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ABSTRACT  

This paper presents an extension to our previously developed fusion framework [10] involving a depth camera and an 
inertial sensor in order to improve its view invariance aspect for real-time human action recognition applications. A 
computationally efficient view estimation based on skeleton joints is considered in order to select the most relevant 
depth training data when recognizing test samples. Two collaborative representation classifiers, one for depth features 
and one for inertial features, are appropriately weighted to generate a decision making probability. The experimental 
results applied to a multi-view human action dataset show that this weighted extension improves the recognition 
performance by about 5% over equally weighted fusion deployed in our previous fusion framework.  

Keywords: Fusion of depth and inertial data, view invariant real-time human action recognition, weighted fusion 
framework for human action recognition 
 

1. INTRODUCTION  
Human action recognition based on depth cameras, in particular Microsoft Kinect, has been extensively studied in the 
literature for various applications including human-computer interactions, gaming and rehabilitation, e.g. [1-4]. A depth 
camera provides depth images or a 3D structure of the human body in the scene. Due to differences in performing 
actions from subject to subject and variations in environmental conditions, there are still challenges in achieving robust 
real-time human action recognition.  

With the advancement of Micro-Electro-Mechanical Systems (MEMS), wearable inertial sensors such as accelerometers 
and gyroscopes are increasingly being utilized for action recognition, e.g. [5-7]. This sensor technology provides an 
alternative approach toward performing action recognition by utilizing 3D acceleration and rotation signals associated 
with an action. Considering the complementary aspect of the 3D action data provided by these two types of sensors, i.e. 
depth camera and inertial sensor, our research team has previously developed a number of real-time action recognition 
solutions by utilizing both of these sensors at the same time [8-13]. As a result of fusing the data from these two 
differing sensor modalities, it has been shown that recognition rates are improved compared to situations when each 
sensor is used individually.  

In this paper, an extension is made to our previous fusion framework to further cope with variations in depth images that 
are caused by the way a subject faces a depth camera. Similar to our previous works, a depth camera and an inertial 
sensor are used simultaneously irrespective of how the depth camera is placed in the scene as long as subjects appear in 
the camera’s field of view. In the literature when a depth camera is used for human action recognition, one sees that 
actions are often performed in a frontal view setting and there has been limited study of the effect of changing the 
subject orientation with respect to the camera on the recognition outcome. Thus, the focus of this paper is on studying 
view variations within the context of our real-time fusion framework. 

In the extension developed here, the classifiers are weighted not equally in order to gain more robustness when training 
data incorporate samples for subjects facing the camera at different viewing angles. To retain the computational 
efficiency or real-time aspect of our previous fusion framework, instead of using computationally intensive view-
invariant features (e.g., [14]), a computationally simple view angle estimation is used here. The developed approach 
requires obtaining training data from different views. The view estimation allows using only the training samples of a 
specific view when examining test samples. The contributions made in this paper are two-fold: (1) the utilization of a 
computationally efficient view estimation based on the skeleton joint positions, and (2) a weighted fusion to assign 
different weights to the two classifiers that are associated with depth features and inertial features. A block diagram of 
the developed weighted fusion framework is shown in Fig. 1. 
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The remainder of the paper is organized as follows. Section 2 describes the two differing modality sensors used in our 
real-time fusion framework. Section 3 covers a computationally efficient and simple method to estimate different views 
by using skeleton joint positions. The weighted fusion framework is then presented in Section 4. The experimental 
results and discussion are stated in Section 5. Finally, the paper is concluded in Section 6. 

 

 
Figure 1. Weighted fusion framework. 

2. DEPTH CAMERA AND INERTIAL SENSOR 
The Microsoft Kinect v2 sensor (see Fig. 2(a)) comprises a color camera and an infrared depth camera. This sensor has a 
depth image resolution of 512 × 424 pixels. The frame rate is approximately 30 frames per second. The Kinect Windows 
SDK 2.0 software package [15] allows tracking 25 human skeleton joints as illustrated in Fig. 2(c). 

The wearable inertial sensor used in this work is a small size (1”×1.5”) wireless inertial sensor (see Fig. 2(b)) described 
in [16]. This sensor captures 3-axis acceleration and 3-axis angular velocity which are transmitted wirelessly via a 
Bluetooth link to a laptop/PC. The sampling rate of the inertial sensor is 50Hz and its measuring range is ±8g for 
acceleration and ±1000 degrees/second for rotation. Although it is possible to use more than one sensor for actions that 
involve both arm and leg movements, only one inertial sensor is utilized in this work as the actions examined are all 
hand movements. The wearable inertial sensor provides view invariant data because it generates data based on its local 
coordinates. Once the sensor is placed on the body, the acceleration and rotation signals remain more or less the same 
irrespective of how the subject faces the depth camera. 

 

 
Figure 2. (a) Microsoft Kinect v2 camera. (b) Wearable inertial sensor. (c) 3D skeleton with 25 tracked skeleton joints. 
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Viewl: front (0 °) View 2: left 45° View 3: left 90° View 4: right 45° View 5: right 90°

 

 

3. COMPUTATIONALLY EFFICIENT VIEW ESTIMATION 
As shown in Fig. 3, in practice, when performing an action, a subject’s orientation facing the depth camera may be 
different. This figure illustrates five generic views: frontal view, left and right half-profile views, left and right full-
profile views. If the subject’s orientation with respect to the camera can be estimated, then one can simply use the 
training depth data of that view to perform action recognition. In order to maintain the real-time operation of our 
previously developed fusion framework [10], it is critical for such an estimation to be computationally efficient since the 
real-time operation of the entire recognition pipeline needs to be maintained. This is achieved by using the skeleton joint 
positions that are provided by the Kinect SDK 2.0. The SDK provides the 3D coordinates ( , ,x y z ) of a joint, where the 
z  value indicates the distance between the joint and the Kinect depth camera. 

The positions of shoulders are different for different orientations of the subject with respect to the camera and are more 
stable (less jitter) than other hand joints in depth images. Let lsz  denote the distance between the left shoulder ( ls ) and 
the camera, scz  the distance between the shoulder center ( sc ) and the camera, and rsz  the distance between the right 
shoulder ( rs ) and the camera. It is easy to see that lsz , scz  and rsz  being  close to each other indicate the subject is 
facing the camera. The condition ls rsz z<  indicates the subject is facing at a right angle towards the camera (e.g., right 
45° in Fig. 4), and the condition ls rsz z>  indicates the subject is facing at a left angle towards the camera (e.g., left 45° 
in Fig. 3). 

Fig. 4 shows the plots of the shoulder joints ( ls , sc and rs ) positions for the first 10 skeleton frames of an action (catch) 
performed by a subject at different angles or orientations with respect to the depth camera. The reason the first 10 
skeleton frames of an action is considered is that the subject is normally in a rest position for the first 1-2 seconds 
(approximately 30-60 skeleton frames) before performing an action. As noted from this figure, lsz  and rsz  are very close 
(see Fig. 4(a)) to scz when the subject stands facing straight towards the camera. The subject turning to the left or right is 
simply determined by comparing lsz  and rsz . Moreover, the positions ls , sc and rs  at the right/left 45° angle are quite 
close to those at the right/left 90° angle. As a result, here the views for 45° and 90° are combined and treated as side 
views compared to frontal views covering the view range of +/- 45°. Also, it is noted that the distance between ls  and 
sc  ( | - |ls scz z ) and the distance between rs  and sc  ( | - |rs scz z ) are greater than 50mm in side views. The pseudocode 
shown in Fig. 5 is used to determine the view or a subject’s orientation facing the camera in a computationally efficient 
manner. 
 

 
Figure 3. Five different standing positions of a subject with respect to the Kinect depth camera. 
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(a) View 1 (front)                                                          (b) View 2 (left 45°) 

         
 (c) View 3 (left 90°)                                                       (d) View 4 (right 45°) 

 
  (e) View 5 (right 90°)                  

Figure 4. Positions of three shoulder joints for five different subject orientations with respect to the depth camera. 
 

     IF | - | 50mmls scz z ≤  and | - | 50mmrs scz z ≤  

                  View = front; 

     ELSEIF ls rsz z>  

                  View = left side views (i.e., left 45° and 90°) 

     ELSE 

                  View = right side views (i.e., right 45° and 90°) 

     END 

 
Figure 5. Pseudocode for view estimation. 
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4. WEIGHTED FUSION FRAMEWORK 
For action recognition, features are extracted from depth images and inertial sensor signals. To extract features from 
depth images, the depth motion maps (DMMs) discussed in [1] are used due to their computational efficiency. Each 3D 
depth image in a depth sequence is first projected onto three orthogonal Cartesian planes to generate three 2D projected 
maps corresponding to the front, side, and top views, denoted by fmap , smap , and tmap , respectively. For a depth 
sequence with N  frames, the DMMs are obtained as follows: 

                                                                
1

1
{ , , } { , , } { , , }

1

N
i i

f s t f s t f s t
i

DMM map map
−

+

=

= −∑ ,                                                               (1) 

where i  represents frame index. Here, the foreground (non-zero region) of each DMM is extracted and used as depth 
features. Since foreground DMMs of different video sequences may have different sizes, a bi-cubic interpolation is 
applied to resize all such DMMs to a fixed size and thus to reduce the intra-class variability. An example of DMMs of 
the action catch corresponding to three different views is exhibited in Fig. 6. 

For the inertial sensor, the same feature extraction method reported in [8] is used where each acceleration and orientation 
signal sequence is partitioned into M temporally separated windows. Four statistical features (mean, variance, standard 
deviation and root mean square) are computed for each direction per temporal window. All the features from the 
temporal windows are then concatenated to form a single inertial feature vector. 

 

 
Figure 6. DMMs of action catch corresponding to three different views. 

 

After extracting the depth and inertial features, the fusion method developed in [10] is applied. Specifically, the 
collaborative representation classifier (CRC) [17] is utilized due to its computational efficiency and high classification 
performance. For a test action y , its depth features denoted by ( )DF y  and its inertial features denoted by ( )IF y  are used 
separately as inputs to two CRCs. Each classifier generates a probability output by employing a Gaussian mass function 
on the residual errors as described in [10]. The logarithmic opinion pool (LOGP) [18] is then employed to estimate this 
global membership function: 

                                                                    ( ) ( )
1

log
Q

q q
q

P y p yω α ω
=

= ∑ ,                                                                         (2) 

where {1, 2 , ..., }Cω ∈  indicates the class label corresponding to C action classes, Q  indicates the number of 

classifiers (here = 2Q ), ( )qp yω  denotes the probability output of the  thq  classifier, and qα  represents appropriate 

weights assigned to the classifiers. In our previous fusion framework [10], equal weights (i.e., 1q Qα = ) were 
considered.  

However, it is deemed more effective to assign unequal weights to different sensor features depending on their 
importance in the decision making process. A larger weight indicates a greater importance or role played by one of the 
sensors. Therefore, by assigning unequal weights, one gains more flexibility in the fusion framework as far as view 
invariance is concerned. For the weighted fusion, the non-negativity and sum-to-one constraints are imposed. As a result, 
the fused probability output can be rewritten as:  
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                                             ( ) ( ) ( )1 2log ( ) (1 ) ( )D IP y p F y p F yω β ω β ω= + − ,                                                             (3)  

where ( 0)β β ≥  and 1-β  are the weights assigned to the two CRCs using depth ( )DF y  and inertial ( )IF y  features, 
respectively. The final class label ω∗  is then determined as follows: 

                                                                ( )
1,...,

arg max
C

P y
ω

ω ω∗

=
= .                                                                                 (4) 

5. EXPERIMENTAL RESULTS AND DISCUSSION 
This section covers the results of our experimentations based on the weighted fusion framework and a comparison with 
the original fusion framework in [10]. First, a multi-view action dataset was collected by using a Kinect depth camera 
and an inertial sensor simultaneously. The data synchronization from the two sensors was achieved by using the method 
described in [9]. The inertial sensor was placed on the right wrist of subjects. The dataset included the following six 
actions: catch, draw circle, draw tick, draw triangle, knock and throw. These six actions were chosen from the UTD-
MHAD dataset [9] due to their similarity to make the action recognition problem more challenging. Five subjects were 
asked to perform each action with five different subject orientations or views as shown in Fig. 3. For each view, a 
subject repeated an action 6 times (i.e., 6 trials). Therefore, in total 900 action samples were generated. This dataset is 
made available for public use at this link: http://www.utdallas.edu/~kehtar/UTD-MHAD.html.  

For each subject, half of the samples (or 3 samples) per action from all fives views were used for training, resulting in 
450 training samples in total from the five subjects. The remaining 450 samples were used for testing. For the 450 
testing samples, they were separated by views in order to examine the view invariance of the developed weighted fusion 
framework. Each set of 90 samples from a view were tested and the recognition rate was found for each view. 

The sizes of the DMMs were determined by the average sizes of the DMMs associated with the training samples as 
noted in [1]. As per the approach in [10], the number of temporal windows M  for the inertial feature extraction was set 
to 6. The weight β  was determined by carrying out a 5-fold cross validation. The weight β was varied from 0 to 1 in 
0.1 steps. As an example, the outcome corresponding to the 90 testing samples associated with view 1 (i.e., test set for 
view 1) is reported here to see the effect of different values of β . Figure 7 shows the recognition outcome when using 
different weights. As can be seen from this figure, the cross validation revealed =0.3β  generated the highest recognition 
outcome. Naturally, this cross-validation approach needs to be repeated when considering a different training set. The 
weight obtained in this manner indicated that it was more effective to attach a higher weight to the inertial sensor 
features towards gaining a more robust view invariance. 

 

 
Figure 7. Recognition rate (%) vs. weight β . 

 
The original fusion with equal weights, denoted by D+I, the original fusion with view estimation denoted by D+I+VE, 
and the weighted fusion with view estimation, denoted by Weighted D+I+VE, were compared by using the leave-one-
subject-out testing approach. For each view, the recognition rates for the five subjects were averaged and the results are 
reported in Table 1. This table shows that the view estimation for selecting the training samples of a specific view, that is 
D+I+VE, improved the recognition performance for each view as compared with the original fusion framework which 
used all the training samples from all the views. This is because the view estimation allows the training samples of the 
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view that is more similar to a test sample to be used for the probabilistic CRC decision making. Moreover, when 
utilizing the weighted fusion, the recognition performance was further improved. The Weighted D+I+VE framework 
achieved the highest recognition rates in every view leading to an improvement of 5.6% on average over the original 
fusion framework. For a more detailed examination of the recognition rates, the confusion matrices of the weighted 
fusion are displayed in Fig. 8 for the five different views. As indicated in this figure, the greatest amount of confusion 
occurred when the depth and inertial features were not discriminatory enough to distinguish similar actions with subtle 
differences.  

 

           

(a) View 1                                                                       (b) View 2 

                                                              

                                                              (c)  View 3                                                                 (d) View 4 

 

(e) View 5 

Figure 8. Confusion matrices corresponding to six actions for five views utilizing                                                                       
the weighted fusion framework with view estimation. 

 

Table 1. Comparison of recognition rates (%) with original fusion framework (D=depth, I=inertial, VE=view estimation). 

View1 View2 View3 View4 View5 Average 
D+I 87.2 86.1 76.7 79.4 84.4 82.8 

D+I+VE 92.2 87.8 81.7 83.9 85.6 86.2 
Weighted 
D+I+VE 93.3 90.0 85.0 86.7 87.2 88.4 
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Here it is worth stating that although our developed weighted fusion framework to improve view invariance requires 
training samples from different views, it is important to note that such training samples can be easily obtained in 
applications such as gaming, rehabilitation, etc.  

Finally, the computational efficiency of the proposed fusion framework is presented. The program was written in 
MATLAB. It runs in real-time on a laptop with a 2.6 GHz Intel Core i7 CPU. The processing time of the major 
components of the program is listed in Table 2, indicating a real-time throughput of 30 frames per second. 

 
Table 2. Processing times (mean ± std) associated with the components of our method. 

System components Average processing time (ms) 

View estimation 0.05 ± 0.01 / action 

DMM computation 6.4 ± 3.1 / depth frame 

Inertial feature extraction 1.4 ± 0.5 / action 

Fusion classification 3.2 ± 1.2 / action 

 

6. CONCLUSION 
This paper has presented an extension of our previously developed real-time fusion framework in [10] to gain more 
robust view invariance for human action recognition applications.  A depth camera and an inertial sensor have been used 
simultaneously in this framework. This extension includes a computationally efficient view estimation and a weighted 
fusion of probabilities for the two collaborative representation classifiers in the fusion framework. The results obtained 
indicate that this extension increases the recognition tolerance to different orientation angles that subjects may be facing 
the depth camera.  
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