM 1 

Input:  a set of movement instance 𝐼�̃�; 

Output: a set of consistent segment F; 

1: Pick an random instance from 𝐼𝑖�̃� as 𝐼𝑏𝑗; 

2: for i from 1 to n 

3:     do DTW(𝐼𝑏𝑗, 𝐼𝑖𝑗); 

4: end 

5: for all samples in 𝐼𝑏𝑗 

6:    Calculate sample distance 𝑑𝑖 according to (6); 

7: end 

8: perform hierarchal clustering for all  𝑑𝑖 according to 

distance function (7); 

9: the largest clusters with small intra-class distances 
correspond to consistent segments and are used to 

construct F vector; 
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The accelerometer data is often noisy and therefore, before 

calculating the amplitude, a 5Hz low pass filter is applied to 

the raw acceleration samples. 

 
Fig. 6. Acceleration amplitude for sit-to-stand and stand-to-sit. 

 

Fig. 6 shows the amplitude of the acceleration for sit-to-

stand and stand-to-sit movements of a thigh sensor from the 

auto-segmentation. For the sit-to-stand, the leg has an upwards 

acceleration first which is against the gravity and thus leading 

to an acceleration whose amplitude is smaller than 1g. For the 

end of sit-to-stand, there will be an acceleration downwards 

which is in the same direction as gravity. This results in an 

acceleration whose amplitude is larger than 1g. To distinguish 

the sit-to-stand from stand-to-sit, we look for the order of the 

maximum peak and minimum valley. For sit-to-stand, the 

maximum peak happens after the minimum valley while for 

stand-to-sit, the maximum peak occurs first followed by the 

minimum valley.  

 

 
Fig. 7. Second stage decision tree classifier. 

 

Similarly, we can distinguish between the kneeling down 

and kneeling up and between the sit-to-lie and lie-to-sit by 

looking at the thigh sensor and ankle sensor, respectively. The 

second stage classifier based on decision tree is shown in Fig. 

7. The reason why decision tree is applied is that it is easy to 

interpret. For example, it is easy to understand when an 

accelerometer magnitude peak happens first, it is stand-to-sit; 

while when an accelerometer magnitude valley happens first, 

it is sit-to-stand. The three sets of reversible activities are 

classified by observing the order of occurrence for the 

maximum peak and the minimum valley samples. Note that 

for the gesture recognition task, there are no reversible 

movements and thus the second stage classification is not 

necessary. 

V. EXPERIMENTAL SETUP 

We evaluate our approach using two different example 

applications: activity recognition of daily living and hand 

gesture recognition. For the activity recognition of daily living 

experiment, two sensors were worn by 10 participants. One 

was attached to the thigh and the other one was attached to the 

ankle. While for the hand gesture recognition application, 6 

participants were enrolled with one sensor attached to the 

user’s wrist. For both experiments, the users were asked to 

place the sensors in 6 different orientations (spanning 360 

degrees), and perform 20 repetitions of each activity/gesture at 

each orientation. Each activity/gesture was performed at a 

slow speed for the first two orientations, at a normal speed for 

the middle two orientations and at a faster speed for the last 

two orientations. While the proposed approach is speed 

independent for most activities and gestures, the activities of 

walking and running are special cases. Due to biomechanical 

reasons, different speeds of walking and running have 

different angle rotations, so our approach would consider them 

as different movements. The participants performed these two 

movements at the normal speed for 6 orientations. The 

sampling frequency was set to 200Hz. The activities of daily 

living are listed in Table II and the hand gestures are listed in 

Table III. During the data collection, a camera recorded the 

movements along with the sensors. Both the sensor data and 

video data were synchronized. Then a visualization tool is 

used to segment and annotate the collected data [33]. The tool 

displays the sensor data and video data at the same time, hence 

segmentation can be performed and the data is annotated 

based on the video information. This segmentation serves as 

the gold standard.   

In order to estimate the gravity vector and the horizontal 

direction vector to transform the accelerometer data to a global 

frame, a certain duration, such as a 10 second time window is 

required in certain existing approaches [12, 13, 17]. Their 

methods are good for the continuous movements or postures, 

such as sitting, lying, walking, and running, and do not 

perform well for the transitional movements since gravity has 

a major effect on some transitional movements. Thus, we 

Calculate 
accelerometer 

magnitude 
series M

Calculate 
accelerometer 

magnitude 
series M

Reversible
activities

Reversible
activities

Sit-to-standSit-to-stand

Kneeling downKneeling down

Lie-to-sitLie-to-sit

Stand-to-sitStand-to-sit

Kneeling upKneeling up

Sit-to-lieSit-to-lie

Min first Max first

TABLE II 

ACTIVITIES 

Activity # Activity Activity # Activity 

1 Sit-to-stand 6 Kneeling up 

2 Stand-to-sit 7 90degree-turn 

3 Sit-to-lie 8 Walking 

4 Lie-to-sit 9 Running 

5 Kneeling down   

 

 
TABLE III 

ACTIVITIES 

Gesture # Gesture Gesture # Gesture 

1 Wave goodbye 5 Eating with spoon 

2 Hand shake 6 Eating with hand 

3 Picking up cell 

phone 

7 Eating with 

chopstick 

4 Drinking coffee   
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compare our approach for the task of activity recognition with 

a pocket cell phone based orientation independent approach 

proposed by Sun et al [16]. The authors of that investigation 

extract 22 features from 3-axis accelerometer data and the 

magnitude of the accelerometer data, which include mean, 

variance, correlation, FFT energy and frequency domain 

energy. Since our approach uses two sensors, we extract 22 

features from each sensor to construct the feature vector. 

Sun’s approach is unable to do the segmentation and it uses a 

windowing technique that does not necessarily capture the 

beginning and the end of movements at the beginning and the 

end of the windows. By comparison, we use the camera 

labeled annotations to serve as the beginning and the end of 

each window for their approach. This improves the 

performance of Sun approach. The LibSVM in Weka is used 

as the classification algorithm [34]. 

We design four experiments to evaluate our approach. In 

the first experiment, we analyze the performance of auto-

segmentation of our approach and determine if the beginning 

and the end of movements are detected correctly. The second 

experiment evaluates the subject dependent classification 

performance, in which 10-fold cross validation is used to 

evaluate the dataset for each person separately [35]. In the 

third experiment, the subject-independent classification 

performance is evaluated with the leave-one-subject-out 

testing method. There are 4 classification performance metrics 

in our paper, which are accuracy, precision, recall and F-score 

[36]. In the fourth experiment, the performance of our 

inconsistent movement analysis algorithm and template 

refinement is studied. 

VI. EXPERIMENTAL RESULTS 

A. Auto-segmentation Results 

To evaluate the performance of the auto-segmentation from 

DTW, the video annotated segmentations serve as the gold 

standard and three error parameters are defined. Let t1, t2 be 

the starting and ending point of the auto-segmented section of 

one movement and t1', t2’ be the starting and ending point of 

the corresponding gold standard section. The errors at the 

beginning △t1, at the end △t2 and the total △t are defined as: 

∆𝑡1 =  |𝑡1 − 𝑡1
′|                           (8) 

∆𝑡2 =  |𝑡2 − 𝑡2
′|                           (9) 

∆𝑡 =  ∆𝑡1 +  ∆𝑡2                         (10) 

 

 
Fig. 8. Errors of auto-segmentation for different activities. 

Fig. 8 shows the average error rate of the auto-segmentation 

for different activities for all the subjects. From the figure, we 

can see that the errors for walking and running are very small. 

The reason is that the steps are continuous and the minimum 

DTW distance leads to good segmentation for each step. For 

the other activities, we have a static period at the beginning 

and the end of the activities which results in a larger error for 

the segmentation. This static period is caused by the 

inaccurate annotation when the author puts the start label 

earlier than the actual starting of the movement and puts the 

end label a little later than the actual ending of the movement 

to ensure the complete movement is covered. However, the 

static periods do not affect our algorithm because the 

integration of the gyroscope signals approaches zero. Fig. 9 

shows the auto-segmentation errors for the hand gestures. The 

errors for hand gestures are a little larger than those of the 

activities of daily living. The reason is that they also have 

static periods at the beginning and at the end, and the hand 

gestures usually take longer than activities of daily living 

discussed in this paper. 

 
Fig. 9. Errors of auto-segmentation for hand gestures. 

B. Subject Dependent Classification Results 

In this experiment, 10-fold cross validation is used for each 

subject separately and the classification accuracy is analyzed. 

 

 
Fig. 10. Subject dependent classification results for activity recognition task. 

Fig. 10 shows the classification performance of our 

approach compared to Sun approach. All the results are 

calculated as the average for all 9 activities. From the figure, 

we can see our approach achieves a very good performance in 

accuracy, precision, recall and F-score for the subject 

dependent testing compared to Sun’s method. Our approach 

offers 98.52%, 98.62%, 98.21% and 98.65% for accuracy, 
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precision, recall and F-score, and the improvements of these 

metrics compared to Sun method are 16.41%, 18.67%, 15.48% 

and 18.01% respectively.  

 

Fig. 11. Subject dependent classification results for hand gesture recognition 

task. 

 

Fig. 11 shows the subject dependent classification accuracy 

for hand gesture recognition task when we do and we do not 

eliminate the inconsistent segments. From the figure, we can 

see for both ‘Wave goodbye’ and ‘Hand shake’, our approach 

achieves good performance and it is similar to the case when 

we don’t consider the inconsistent segments and do not 

eliminate the effect of those segments. For ‘Picking up cell 

phone’, ‘Drinking coffee’ and three different styles of ‘eating’, 

our approach achieves better performance than the same 

approach without eliminating the inconsistent segments. 

Specifically, our approach shows ~10% accuracy 

improvement. This is because ‘Picking up cell phone’, 

‘Drinking coffee’ are similar to each other and they both have 

inconsistent segments in middle. Similarly, the three types of 

‘eating’ are similar to each other and they all have inconsistent 

segments in middle. If the inconsistent segments are 

considered to be part of the whole gesture, the effect will 

cause confusion between these gestures. Since Sun approach is 

proposed for activity recognition using cell phone, we do not 

compare to their approach for hand gesture recognition. 

C. Subject Independent Classification Results 

Different human subjects may perform the same activity in 

a slightly different way. The subject independent classification 

analysis tests how robust the recognition system is with 

respect to different subjects. In the subject independent test, 

the leave-one-subject-out testing method is applied. 

 

 
Fig. 12. Precision and recall for different activities for the subject independent 

test. 

 

Fig. 12 shows the precision and recall for different activities 

in the subject independent test. From the figure, we observe 

that our approach outperforms the Sun approach for most of 

the activities. Only for 90degreeTurn, walking and running, 

Sun approach achieves similar performance to ours. One 

possible reason is that the frequency domain features used by 

Sun approach are good for discriminating the periodic 

movements (e.g. walking and running). We noted that our 

classification precisions and recalls for sit-to-lie and lie-to-sit 

are much lower than for the other activities. This is because 

one of the human subjects performed the sit-to-lie and lie-to-

sit activities in a very different manner compared to the other 

subjects. 

 

 
Fig. 13. Subject independent classification results for activity recognition task. 

 

Fig. 13 shows the subject independent classification results 

for the activity recognition task. The figure shows our method 

achieves much better performance than Sun’s method. It 

indicates that our method is more robust to subject variation. 

The reason may be that the activities chosen are well 

distinguishable from each other. The small variation caused by 

the subjects does not affect our algorithm too much. The 

improvements of our method with respect to accuracy, 

precision, recall and F-score are 17.14%, 16.27%, 19.86% and 

23.42% respectively. 
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Fig. 14. Subject independent accuracy for gesture recognition task. 

 

Fig. 14 shows the subject independent accuracy for the 

gesture recognition task. As shown in the figure, our approach 

achieves good performance for all seven hand gestures and our 

approach performs much better when the inconsistent parts are 

eliminated for both ‘Picking up cell phone’, ‘Drinking coffee’ 

and three different types of ‘eating’. 

D. Inconsistent Movement Analysis 

Five gestures in our investigation involve inconsistent 

segments: ‘Picking up cell phone’, ‘Drinking coffee’ and three 

different types of ‘eating’. All of them typically include three 

segments. For ‘Drinking coffee’, the three segments can be 

described as follows: 1) picking up the cup, 2) a set of 

arbitrary movements in middle that may or may not be present 

at every instance of drinking, and 3) bringing the cup to the 

mouth and tilting it to drink the coffee. For ‘Picking up cell 

phone’, three segments are typically observed: 1) taking cell 

phone out of pocket and lifting the cell phone to a certain level 

to read the caller information. 2) a set of different movements 

in middle that may or may not present at every instance (e.g. 

shift or rotate the cell phone to unlock) and 3) bringing the cell 

phone close to the ear to answer the phone call. For different 

styles of ‘Eating’, three segments are observed: 1) picking up 

food, 2) a set of arbitrary movements in middle that may or 

may not be present at every instance, and 3) bring the food to 

the mouth and feed it to the mouth. For all gestures, we 

observe that the first and third segments are consistent 

between all the instances while the second segment may vary 

a lot from instance to instance. To evaluate our inconsistent 

segment analysis technique, we use the same error metrics 

defined by (8) – (10). Here t1, t2 are the starting and ending 

points of the inconsistent segment of one movement and t1
', t2

’ 

are the starting and ending point of the corresponding gold 

standard segment obtained from video. The average error for 

these five gestures are shown in Table IV. In Section VI.B and 

Section VI.C, the inconsistent movement analysis improves 

the classification performance significantly and these errors 

are good enough for our application. 

VII. DISCUSSION AND CONCLUSION 

To the best of our knowledge, the feature set and the signal 

processing algorithms described in this work have been 

proposed for the first time. Our proposed techniques address 

several important challenges: sensor orientation variations, 

movement speed variations, and the inconsistent segments 

present in some movements. In our approach, once an 

activity/gesture is detected, the time duration of the activity is 

calculated. The movement’s speed is an interesting context for 

pervasive computing applications as we can infer if the person 

is in a hurry or is tired. Besides, our approach works for both 

dynamic periodic movements (e.g., walking and running) and 

transitional movements (e.g., sit-to-stand and sit-to-lie) while 

most orientation independent frequency-based activity 

recognition algorithms previously published operate solely on 

dynamic periodic movements. 

One limitation of our approach is that we used two sensors 

to recognize the activities of daily living listed in this paper. If 

we only use one thigh sensor, our approach cannot separate 

sit-to-lie and sit-to-stand well. This is naturally due to the fact 

that the two movements have the same footprint on the thigh. 

As a potential alternative to using multiple sensors, finer-

grained orientation independent features from accelerometers 

could be considered to help distinguish these two movements. 

In our future work, we will enhance the recognition accuracy 

of our algorithm to cover a larger number of movements using 

only one sensor. The other limitation of our approach is that 

different subjects have slightly different activity templates 

which decreases the cross subject classification performance. 

Selecting a larger number of templates will help enhance the 

cross subject classification accuracy while increasing the 

computational cost.  

In this paper, we proposed an activity/gesture recognition 

approach using wearable motion sensors that can address 

several practical challenges and detect useful context 

information. An orientation independent, speed independent 

feature set is proposed and a two-stage signal processing 

algorithm is suggested to perform the activity/gesture 

recognition. A template refinement technique is proposed to 

eliminate the negative impact of the inconsistent segments of a 

movement. Two example applications (i.e., activity 

recognition and gesture recognition) are utilized for the 

evaluation. The experimental results show good classification 

accuracy while retaining robustness to several practical 

challenges associated with wearable motion sensors in real-

world scenarios. 

TABLE IV 

INCONSISTENT MOVEMENT DETECTION ERRORS 

 
△t1 

(seconds) 

△t2 

(seconds) 

△t 

(seconds) 
Picking up 

cell phone 
0.278 0.201 0.479 

Drinking 

coffee 
0.246 0.235 0.481 

Eating with 

hand 
0.325 0.401 0.726 

Eating with 

chopstick 
0.337 0.385 0.722 

Eating with 

spoon 
0.267 0.214 0.481 
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