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Abstract—This article describes a novel methodology 

leveraging particle filters for the application of robust heart rate 

monitoring in the presence of motion artifacts. Motion is a key 

source of noise that confounds traditional heart rate estimation 

algorithms for wearable sensors due to the introduction of 

spurious artifacts in the signals. In contrast to previous particle 

filtering approaches, we formulate the heart rate itself as the only 

state to be estimated, and do not rely on multiple specific signal 

features. Instead, we design observation mechanisms to leverage 

the known steady, consistent nature of heart rate variations to 

meet the objective of continuous monitoring of heart rate using 

wearable sensors. Furthermore, this independence from specific 

signal features also allows us to fuse information from multiple 

sensors and signal modalities to further improve estimation 

accuracy. The signal processing methods described in this work 

were tested on real motion artifact affected electrocardiogram 

(ECG) and photoplethysmogram (PPG) data with concurrent 

accelerometer readings. Results show promising average error 

rates less than 2 beats per minute (bpm) for data collected during 

intense running activities. Furthermore, a comparison with 

contemporary signal processing techniques for the same objective 

shows how the proposed implementation is also computationally 

more efficient for comparable performance.  

 
Index Terms—Particle Filter, Physiological Signal Processing, 

Motion Artifacts, Heart Rate, Wearable Sensors 

 

I. INTRODUCTION 

N recent times, a significant amount of research has been 

dedicated to realizing the goal of pervasive, around-the-

clock personal physiological monitoring that is both easy to 

use and accurate. The traditional norm is to rely exclusively on 

hospital visits, however this model of healthcare could be 

significantly augmented with the help of dedicated wearable 

and environmental sensors. Apart from generally being more 

convenient and cheaper, continuous monitoring with a 

wearable device will be invaluable for identifying medical 

conditions for which sporadic monitoring is insufficient. 

Among the various physiological measures, there has been 

significant interest in wearable continuous heart rate (HR) 

monitoring, and it would be useful for both fitness and health 

applications. For example, heart rate variability is a condition 

 
Submitted for review on August 30th, 2017. This work was supported in 

part by TerraSwarm, one of six centers of STARnet, a Semiconductor 

Research Corporation program sponsored by MARCO and DARPA. 

V. Nathan is with the CSE department and R. Jafari is with the BME, CSE 

ad ECE departments at Texas A&M University, College Station, Texas, 

77843, USA. (e-mails: {viswamnathan,rjafari}@tamu.edu ). 

that could be an indicator of myocardial ischemia [1] and 

continuous monitoring of the heart rate would increase the 

chances of a successful diagnosis. Wearable heart rate 

monitors could also enable general fitness applications. For 

example, users would be able to tailor their exercise routines 

according to how their body is responding to the workload. 

Continuous cardiac activity monitoring could also be used for 

user authentication purposes, as shown in a recent work [2]. 

However, the increased comfort and convenience of these 

sensors often comes at the cost of an increased amount of 

noise as well; for example, for bio-potential sensors, the skin 

contact would likely have to be a dry electrode, potentially 

non-contact electrodes, which in turn means an increased 

amount of noise compared to wet or gel-based interfaces 

which are still the standard for medical grade equipment [3]. 

Moreover, activities of daily living are likely to lead to motion 

artifacts in the signals, such as in the case of a smart watch 

monitoring heart rate while the user is jogging. A recent study 

exploring continuous monitoring of heart rate of construction 

workers to manage workload showed that motion artifacts 

were the primary source of error in heart rate estimation [4]. 

There are multiple modalities, sensor types, and sensor 

locations that can be used to capture heart rate. The heart rate 

can be inferred from the ECG, PPG or even the changes in 

bio-impedance of a certain region of the skin. The type of 

sensors can be gel-based patches, or dry metal electrodes or an 

LED-photodiode combination as is the case for PPG. Finally, 

the sensors could be available in multiple locations depending 

on the context such as on a T-shirt, on a wrist watch, or on the 

sides of reading glasses. Not to mention the possibility of 

environmental sensors opportunistically measuring the heart 

rate, such as a steering wheel capturing ECG activity with 

electrodes placed on either side of the wheel. Moreover, apart 

from all these sources for measuring the ‘signal’, we can also 

easily imagine sources that measure the ‘noise’. An obvious 

example would be accelerometers that are already part of 

portable devices such as smart watches; these signals could be 

correlated with the motion noise that clouds the estimation of 

heart rate. The internet of things (IoT) would very much 

include physiological and motion sensors, and it is very likely 

that successful signal processing techniques would take 

advantage of the expected multitude of sensors. Therefore, we 

strive to show that the proposed implementation is capable of 

supporting multiple simultaneous and heterogeneous sensors 

and fusing them effectively for more accurate estimates. 

Finally, an important consideration when designing 
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wearable sensors is the computational power. Due to form 

factor and battery lifetime constraints, the processors in these 

systems are relatively modest, and hence it is important to 

ensure that the computational load due to signal processing 

algorithms is minimized as much as possible. 

In this work we describe the use of a particle filter to 

estimate target physiological phenomena from a variety of 

signal modalities, as well as the fusion of these. The particle 

filter is a sequential Monte Carlo routine that probabilistically 

estimates the true state of a given system by updating the 

weights and redistributing a set of ‘particles’. More details on 

the working of the particle filter will be provided in this article 

and can also be found in other works [5].  

Moreover, while the focus of this work is on heart rate 

monitoring, the proposed implementation of the particle filter 

could also be used for estimating other physiological 

parameters that are relatively slow-changing and consistent 

over short time intervals. As will be explained in detail later, 

based on sensor observations, the particle filter tracks multiple 

possibilities for the target parameter and rewards those that are 

consistent over time. We know that the human heart rate is 

relatively steady over short time intervals, but this applies to 

other phenomena as well, such as respiration rate or 

continuous arterial blood pressure (ABP). Continuous ABP 

can be estimated by measuring the pulse transit time [6], 

which in turn can be estimated with the same signal modalities 

discussed in this work. As such, not only is the proposed 

implementation independent of specific signal modalities or 

features, it is also potentially adaptable for other applications 

in the same domain. The contributions of this work are: 

1. A particle filter formulation for estimation of heart rate 

from noisy sensor streams without dependence on specific 

signal features; it instead works with naïve, greedy 

observation mechanisms and leverages the expected 

steady changes of the human heart rate. 

2. Demonstration of the efficacy of the technique using real 

motion-artifact affected ECG and PPG data. 

3. Showcasing our implementation’s potential for fusion of 

multiple signal modalities to improve heart rate estimates. 

4. Demonstration of improved computational efficiency of 

our solution compared to contemporary related works. 

II. RELATED WORKS 

There have been many proposed approaches in the literature 

to obtain an accurate heart rate estimate from a noisy cardiac 

signal. Several works have been based on the use of an 

adaptive filter, but such techniques always rely on the 

presence of an external reference signal, such as accelerometer 

data [7, 8] or electrode tissue impedance [9], which may not 

always be available. Moreover, different reference signals may 

be better correlated with different types of motion artifacts and 

thus a system based on only one reference signal may not 

represent a generalized solution to handle artifacts from a 

variety of user actions. 

Methods based on a Kalman filter do not rely on an external 

reference [10], but these techniques assume that the signal and 

observation models are linear functions and that the noise is 

Gaussian, which is not always the case for biomedical 

applications [11]. The extended Kalman filter was introduced 

to circumvent the disadvantage of the linearity assumption 

[12], but just like the regular Kalman filter it still suffers from 

the fact that only unimodal Gaussian distributions can be 

tracked [11]. In other words, only one possibility for the true 

state can be tracked at a time and if the estimate diverges from 

the true state, it may continue to diverge beyond recovery. 

Apart from these, there have been a few works that 

successfully combine several signal processing techniques 

along with heuristic knowledge of signal characteristics to 

build a heart rate detection algorithm. There have been three 

recent related works of note that tackle the problem of heart 

rate estimation in the presence of extreme motion artifacts 

when running. The first, dubbed TROIKA [13], involves 

primarily singular value decomposition, an optimization 

approach to find a sparse signal representation of the PPG 

frequency spectrum and finally spectral peak tracking 

approaches to estimate the heart rate. The second technique 

developed by the same author, called JOSS [14], has a similar 

approach except it jointly estimates the spectra of the 

accelerometer as well as the PPG and does away with certain 

steps to save on computation time. The third and final work 

for PPG signals with motion artifacts [15], which we will refer 

to as ‘Robust EEMD’, is based on ensemble empirical mode 

decomposition (EEMD), followed by a recursive least squares 

(RLS) adaptive filter using the accelerometer signal as 

reference. These two techniques are followed by several 

spectral peak tracking approaches as well as heuristic 

conditional steps to track the heart rate frequency. Later in this 

paper, we will present a comparison of our proposed particle-

filter based approach with these three works, both in terms of 

estimation accuracy as well as computational efficiency. 

The particle filter is a probabilistic method that does not 

depend on any external reference signal nor assume a specific 

distribution for either the signal or the noise as is the case for 

the Kalman filter. It is robust and has the potential to recover 

from incorrect estimates since it can keep track of multiple 

possibilities. It is generalizable and can be adapted to handle a 

variety of signal and noise models. It is also straightforward to 

adjust the number of particles in use, to trade-off between 

computation time and accuracy depending on the application. 

The particle filter has been previously employed in other 

similar applications, such as identifying the various segments 

of an ECG in stationary conditions. However, apart from not 

dealing with motion artifacts, these works usually incorporate 

a complex dynamical model for the ECG that involves several 

state dimensions, which in turn increases the computational 

cost [16, 17]. Another work based on an ECG model has a 

much reduced dimensionality for the state space; however it is 

only tested for ECG contaminated by white or pink noise [18]. 

A particle filter has also been employed for muscle artifact 

affected ECG de-noising, however this also relies on a 

sophisticated model that is specific to the progression of ECG 

with multi-dimensional states and does not seem to be 

validated on ECG signals with a significant amount of noise 

[19]. Moreover, in all of the above, the approach that relies on 



the use of a single rigid and specific mathematical model may 

not be generalizable to be used for a wider variety of signals 

from different subjects [20]. The key difference in our 

proposed framework is that the heart rate itself is directly used 

as the state to be estimated in the particle filter model 

equations, and we design the observation densities such that 

the particle filter simply rewards those observations that are 

consistent with the expected behavior of a human heart rate. 

Moreover, the use of only a single state dimension in the 

formulation greatly eases the computational load compared to 

previous particle filter implementations in this domain. 

III. BACKGROUND 

A. Particle Filter 

In order to formulate the state estimation problem for heart 

rate detection, we first define the state space representation: 

 

where 𝒳𝑡 denotes the true system state, i.e., the true heart 

rate at time 𝑡, 𝜋𝑥(𝒳𝑡) denotes the initial distribution of the 

system states based on some prior knowledge, 𝑍𝑡 denotes a set 

of discrete observations, 𝑔(∙) is a function representing the 

observations conditioned on the true heart rate,  and 𝑓(∙) is the 

state dynamics or transition model that characterizes the heart 

rate dynamics as a function of time. In essence, the function 

𝑔(𝒳𝑡) denotes the likelihood of observations given the true 

state, and the function 𝑓(𝒳𝑡) describes the progression of the 

true state due to its own dynamics over time. 

The state estimation problem can be delegated to a particle 

filter, which is a sequential Monte Carlo method that solves 

the problem by maintaining a set of weighted particles, each 

being a candidate state estimate, its weight being proportional 

to the likelihood of that particle representing the true state. At 

each step of the particle filtering problem, the goal is to 

estimate the posterior state distribution (𝑝(𝒳𝑡|𝑍𝑡)), i.e., the 

probability distribution of the current true state given a set of 

observations. This is estimated by the weighted sum: 

                     𝑝(𝒳𝑡|𝑍𝑡) = ∑ 𝑊𝑋𝑡
𝑝𝛿(

𝑁𝑝

𝑝=1 𝒳𝑡 − 𝑋𝑡
𝑝

)              (1) 

𝑋𝑡
𝑝
 is the 𝑝𝑡ℎ particle at window 𝑡, 

𝑊𝑋𝑡
𝑝 denotes the weight of particle 𝑋𝑡

𝑝
,  

𝑁𝑝 is the total number of particles and 

 𝛿(∙) is the Dirac delta function, used to place a mass at the 

particle’s location in the posterior probability density function. 

Once this posterior probability distribution is updated in 

each time instance, a suitable method can be used to best 

estimate the target state at each time. In this work, we use the 

maximum a posteriori (MAP) estimate.  

B. Problem Characteristics 

There are a number of reasons why the particle filter is a 

good fit for the particular problem of heart rate estimation in 

noisy signals, when compared to other similar techniques. For 

example, if we consider the problem of heart rate estimation 

using peak detection on the ECG, a common source of noise is 

motion that causes spike-like artifacts. These could lead to 

false positives for a peak detection algorithm. If we consider a 

specific instance with a true heart rate of 60bpm, if there is a 

false positive peak between two true peaks, then the average 

estimated heart rate for that period becomes, say 120bpm. 

Thus, it is clear that the noise cannot be modeled as a 

Gaussian distribution around the true value. The probability 

distribution of the heart rate is in fact multi-modal with several 

distinct possible heart rates in the probability space. This is 

precisely why, as mentioned earlier, it may be unsuitable to 

use the Kalman filter which assumes linear Gaussian models, 

and the Extended Kalman filter that can track only one of 

these multiple possible modes. Moreover, given this multi-

modal probability distribution space where the different modes 

can be very far apart in terms of heart rate, we decided to 

minimize the average error by taking the MAP estimate. 

The key insight is that the human heart rate is typically a 

steady, consistent signal over short time windows; in the 

following sections we will describe the observation 

mechanisms that allow the particle filter to essentially become 

a structure that amasses particles in state space regions that 

show more consistency. In the dimension of time, since the 

current distribution of the particle filter depends on previous 

distributions, there is an inherent sense of ‘memory’ to 

facilitate rewarding of consistency. In the dimension of state 

space, N different particles can track N different possible heart 

rates, thus allowing a parallel search for consistency which 

reduces the chances of permanently going off track. 

Another salient point to note is that the particle filter, as 

implemented in this work, is decoupled from the signal 

characteristics. In other words, the particle filter simply 

receives noisy observations of heart rate, but is agnostic to 

how these observations were obtained and to what signal 

modalities and features were used. Thus, the particle filter is 

not married to the particular observation mechanisms 

described in this work, and any changes to these mechanisms 

– for example to add sophistication, or make it more suitable 

for the given sensor or application scenario – can be easily 

integrated into the same particle filter framework. More 

importantly, other signal modalities for heart rate detection, 

such as the ballistocardiogram (BCG), seismocardiogram 

(SCG) or bio-impedance, could also fit into the same 

framework and be fused with estimates from existing sensors. 

C. Signal Characteristics 

Electrocardiogram Signal: 

The ECG is a representation of the electrical activity of the 

heart. In this work we are interested only in the heart rate, and 

one of the most common ways to estimate the heart rate from 

ECG is using the R-peaks. The R-peak denotes the point of 

electrical depolarization of the ventricles of the heart at the 

start of each beat. The time between successive R-peaks can 

be used to calculate the beat-to-beat heart rate (Figure 1). 

However, as mentioned before, ‘spike’-like effects caused by 

motion artifacts could be falsely identified as R-peaks. This 

𝒳𝑡~𝜋𝑥(𝒳𝑡) (initial distribution) 

𝑍𝑡|𝒳𝑡~ 𝑔(𝒳𝑡) (observation density) 

𝒳𝑡+1|𝒳𝑡~ 𝑓(𝒳𝑡) (transition density) 



naturally leads to overestimation of the heart rate when using 

peak detection based approaches. 

 
Figure 1 - R-peak and R-R interval in an ECG waveform 

Photoplethysmogram Signal: 

The PPG is obtained by transmitting light of suitable 

wavelength into the skin and using a photodiode to capture the 

reflected response that is modulated by the flow of blood, as 

shown in Figure 2. Unlike ECG, since there is no clear time 

domain feature, we instead use frequency domain observations 

for the PPG as will be described in Section IV A. 

 
Figure 2 – PPG waveforms showing periodic heartbeat 

Accelerometer Signal 

 It is quite probable that frequencies due to the cadence of 

walking or running motions would be prominently present in 

both ECG and PPG signals. Since these frequencies would 

also be present in the accelerometer’s data, we can leverage 

this to better inform the estimation process. This is particularly 

important in instances where the motion results in a ‘periodic 

noise’ in either the ECG or PPG signal. The particle filter is 

designed to exploit the assumed quasi-periodicity of the 

heartbeat and randomness of motion artifacts; thus in the 

specific instance of noise due to periodic motion, the 

accelerometer observations can prove critical to distinguish 

this from periodic heart rate. 

IV. METHODS 

A. Observation Mechanism 

The sensors provide observations of the heart rate, and the 

particles update their weights according to each of these. 

Photoplethysmogram Observations 

 The PPG signal is first bandpass filtered between 0.5 and 
15Hz to remove baseline wander and unrelated high frequency 

noise. Subsequently, we use a spectrogram based approach, 

taking moving, overlapping windows of the PPG stream and 

applying the short-time Fourier transform. The window size 

was set to be 8 seconds, with an overlap of 2 seconds between 

successive windows. The frequency spectrum from a window 

of PPG constitutes one set of observations. 

Electrocardiogram Observations 
When processing the time domain ECG signal, we use two 

back-to-back non-overlapping windows dubbed Wstart and 

Wend. For the purposes of calculating heart rate, we only 

consider peak-to-peak intervals that begin with a peak in Wstart 

and end with a peak in Wend. All such intervals taken together 

constitute a set of observations for a given time window. Note 

that the peaks that constitute these pairs may or may not be 

artifacts caused by motion or other noise sources. In the 

example in Figure 3, four different heart rate observations will 

be considered based on the peak-to-peak pairs shown. 

Wstart Wend
 

Figure 3 - Windowing illustration on ECG signal 

We use windows of size 2 seconds in this work, with a step 

size of approximately 0.27 seconds. This step size was chosen 

to accommodate the fact that we expect heart rates as high as 

220 beats per minute, and a step size bigger than this could 

potentially mean skipping true peak-peak observations in 

those scenarios. The peak detection is then done as follows: 

𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝑊𝑖 , 𝐴𝑚𝑖𝑛 , 𝑇𝑚𝑖𝑛) →  {𝑃1, 𝑃2 , … , 𝑃𝑘} =  𝑃𝑊𝑖
     (2) 

𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝑊𝑖 , 𝐴𝑚𝑖𝑛 , 𝑇𝑚𝑖𝑛) finds the time of occurrence of all 

peaks in the signal 𝑊𝑖 that have amplitude at least 𝐴𝑚𝑖𝑛 and 

such that no two peaks are within 𝑇𝑚𝑖𝑛  time of each other, 

𝑃𝑊𝑖
 is the set of peak locations in time, {𝑃1 , 𝑃2, … , 𝑃𝑘}, 

returned by the ‘findpeaks’ function. This function is the 

default implementation found in MATLAB.  

This peak detection on its own however is somewhat naïve, 

so we add an additional step in the procedure for ECG to 
reduce the number of false positives. We used the continuous 

wavelet transform (CWT) on the ECG signal with the 

Mexican Hat wavelet, a center frequency of 0.25Hz and a 

scale of 5.29 as suggested by a previous work [21]. This 

helped to accentuate peaks that more closely resemble an R-

peak and diminish other trivial peaks. The step described in 

Equation (2) is then performed on the wavelet transformed 

signal to obtain the peak locations. It must be noted that this 

merely reduces the number of false positives but does not 

eliminate them. Peak-detection based heart rate estimation 

based solely on the CWT estimate would still overestimate 

due to false positives, as shown in our previous work [22]. 
The heart rate observations are then obtained as follows: 

𝑃𝑊𝑠𝑡𝑎𝑟𝑡
= {𝑃1 , 𝑃2 , … , 𝑃𝑘}                        (3) 

𝑃𝑊𝑒𝑛𝑑
 = {𝑃1, 𝑃2 , … , 𝑃𝑚}                        (4) 

                            𝑃𝑃𝑡  ≜ 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 (𝑃𝑏 − 𝑃𝑎) 

                            ∀𝑃𝑎  ∈ 𝑃𝑊𝑠𝑡𝑎𝑟𝑡
, 𝑃𝑏  ∈ 𝑃𝑊𝑒𝑛𝑑

 

𝑍𝑡
𝑛 = (

𝑓𝑠

𝑃𝑃𝑡(𝑛)
) × 60                               (5) 

𝑃𝑊𝑠𝑡𝑎𝑟𝑡
 and 𝑃𝑊𝑒𝑛𝑑

 refer to the sets of peak locations in a 

starting and ending window respectively, 

𝑓𝑠 is the sampling rate, 

𝑃𝑃𝑡 is the set of peak-to-peak intervals with the first peak in a 
starting window and second peak in an ending window, 

𝑍𝑡
𝑛 is the 𝑛𝑡ℎ heart rate observation of window 𝑡 expressed in 

beats per minute (bpm).  

Taking all 𝑍𝑡
𝑛 in a given window corresponds to the set of 

observations 𝑍𝑡 referred to in Section III A when describing 



the particle filter’s observation model. It must be noted that we 

take steps to avoid duplicate observations, i.e., preventing the 

same two peaks taken as a pair in multiple time windows. We 

also take steps to ensure any observation included in the set is 

consistent with other observations of similar heart rate from 

the same time window already in the set; for example, when 
we have multiple false peaks we could very well have 4 

observations of 50bpm within a 2 second window, but it is 

clearly impossible in reality for all these observations to be 

true. So in this example, only those pairs of peaks 

corresponding to 50bpm that are consistent with each other are 

taken into the set. This step is necessary to avoid an undue 

preponderance of lower heart rate observations just because of 

the nature of our relatively naïve observation mechanism. 

Accelerometer Observations 
 The accelerometer data (denoted as ACC) is processed 

using the same spectrogram approach used for the PPG signal, 

with identical windowing procedures. Since there are 3 axes 

on the accelerometer, we strived to combine them into a single 

spectrogram to provide a unified source of observation for the 

motion noise over time. Using only one axis on its own was 

not an option because there was no certainty about which axis 

captured the most activity across the different subjects in the 
database. This is presumably due to variations in sensor 

placement and running styles among the different subjects. 

 We computed the spectrogram for each of the 3 axes, and 

then stitched together a combined spectrogram that always 

included only the maximum of the three available powers for 

each of the frequencies in each time window. This greedy 

approach allows to always capture the motion frequencies 

without unduly diminishing their relative power. 

B. Particle Filter Implementation 

The initial distribution for the particle filter, 𝜋𝑥(𝒳𝑡), is 

defined as follows: 

𝒳𝑡~𝜋𝑥(𝒳𝑡) = 𝑈(𝐻𝑅𝑚𝑖𝑛 , 𝐻𝑅𝑚𝑎𝑥)                (6) 

Where 𝑈(∙) denotes a uniform distribution between 𝐻𝑅𝑚𝑖𝑛 

and 𝐻𝑅𝑚𝑎𝑥, the assumed lower and upper limits of the heart 

rate defined by reasonable human physiological bounds. We 
made the initial distribution uniform since we have no prior 

knowledge on the initial heart rate, other than extreme limits. 

For the PPG, the probability of an observation with respect 

to a given state of heart rate is computed as follows: 

𝜑𝑡
𝑖 =  𝑆𝑡

𝑖 ∑ 𝑆𝑡
𝑛𝐹

𝑛=1⁄ , ∀𝑖 ∈ (1, 𝐹)          (7) 

𝑝(𝑍𝑡|𝒳𝑡) = 𝑔(𝒳𝑡) =  𝜑𝑡
𝑑                           (8) 

𝑆𝑡
𝑖 is the 𝑖𝑡ℎelement of the vector of observed power spectrum 

amplitudes (measured as described in Section IV A) in time 

window 𝑡 for the PPG signal, 

𝐹 is the total number of frequencies under consideration, 

𝜑𝑡
𝑖  is the 𝑖𝑡ℎ element of 𝜑𝑡 , the probability density function 

that results from normalizing the values of the observed power 

spectrum to be between 0 and 1 in time window 𝑡, 

𝑑, refers to the frequency in the power spectrum that is closest 

to the heart rate 𝒳𝑡. 

𝜑𝑡
𝑑  is the probability of the event that the corresponding 

frequency represents the true heart rate. 

 This formulation is based on the assumption that a higher 

power at a given frequency means the more likely it is that 

that frequency represents the heart rate. However, we know 

that with motion artifacts there could be high power at certain 

frequencies as a result of the cadence of motion. This is where 

the observations from the accelerometer sensor come in; we 

formulate the accelerometer observation function such that we 

reduce the likelihood of a given frequency representing the 

true heart rate if it is present in high power in the 
accelerometer power spectrum. The formulation is as follows: 

�̃�𝑡
𝑖 = ∑ �̃�𝑡

𝑖𝑖+1
𝑖=𝑖−1 ∑ �̃�𝑡

𝑛𝐹
𝑛=1⁄ , ∀𝑖 ∈ (1, 𝐹)            (9)     

𝑝(𝑍𝑡|𝒳𝑡) = 𝑔(𝒳𝑡) =  (1 −  �̃�𝑡
𝑑)                     (10) 

�̃�𝑡
𝑖 is the 𝑖𝑡ℎ element of the vector of the observed power 

spectrum amplitudes in time window 𝑡 of the accelerometer 

spectrogram, 

𝐹 is the total number of frequencies under consideration, 

�̃�𝑡
𝑖  is the 𝑖𝑡ℎ element of �̃�𝑡 , the probability density function for 

motion noise that results from normalizing the values of the 

observed accelerometer power spectrum to be between 0 and 1 

in time window 𝑡, 

𝑑, is the index of the power spectrum corresponding to the 

frequency that most closely matches the heart rate 𝒳𝑡. 

�̃�𝑡
𝑑  is the probability of the event that the corresponding 

frequency is not the heart rate, which for our purposes means 

it is noise. 

For the ECG, in order to create a continuous probability 

distribution out of the discrete observations, we fit Gaussian 

distributions around each of the observations resulting in a 

Gaussian mixture. The probability of a set of observations is 

then computed as follows: 

𝑝(𝑍𝑡|𝒳𝑡) = 𝑔(𝒳𝑡) = ∑ 𝑝(𝑍𝑡
𝑛|𝒳𝑡)

 𝑂𝑡

𝑛=1

 

=  ∑ 𝑁(𝑍𝑡
𝑛 , 𝒳𝑡 , 𝜎𝑧) 𝑂𝑡

𝑛=1                         (11) 

 𝑍𝑡
𝑛 refers to the  nth heart rate observation in window 𝑡,  

𝑂𝑡  is the total number of observations in window 𝑡. 

𝑁(𝑍𝑡
𝑛, 𝒳𝑡 , 𝜎𝑧) denotes a Gaussian distribution with mean equal 

to the heart rate 𝒳𝑡 in window 𝑡, and standard deviation 𝜎𝑧 

reflecting the maximum tolerable deviation between the true 

heart rate and the observation, evaluated at 𝑍𝑡
𝑛. 𝜎𝑧 is 

heuristically set to be 3bpm in this work, to ensure that a given 

particle is reasonably close to an observation to gain weight. 

Making this parameter too high would mean even unrelated 

particles gain weight from a given observation, whereas 

making it too low would too strictly require particles to 

exactly match the observation to gain weight. 

The particle filter is initialized as follows: 

𝑋0
𝑝

=  𝑈(𝐻𝑅𝑚𝑖𝑛 , 𝐻𝑅𝑚𝑎𝑥)                    (12) 

𝑊𝑋0
𝑝 =

1

𝑁𝑝
                                     (13) 

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑋0
𝑝
 is the 𝑝𝑡ℎ  particle sampled from the uniform distribution 

between 𝐻𝑅𝑚𝑖𝑛 and 𝐻𝑅𝑚𝑎𝑥, defined to be 40 and 220 bpm 

respectively for this work, at time 𝑡 = 0, 

𝑊𝑋0
𝑝  is the initial weight of particle 𝑝 at time 𝑡 = 0.  

𝑁𝑝 is the total number of particles, set to be 300 in this work. 

Choosing the number of particles affects a trade-off between 

estimation accuracy and computation time, which we will 

elaborate further on in Section VI F. 



After this initialization, with each succeeding time window, 

the particle weights are updated as shown in (14). Note that 

we use the so-called ‘bootstrap filter’ wherein the state 

transition density is used as the importance distribution, 

making the weights of the particles directly proportional to the 

observation density [5]. We chose to do this to simplify the 
computational load considering the application domain. 

𝑊𝑋𝑡
𝑝 = 𝑝(𝑍𝑡|𝑋𝑡

𝑝
) = {

∑ 𝑁(
 𝑂𝑡
𝑛=1 𝑍𝑡

𝑛 , 𝑋𝑡
𝑝

, 𝜎𝑧), 𝑓𝑜𝑟 𝐸𝐶𝐺

𝜑𝑡
𝑑 , 𝑓𝑜𝑟 𝑃𝑃𝐺

(1 −  �̃�𝑡
𝑑), 𝑓𝑜𝑟 𝐴𝐶𝐶

   

∀𝑝 ∈ (1, 𝑁𝑝)              (14) 

𝑋𝑡
𝑝
 is the 𝑝𝑡ℎ  particle of window  𝑡,  

𝑊𝑋𝑡
𝑝 is the weight of particle 𝑋𝑡

𝑝
, 

𝑁(𝑍𝑡
𝑛, 𝑋𝑡

𝑝
, 𝜎𝑧)  is the value of a Gaussian distribution with 

mean 𝑋𝑡
𝑝
 and standard deviation 𝜎𝑧 evaluated at 𝑍𝑡

𝑛, 

𝜑𝑡
𝑑  is the probability of the event that the frequency 

corresponding to 𝑋𝑡
𝑝
 represents the true heart rate. 

�̃�𝑡
𝑑  is the probability of the event that the frequency 

corresponding to 𝑋𝑡
𝑝
 is not the heart rate, which for our 

purposes means it is noise. 

The weights are all then normalized to be between 0 and 1: 

�̂�𝑋𝑡
𝑝 = 𝑊𝑋𝑡

𝑝 ∑ 𝑊𝑋𝑖
𝑟

𝑁𝑝

𝑟=1
⁄                       (15) 

∀𝑝 ∈ (1, 𝑁𝑝) 

�̂�𝑋𝑡
𝑝 is the weight of the 𝑝𝑡ℎ  particle of window  𝑡 

normalized so the weights form a probability mass function. 

Once the particle weights are calculated the well-known 

sampling importance resampling (SIR) procedure is employed 

to prevent particle degeneracy [5]: 

𝑀𝑡
𝑝

= ∑ �̂�𝑋𝑡
𝑟

𝑝
𝑟=1 , ∀𝑝 ∈ (1, 𝑁𝑝)              (16) 

𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎

|𝑅𝑈  ~ 𝑈(0,1) ≤ 𝑀𝑡
𝑎               (17) 

𝑋′𝑡
𝑝

= 𝑋𝑡
𝑢 , ∀𝑝 ∈ (1, 𝑁𝑝)                     (18) 

𝑀𝑡
𝑝
 is the 𝑝𝑡ℎ element of a cumulative sum vector of the 

normalized particle weights 

𝑋′𝑡
𝑝
 is the updated state of the 𝑝𝑡ℎ  particle of window  𝑡 after 

resampling,  and  

𝑅𝑈 is a randomly selected number from the uniform 

distribution between 0 and 1. 

After this step, the distribution of particles approximates the 

posterior probability distribution of the true heart rate state. To 

get an estimate for the heart rate in the current time window, 

as mentioned before, we use the MAP estimate. Since the 

particle weights are now equalized, we instead look to the 

distribution of particles to capture the most likely estimate.  

We cluster the particles belonging to a similar heart rate 

together, and can say that the largest cluster represents the 
most likely state as it is analogous to taking the highest weight 

particle without the SIR procedure. The clusters and the heart 

rate estimate are thus calculated as follows: 

 

𝐶𝑛 ≜ 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑋′𝑡
𝑚 ||𝑋′𝑡

𝑚  − 𝑋′𝑡
𝑛|  < 𝐶𝑆 

∀𝑚 ∈ (1, 𝑁𝑝), ∀𝑛 ∈ (1, 𝑁𝑝) 

𝐸𝑡 = ∑ 𝐶𝑚𝑎𝑥
𝑖

𝑖 |𝐶𝑚𝑎𝑥|⁄                           (19) 

𝐶𝑛 is the 𝑛𝑡ℎ cluster of particles 

𝐶𝑆 is the maximum spread of a cluster (set to be 3 bpm) 

𝐶𝑚𝑎𝑥
𝑖  refers to the 𝑖𝑡ℎ member of the largest cluster 𝐶𝑚𝑎𝑥, and 

𝐸𝑡 is the estimate for time window 𝑡. For this specific 

application, the estimate is heart rate in bpm. 

The final step in a given iteration of the particle filter is the 
model-based update that reflects the state transition model 

defined earlier in Section III. Essentially, as time progress the 

true heart rate is expected to be dynamic to an extent, and not 

remain constant. Therefore, the particles are updated 

accordingly at the end of each time window to approximate 

this behavior. We assume that the model governing the human 

heart rate changes over time is a normal distribution: 

𝑋𝑡+1
𝑝

~𝑓(𝑋𝑡
𝑝

)~ 𝑁(𝑋′
𝑖
𝑝

, 𝜎𝑥) = 𝑋′
𝑖
𝑝

+ (𝜎𝑥 × 𝑅𝑁~𝑁(0,1))    (20)  

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑅𝑁 is a randomly generated number from the standard normal 

distribution, and  

𝜎𝑥 is the standard deviation capturing the expected change in 

heart rate from one window to the next. With the window step 

size being 2 seconds, 𝜎𝑥 is heuristically set to be 6 bpm. 

The window then shifts to a new section of the signal and 
the particle filter continues to track the heart rate in this 

manner iteratively over successive windows. 

C. Particle Weighting Assumptions 

It can be seen from the formulation for ECG that for a given 

set of observations in one time window, we consider all the 

observations as equally likely. We deemed it more 
generalizable to not rely on any specific features among a set 

of observations to differentiate them. Instead, we assume that 

the true heart rate for the subject would make relatively 

smooth, continuous and gradual changes over time. Leading 

on from this, we also assume that the observed heart rates as a 

result of false positive peaks are more random and 

inconsistent. With these assumptions, our expectation is that 

even though all observed heart rates are considered equally 

likely, the particles will build over the correct heart rate as that 

is observed more consistently over successive time windows. 

D. Fusion Technique 

Since we have formulated the particle filter with only the 

heart rate as the state to be estimated, multiple signal 

modalities and their observation mechanisms can be fused in 

the same framework. The particle weighting for an arbitrary 

number of observation sources, i.e., sensors, is given by: 

𝑊
𝑋𝑡

𝑝
𝑓𝑢𝑠𝑖𝑜𝑛

= ∏ 𝑝(𝑍𝑡
𝑠|𝑋𝑡

𝑝
)𝑆

𝑠=1                       (21) 

𝑊
𝑋𝑡

𝑝
𝑓𝑢𝑠𝑖𝑜𝑛

is the weight assigned to particle 𝑋𝑡
𝑝
 when fusing 

the information from multiple sources of observation 

𝑆 is the total number of observation sources 

𝑍𝑡
𝑠 is the set of observations in time window 𝑡 from source 𝑠 

In essence we assume that since the different sources are 

observing the same target phenomenon, particles 

corresponding to states that are observed with higher weight 

across multiple sources should be rewarded. Conversely, it is 

unlikely that the same false state would be observed with high 

probability across multiple sources. In other words, it would 

be rare for a source of noise to affect sensors with different 
modalities placed in different locations in the same way.  



In this work, for the fusion of ECG, PPG and ACC sensors, 

the particle weighting process is modified as follows: 

𝑊
𝑋𝑡

𝑝
𝑓𝑢𝑠𝑖𝑜𝑛

= 𝑝(𝑍𝑡
𝐸𝐶𝐺|𝑋𝑡

𝑝
) × 𝑝(𝑍𝑡

𝑃𝑃𝐺|𝑋𝑡
𝑝

) × 𝑝(𝑍𝑡
𝐴𝐶𝐶|𝑋𝑡

𝑝
) (22) 

𝑝(𝑍𝑡
𝐸𝐶𝐺|𝑋𝑡

𝑝
) =  ∑ 𝑁(

 𝑂𝑡
𝑛=1 𝑍𝑡

𝑛 , 𝑋𝑡
𝑝

, 𝜎𝑧)               (23) 

 

𝑝(𝑍𝑡
𝑃𝑃𝐺|𝑋𝑡

𝑝
) = 𝜑𝑡

𝑑                            (24) 

 

𝑝(𝑍𝑡
𝐴𝐶𝐶|𝑋𝑡

𝑝
) = (1 − �̃�𝑡

𝑑)                    (25) 

 

Similarly, in the database to be described in more detail in 

Section V, there are two separate PPG sensors in addition to 

the accelerometer in a watch-like device; so the formulation 

above is modified by simply replacing the observations from 

ECG with the observations from the second PPG sensor. 
With this formulation, we can also get an idea of the 

contribution of each sensor or signal modality to the overall 

particle filter estimate in each time window, as shown below: 

𝛽𝑡
𝑠 = ∑ 𝑝(𝑍𝑡

𝑠|𝑋𝑡
𝑝

)𝑋𝑡
𝑝

∈ 𝐶𝑚𝑎𝑥
, ∀𝑠 ∈ 𝑆             (26) 

𝛽𝑡
𝑠 is the contribution of sensor s to the particle filter estimate 

in time window t 

𝑋𝑡
𝑝
 is a particle in the maximum clique  𝐶𝑚𝑎𝑥 for window t 

𝑍𝑡
𝑠 is the set of observations in time window 𝑡 from sensor 𝑠 

𝑆 is the set of all sensors or signal modalities 

 This contribution can then be normalized with respect to all 

the sensors in the system and expressed as a percentage: 

𝛽′𝑡
𝑠 = (𝛽𝑡

𝑠 ∑ 𝛽𝑡
𝑚

𝑚 ∈𝑆⁄ ) × 100                      (27) 

 

Sensors producing random, noisy observations will likely 

have a low contribution to the overall particle filter estimate, 

thus potentially informing dynamic adjustments to the 

contributions of individual sensors based on perceived signal 

quality in real time. Moreover, prior knowledge of the 

increased reliability of one sensor could allow increased 

weightage of observations originating from that sensor. In this 

initial work however, we keep it simple and do not assume 

that any one signal sensor is inherently better than the other. 
The advantage of this overall method of fusion is that it is 

simple and generalizable and can easily be reused for different 

applications as well as an arbitrary number of sensors. 

E. Additional Improvements 

While the particle filter framework is complete with the 

above implementation, we found during the course of our 
experiments with the data that we could make additional 

improvements to the algorithm to further reduce error for this 

specific scenario of estimating HR for a running subject: 

 

Hard Thresholding of ACC 

 We assume that the power of a frequency in the 

accelerometer spectrum is directly proportional to the 

probability of that frequency representing motion noise. 

However, in a few subjects’ data there was a harmonic of the 

movement frequency that was somewhat low in strength but 

still high enough to mislead the particle filter. Therefore, we 
modified the ACC probability function to remove from 

consideration an observation if the power of the corresponding 

frequency was greater than 10% of the maximum power 

observed in the accelerometer for that time window. 

 

Detecting ACC Overlap with Heart Rate Frequency 

 There were a few instances wherein the dominant ACC 

frequency happened to overlap with the true heart rate 

frequency. This would be especially problematic with the hard 

thresholding introduced above. Therefore, we implemented a 
rough frequency margin around the expected heart rate, and if 

the ACC frequency under consideration was within this zone, 

we did not perform the thresholding. This ensured that we did 

not effectively remove from consideration particles 

corresponding to the heart rate simply because the ACC 

frequency was close. The bounds for the margin were set by 

taking the average of the previous 3 heart rate estimates in Hz 

and making a conservative bound of +/- 0.1 Hz. This 

corresponds to an assumption that the heart rate would not 

change by more than 6 bpm in either direction from one time 

window to the next. 

 
Detecting Resting State 

 In all of the data, the subject starts at rest at least for a few 

seconds before beginning any activities. It makes little sense 

to include the accelerometer observations in these states. 

Therefore, we first find the magnitude of acceleration in each 

time window as follows: 

𝜏 =  √(𝑎𝑥(𝑡))2 + (𝑎𝑦(𝑡))2 + (𝑎𝑧(𝑡))2              (28) 

𝑎𝑥(𝑡) is the x-axis acceleration for the given time window 

𝑎𝑦(𝑡) is the y-axis acceleration for the given time window 

𝑎𝑧(𝑡) is the z-axis acceleration for the given time window 

The observations of the accelerometer are taken into 

consideration for the final heart rate estimate only if this 

magnitude was above a certain threshold. The threshold was 

heuristically determined to be 1.04 g by examining the data. 

This parameter has to be heuristically set this way in the 
absence of more sophisticated activity detection algorithms. 

 

Changing Model for Ramping Up of Heart Rate 

 When the subject transitions from a resting state to walking 

or running, there is naturally a sudden increase in heart rate in 

response to the increased workload. There were a few 

instances where the particle filter was slow to catch up simply 

because there happened to be observations corresponding to 

the slower resting state heart rate which turned out to be false 

observations. In these situations, there is an error in heart rate 

for a few time windows because the particle filter already had 
a preponderance of particles around the resting heart rate and 

continued to see observations consistent with that heart rate. 

So in a sense there may be some ‘latency’ for the particle filter 

estimates to catch up to the true heart rate when there is an 

abrupt change in the dynamics. 

 Therefore we wanted to introduce the notion of context-

awareness and have multiple operating modes for the particle 

filter. When we have the accelerometer, we have an 

independent source of information that provides additional 

context for the user’s current state. When the subject is at rest 

or running steadily, we do not expect rapid changes in heart 
rate and so the particle filter model state update (described in 

equation (20)) will be conservative. Conversely, when the 

subject’s activity level increases rapidly, we can accordingly 

adjust the model for state update to temporarily allow for 



greater changes. A similar idea for this adaptive changing of 

model equations based on the current context has been 

previously implemented in other application areas [23].  

For our problem, when the subject was previously at rest (as 

determined by the magnitude threshold) and the ACC 

magnitude from (28) changes by a significant margin from one 
time window to the next, we can assume that increased 

activity has begun. Then for the next few time windows, 

instead of using the state update equation described in (20), we 

use the following: 

𝑋𝑡+1
𝑝

~𝑓(𝑋𝑡
𝑝

)~ 𝑁(𝑋′
𝑖
𝑝

, 𝜎𝑥) = 𝑋′
𝑖
𝑝

+ (𝑅𝑁~𝑁(𝛼, 𝜎𝑥))      (29)  

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑅𝑁 is a randomly generated number from the normal 

distribution with mean 𝛼 and standard deviation 𝜎𝑥 

𝛼 is a positive bias meant to indicate that on average, the heart 

rate is expected to increase. It is set to 6bpm in this work. 

𝜎𝑥 is the standard deviation capturing the change in heart rate 

from one window to the next. It is set to be 10bpm, a larger 

number to reflect the possible rapid changes in heart rate. 

The threshold for required change in acceleration magnitude is 

set to be 0.04 g, and when such a change occurs the alternate 
update equation (29) is used for a period of 5 time windows. 

Note that we do not assume the heart rate definitely must 

increase whenever higher ACC activity is detected, as that is 

placing too much trust in a rudimentary activity detection 

approach. Rather, we simply allow the particles to be more 

spread out than usual for a few time windows when we detect 

a possible sign of volatility in the heart rate. In other words, 

there will be more particles than usual in the higher heart rate 

regions in anticipation of a sudden increase, but there will 

continue to be particles corresponding to the previous steady 

state, lower heart rates, and everything in between. This is one 
of the core advantages of the particle filter, wherein particles 

can track multiple possible states in parallel. With this 

context-aware mode-switching approach, the instances of 

particle filter estimate latency due to sharp heart rate changes 

was reduced. We did not observe this latency effect for longer 

than 3 time windows or 6 seconds across all subjects tested in 

this work, and there was no latency at all for many subjects. 

V. EXPERIMENTAL SETUP 

A. PPG Database 

Motion artifact affected PPG data was taken from the 

database used as part of the 2015 IEEE Signal Processing Cup 

(SP Cup) [13]. This data was recorded at a sampling rate of 

125Hz using a wrist-worn dual PPG sensor (i.e., two 

simultaneous channels of PPG) from 12 subjects. The sensor 

also included a 3-axis accelerometer. Each trial for a subject 

consisted of 30 seconds of resting, followed by four stages of 

activity each for 1 minute, and finally 30 seconds of rest again. 

The four periods of activity consisted of alternating between 

relatively slower (6km/h or 8km/h) and faster (12km/h or 

15km/h) treadmill speeds. ECG was also simultaneously 

recorded from the chest using wet sensors, and this is used to 

obtain the ground truth heart rate. Since the three related 

works mentioned earlier – TROIKA, JOSS and Robust EEMD 

– also all worked on the same dataset, we can directly 

compare the average errors in heart rate estimation.  

At this juncture, we note that the JOSS work resampled the 

data to 25Hz (presumably to ease the computational load) and 

also truncated the data for 6 of the 12 subjects; this is because 

that algorithm is entirely dependent on a clean start for the 

tracking, and half the subjects had signals with some noise to 

varying degrees even at the initial resting stage. Therefore, to 

compare with JOSS we also perform the resampling as well as 

the truncations described in that paper [14]. However, one of 

the key advantages of the particle filter is the increased ability 

to recover from going off-track due to the presence of multiple 

different particles in the state space. So we will also present 

the results from the un-truncated datasets and show that the 

particle filter effectively recovers from these ‘false starts’. 

B. ECG Database with Simulated Noise 

As the dataset described in the previous section had only 

clean ECG, we wanted to find another solution to obtain 

motion artifact affected ECG to test the particle filter on the 

estimation of heart rate from the fusion of simultaneous noisy 

ECG and noisy PPG. To the best of our knowledge there was 

no existing database that provided simultaneously recorded 

ECG and PPG data that were affected by real motion artifacts 

and also had the ground truth heart rate available.  

Therefore, we turned to the MIT-BIH Noise Stress Test 

Database to get real motion artifact noise and add it to the 

existing clean ECG signals from the aforementioned Signal 

Processing Cup database [24, 25]. The MIT-BIH database, 

including the techniques to synthetically introduce realistic 

motion artifact noise, is well respected and has been used in 

several previous works. The owners of the database 

themselves provided a technique to add calibrated amounts of 

motion noise data to any given ECG record from their own 

database such that the desired SNR level is obtained. We have 

simply adapted this approach to inject the motion artifact noise 

into the ECG data from the SP Cup database. 

In order to test the fusion approach, we used the ECG data 

injected with motion artifacts in conjunction with the PPG 

data that is already present in the same database with real 

artifacts due to the running activity. The particle filter 

estimates from these fused observations are compared to the 

heart rate from the unaffected clean ECG data in the database. 

We ensure that the added motion artifact noise for ECG is 

proportionally increased in intensity as and when the running 

speed increases in a given data record. We chose SNR levels 

of 3dB and -3dB respectively for the slower and faster speeds.  

Generating this noisy ECG allows us to illustrate how the 

particle filter can fuse multiple modalities to improve heart 

rate estimates compared to using individual sensors. 

C. Experimental Data Collection 

Even though we believe the methodology of adding noise to 

the ECG described in the previous section is sound, we readily 

concede that the ideal scenario would be to have 

simultaneously collected ECG and PPG data that were both 

affected by real motion artifacts during the course of the data 



collection. Since such a database is lacking in the literature to 

our knowledge, we conducted a limited data collection of our 

own to bolster our experimental conclusions. We used a 

previously developed system called the BioWatch [26] that 

collected one channel of PPG signals from the wrist and also 

included an accelerometer. For the ECG, we used a custom 

platform based on the TI ADS1299, an analog front end for 

bio-potential signals. One channel of ECG was recorded from 

the chest using adhesive gel electrodes in a Lead II 

configuration to be used as the ground truth. A second channel 

was recorded using a dry electrode that was secured to the 

forearm just above the BioWatch using medical tape. This was 

meant to provide an ECG signal that was more susceptible to 

motion artifacts. Both devices sampled data at a rate of 125Hz 

and transmitted data to a PC wirelessly using Bluetooth. Data 

was collected from 5 subjects running on a treadmill after 

informed consent and protocol approval by the IRB at Texas 

A&M University (IRB2016-0193D). The experimental 

protocol was designed to be similar to that of the database 

described earlier: 30 seconds of rest, followed by four 1-

minute periods alternating between walking and running, and 

30 seconds of rest at the end. Examples of the signals from our 

system after pre-processing (0.5 to 15Hz bandpass for PPG 

and 0.5 to 30Hz bandpass for ECG), for both standing and 

running scenarios are shown in Figures 4 and 5 respectively. 

 
Figure 4 – ECG, PPG and Accelerometer signals with subject at rest 

 
Figure 5 – ECG, PPG and Accelerometer signals with subject running 

VI. RESULTS 

A. Heart Rate Estimation Accuracy – PPG Database 

Table I shows the average heart rate estimation error in bpm 

for each of the 12 subjects in the SP Cup database as well as 

the overall mean and standard deviation of error. We can see 

that the average error is < 2bpm for most subjects. Also shown 

for comparison are the corresponding results from the JOSS, 

TROIKA and Robust EEMD works. Note that Table I shows 

the results for the truncated data, and results are presented for 

our proposed work as well as the Robust EEMD at both 25Hz 

and 125Hz sampling rate. The average errors are more or less 

similar for the different methods, with the ‘Robust EEMD’ 
marginally better, whereas the proposed method at 125Hz 

shows the lowest standard deviation of error. The results for 

the un-truncated data are in Table II, and we can see that the 

error from the particle filter estimates are hardly affected 

despite the noisy initial periods that prohibited the use of the 

JOSS algorithm. 

In Figure 6 below is shown the Bland-Altman plot for the 
particle filter estimates’ agreement with the ground truth at the 

full 125Hz sampling rate.  

 
Figure 6 – Bland-Altman plot for particle filter agreement with ground truth 

The limits of agreement (LOA) were defined following 
standard practice as [µ - 1.96σ, µ + 1.96σ], where µ is the 

average difference and σ is the standard deviation, 2.35 bpm in 

this case. The LOA were [-4.75, 4.45] bpm, and 95% of the 

difference values were within this confidence interval. 

B. Heart Rate Estimation Accuracy – ECG Database and 

Fusion of ECG + PPG 

Table III shows the estimation error when using the particle 

filter to estimate heart rate from the noisy ECG simulated as 

described in section V B. For comparison, we show the 

average estimation error for heart rates as computed by our 

implementation of the well-respected Pan-Tompkins 

algorithm, which was designed specifically to estimate heart 

rate from ECG signals [27]. Of course, the Pan-Tompkins 

algorithm was not designed for this intensity of motion 

artifacts, but we included it to show the extent of noisiness in 

the ECG which causes significant issues for an established 

algorithm. We can see how the particle filter also works well 
with this different modality with low error rates. In addition, 

also shown in the table are the results of fusion of this noisy 

ECG with the two noisy PPG channels and the accelerometer. 

We can see how the fusion almost always improves the 

accuracy, showing how the particle filter was able to 

effectively reward the consistent true observations across the 

different sources and make the best of the sensors available. 

The particle filter tracking over time for Subject 1 is also 

shown in Figure 7 for illustrative purposes. In this figure, 

‘Findpeaks estimate’ refers to the heart rate estimate based 

solely on the CWT-based peak observation method on ECG, 

and it can be seen how it tends to overestimate as soon as the 
motion starts, whereas the particle filter continues to keep 

track even as the subject’s heart rate changes substantially 

during periods of motion activity. 

 
Figure 7 – Heart rate estimation performance on a single subject



 
TABLE I.  MEAN ABSOLUTE HEART RATE ESTIMATION ERROR (IN BPM) FOR THE VARIOUS ALGORITHMS ON THE TRUNCATED DATASETS 

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean ± SD 

JOSS [14] (25Hz) 1.33 1.75 1.47 1.48 0.69 1.32 0.71 0.56 0.49 3.81 0.78 1.04 1.28 ± 2.61 

TROIKA [13] (25Hz) 3.05 3.31 1.49 2.03 1.46 2.35 1.76 1.43 1.28 5.08 1.8 3.02 2.34 ± 2.86 

Robust EEMD [15] (25Hz) 1.7 0.84 0.56 1.15 0.77 1.06 0.63 0.53 0.52 2.56 1.05 0.91 1.02 ± 1.79 

Particle Filter (25Hz)(Our method) 2.21 1.71 1.11 1.71 1.1 1.72 1.11 1.29 1.12 3.5 1.68 1.57 1.65 ± 2.07 

Robust EEMD [15] (125Hz) 1.83 0.85 0.63 1.21 0.65 1.03 0.7 0.5 0.47 2.83 1.14 0.9 1.06 ± 2.02 

Particle Filter (125Hz) (Our method) 1.91 1.3 1.08 1.63 1.06 1.64 1.09 1.25 1.1 3.41 1.65 1.59 1.56 ± 1.73 

TABLE II.  MEAN ABSOLUTE HEART RATE ESTIMATION ERROR (IN BPM) FOR THE VARIOUS ALGORITHMS ON THE UN-TRUNCATED DATASETS 

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean ± SD 

TROIKA [13] (25Hz) 3.05 3.49 1.49 2.03 1.46 2.35 1.76 1.42 1.28 5.73 1.79 3.02 2.41 ± 3.45 

Robust EEMD [15] (25Hz) 1.64 0.81 0.57 1.44 0.77 1.06 0.63 0.47 0.52 2.94 1.05 0.91 1.07 ± 2.17 

Particle Filter (25Hz) (Our method) 2.21 1.55 1.41 1.65 1.1 1.72 1.11 1.24 1.12 3.63 1.65 1.57 1.66 ± 2.17 

TROIKA [13] (125Hz) 2.29 2.19 2 2.15 2.01 2.76 1.67 1.93 1.86 4.7 1.72 2.84 2.34 ± 0.82 

Particle Filter (125Hz) (Our method) 1.91 1.46 1.39 1.61 1.06 1.64 1.09 1.25 1.1 3.58 1.73 1.59 1.62 ± 2.01 

TABLE III.  MEAN ABSOLUTE HEART RATE ESTIMATION ERROR (IN BPM) FOR THE ECG AND FUSION (ECG+PPG) PARTICLE FILTERS, AND PAN-TOMPKINS 

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean ± SD 

ECG Particle Filter (Our method) 1.49 1.83 2.31 1.2 1.05 2.42 1.91 1.53 1.44 1.13 1.04 1.34 1.56 ± 2.02 

ECG+PPG Particle Filter (Our method) 1.26 1.17 0.85 1.11 0.84 1.03 0.87 0.93 0.87 2.24 1.08 1.16 1.12 ± 1.32 

Pan-Tompkins[27] 26.1 17.5 19.9 23.5 23.3 24.6 22.7 18.6 18.2 33.9 25.2 24.4 23.2 ± 20.02 
 

C. Heart Rate Estimation  – Experimental Data Collection 

In Table IV we also present the results of heart rate error 

from the fusion particle filter on the dataset collected 

ourselves, which guarantees real simultaneous ECG and PPG 

affected by motion artifacts. This shows that the particle filter 

performance continues to be effective even in this scenario. 

Again, for comparison is shown the error rates when using the 

Pan-Tompkins algorithm on the noisy ECG. Note that for 

Subject 4 the Pan-Tompkins algorithm’s adaptive parameters 

completely went off track early on in the data record due to 
excessive noise, and did not recover estimates thereafter. 

TABLE IV.  MEAN ABSOLUTE ESTIMATION ERROR FOR FUSION PARTICLE 

FILTER AND PAN-TOMPKINS ON OUR EXPERIMENTAL DATASET 

Subject # 
Error for Particle Filter 

(bpm) 

Error for Pan-Tompkins 

[27] (bpm) 

1 1.55 13.73 

2 1.63 19.57 

3 1.25 11.46 

4 1.12 N/A 

5 1.47 10.4 

Mean ± SD 1.4 ± 1.55 13.79 ± 17.35 

D. Fusion Contribution Analysis 

In order to further illustrate how the fusion of modalities 

works, we take a closer look at the performance on Subject 10 

from the database. As can be seen in Tables I and II, 

estimation performance on this subject is noticeably worse, for 

our algorithm as well as those of other previous works. This 
suggests that the PPG signals themselves were relatively more 

unreliable for this subject. However, we see that in Table III 

when using the noisy ECG the performance is much better; so 

we can assume in this instance that the ECG is a more reliable 

signal at least for certain segments of the data.  

Figure 8 shows the relative contribution of each modality – 

ECG and the two PPG sensors – over time for Subject 10, 

computed as described in equations (26) and (27). In this 

figure, we plot only a subset of the time windows, spanning 

about 1 minute. Moreover, overlaid in red is the particle filter 

heart rate estimation error for each of those windows. The 

error rises to almost 20 beats per minute around window 10, 

but soon after this the contribution of the ECG to the overall 

estimate increases. It is clear that the particle filter fusion 

rewards the more consistent observations from the ECG, and 

correspondingly the overall error drops sharply. We see a 

similar trend on a smaller scale around time window 40, where 

the error is relatively high until the ECG contributions become 

higher and the overall estimation performance becomes better. 
In future work, we aim to implement techniques that can 

recognize these trends of quality of observations and explicitly 

re-weight individual modalities in the fusion formulation. 

 
Figure 8 – Relative contribution of ECG and PPG modalities to overall fusion 

particle filter estimate over time for Subject #10 

E. Discussion of Estimation Performance 

The estimation errors are low, but in order to provide 

further context, we have compared the results to those of 

recent state-of-the-art works on heart rate estimation in the 

presence of motion artifacts. The estimation error levels are 

comparable to the most recent related works in the area. We 

note that the other related works were specifically developed 
and optimized for the objective of heart rate monitoring using 

PPG signals with several heuristics; for instance, TROIKA 

and JOSS use heuristics such as a rigid artificial bound on the 

variability of reported heart rate estimates from one window to 

the next, thresholds for what constitutes a big enough peak in 

the PPG frequency spectrum, and polynomial curve fitting 

based on previous heart rate estimates to predict the next 

estimate when the tracking does not return a satisfactory 

result. Similarly, the ‘Robust EEMD’ work, in addition to 
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using EEMD and an adaptive filter, has an arbitrary ‘absolute 

criterion’ to designate a ‘reliable peak’ in the PPG spectrum 

for heart rate and thresholds for what constitutes a strong 

enough peak in the PPG spectrum. The algorithm also deletes 

or removes segments of the signal from consideration if the 

corresponding accelerometer magnitude is too high. 
Moreover, with the EEMD approach the user is required to 

manually detect in a training phase which of the several 

intrinsic mode functions has the pertinent heart rate frequency 

information, and this also changes with sampling rate. It is 

therefore notable that the relatively more generalized particle 

filter framework introduced here with minimal heuristics or 

rule-based steps, no requirement for clean start, no deletion of 

data, which can work with other signal modalities as shown 

with ECG, and can also be applied to other physiological 

signal estimation problems, exhibits comparable performance 

to contemporary works that were purpose-built for the heart 

rate estimation problem on PPG signals. Moreover, as will be 
noted in the next section, this comparable estimation 

performance is achieved with an algorithm that is far more 

computationally efficient compared to these works.   

F. Computation Time 

In this work, due to the formulation with the heart rate state, 
we mitigated the computational load by tracking only one state 

dimension with just 300 particles. Indeed, the contemporary 

works we can compare this to are significantly more 

computationally intensive. The authors of the ‘Robust EEMD’ 

work [15] note that the TROIKA algorithm takes about 17 

minutes and 30 seconds on average to complete heart rate 

estimation on a single subject at a sampling rate of 125Hz; 

whereas the Robust EEMD algorithm itself takes about 55 

seconds per subject. Similarly, at a sampling rate of 25Hz, the 

JOSS algorithm takes about 25s on average per subject and the 

corresponding Robust EEMD algorithm takes about 16s. 

When we measured the execution time of our particle filter 
implementation on MATLAB, the average time per subject 

was only about 1.04 seconds for the 25Hz sampling rate, and 

1.18 seconds for the 125Hz sampling rate. It must be noted 

that the execution times reported above for the related works 

were gathered from a work that used MATLAB 2013a, 

whereas we use MATLAB 2017a. However, this alone cannot 

account for the highly significant difference in computation 

time. Furthermore, the machine used to extract these results 

has similar specifications to the one used to report the results 

for the related works [15]. In particular, we used a Windows 

10 64-bit PC with an Intel i7-6700 processor at 2.60 GHz and 
16GB of RAM. 

We also analyzed the trade-off between the accuracy and 

computational cost as a function of the number of particles. 

Figure 9 shows a comparison of the error rates and 

computation time per minute of data for our particle filter as 

the number of particles is varied for a single subject. As a 

reminder, we used N = 300 particles in our work. While the 

estimation performance does improve as we increase the 

number of particles, as expected, it is likely that the higher 

values of N would make it impractical to compute these 

estimates in real-time, especially on wearable sensors. On 

such systems, one can easily adjust the number of particles 
subject to the availability of computational resources. 

  
Figure 9 – Changes in average estimation error and computation time per 

minute of data on a single subject as the number of particles is changed 

G. Limitations 

We did not test on patients with heart rate variability or 

other cardiac conditions; this will likely require some tuning 

of the parameters, but this would be applicable to other 

contemporary signal processing techniques as well. Testing on 

subjects with abnormal cardiac activity will be left for future 

work. We also note that precise computational benchmarking 

is not the primary goal of this work; the previous section was 

only meant to provide a rough guide indicating a definite 

computational advantage over contemporary related works in 

the area. Deployment of the algorithm on a system is out of 

the scope of this work; however we submit that the design of 

such a system is eminently feasible, especially if we leverage 

cloud computing resources or other techniques to circumvent 

the computational constraints on typical wearable systems. 

VII. CONCLUSION 

In this work, we have introduced a generalized particle filter 

framework that can be used to track heart rate and proved the 

feasibility of the technique on real world PPG and ECG 

signals affected by motion artifacts. Furthermore, we showed 

how the particle filter can be used to successfully improve 

estimation accuracy by combining information from multiple 

modalities simultaneously measuring the same target 

phenomenon or even the noise associated with the target. This 

will prove useful in the context of the upcoming IoT 

ecosystem where there are multiple wearable and 

environmental sensors continuously monitoring the 
physiological status of the user.  
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