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Data-Driven Synchronization for Internet-of-Things Systems

TERRELL R. BENNETT and NICHOLAS GANS, University of Texas at Dallas
ROOZBEH JAFARI, Texas A&M University

The Internet of Things (IoT) is fueled by the growth of sensors, actuators, and services that collect and
process raw sensor data. Wearable and environmental sensors will be a major component of the IoT and
provide context about people and activities that are occurring. It is imperative that sensors in the IoT are
synchronized, which increases the usefulness and value of the sensor data and allows data from multiple
sources to be combined and compared. Due to the heterogeneous nature of sensors (e.g., synchronization
protocols, communication channels, etc.), synchronization can be difficult. In this article, we present novel
techniques for synchronizing data from multi-sensor environments based on the events and interactions
measured by the sensors. We present methods to determine which interactions can likely be used for syn-
chronization and methods to improve synchronization by removing erroneous synchronization points. We
validate our technique through experiments with wearable and environmental sensors in a laboratory envi-
ronment. Experiments resulted in median drift error reduction from 66% to 98% for sensors synchronized
through physical interactions.
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1. INTRODUCTION

The number of sensors and connected devices in the environment is increasing rapidly,
as the Internet of Things (IoT) becomes a reality. We may soon be dealing with trillions
of sensors and actuators globally [Lee et al. 2014]. As this multitude of sensors produce
data, understanding the relationship between data from multiple sensors and systems
is critical to infer the state of the system and to derive valuable information. Sensors
generally produce data based on a regular timing interval. Fusing sensor data and
other signal processing tasks requires that sensors have an accurate sense of timing
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between them. Properly aligning sensor data in time from multiple sensors requires
synchronization.

Many synchronization techniques are based on wireless communication between
sensors. Each sensor in the system uses a radio to transmit and receive synchronization
messages, and these messages are used to synchronize the clocks. Synchronization of
this type requires that all sensors in the system follow the same communication and
synchronization protocols to synchronize the entire system. Additionally, long-running,
low-power sensors may be power constrained, and wireless communication may not be
feasible. These sensors may store data locally or only transmit wirelessly when there
is a sufficient power source. Using wireless communication with these sensors could
lead to shorter battery life and reduce the usefulness of the sensor. Therefore, real-
time synchronization is not an option in systems with these sensors. Other systems
depend on an accurate internal real-time clock (RTC) or high-quality oscillators to
keep sensors synchronized without wireless communication. In low-power embedded
systems, adding an additional chip for an RTC or a higher accuracy oscillator may not
be a feasible design decision due to the added cost and power.

There may be instances when a single event triggers a notable measurement in
multiple sensors. For example, a person opening a door could be detected by the twisting
motion on a wrist-worn wearable as well as an environmental sensor on the door. We
call this concept of shared measurements a “coupling.” If multiple sensors record or
measure the same event, then their data streams are coupled at this global time. This
coupling could be physical, as it was in the door/person example, or cyber when data or
messages are sent directly between sensors such as a neighbor discovery message. If the
local times of the coupled sensors are not the same, then there is some drift (i.e., error)
in one (or both) of the sensor clocks, and this error needs to be corrected. One essential
step in correction is realigning or shifting the data in time (i.e., synchronizing) to ensure
the two data streams are aligned when the shared measurements are acquired and the
coupling occurs.

In datasets that have been collected and stored without proper synchronization, some
of the valuable information in the data can be lost, such as the ability to determine
correlation and possible causation between multiple measurements. Being able to syn-
chronize these datasets offline can greatly increase the value and usefulness of the
stored data. In our prior work, we presented an offline method to align and synchro-
nize data [Bennett et al. 2015a]. This technique is applied to data from heterogeneous
sensor networks to reduce synchronization errors between sensors. In simple systems,
it can be straightforward to determine which sensors had couplings with others. As
systems become more complex, determining the correct coupling from many possibili-
ties becomes more difficult. For example, if there is only one person in an apartment
and a pill bottle is opened, then we can be certain that the person in the environment
opened the bottle. If there are five people in the apartment, then more information is
necessary to determine which of the five opened the bottle. Additionally, detecting and
ignoring erroneous couplings can help to further improve the synchronization in the
system. An erroneous coupling could occur due to choosing the wrong person in the
previous example or choosing the correct person but selecting the wrong segment of
the relevant data for the coupling.

In this work, we present methods to determine proper couplings in ambiguous sce-
narios, with an experimental focus on body-worn and environmental inertial mea-
surement unit (IMU) based sensors that include a 3-axis accelerometer and a 3-axis
gyroscope. Additionally, we present methods to determine couplings that are erroneous
and might decrease the accuracy of the synchronization technique. The primary contri-
bution of this article is our novel method of synchronization for multiple sensors based
on physical or cyber couplings between the sensor data streams. This method allows
for synchronization of previously collected data streams where synchronization had
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not and would not have previously been possible. We present three novel approaches
that compose this method. First is synchronization between two sensors, Second is a
novel graph model to represent couplings in a multi-sensor system and, third, methods
to remove (i.e., prune) couplings that are incorrect or ambiguous from the graph. These
three techniques combine to improve sensor synchronization.

We present related works on synchronization in Section 2. This is followed by back-
ground on sensor timing and our methods for data-driven synchronization in Section 3.
Section 4 covers algorithm updates and techniques for resolving ambiguous couplings
as well as outlier rejection. Finally, we present our experiments and analysis in Sec-
tion 5 and conclusions in Section 6.

2. RELATED WORKS

Due to the importance of synchronizing sensor data, there has been a lot of research
in synchronization of wireless sensor networks (WSN). Three prevalent techniques are
the timing-sync protocol for sensor networks (TPSN) [Ganeriwal et al. 2003], reference
broadcast synchronization (RBS) [Elson et al. 2002], and the flooding time synchroniza-
tion protocol (FTSP) [Maróti et al. 2004]. TPSN builds a network hierarchy that sends
synchronization messages one level at a time. RBS uses a reference broadcast and
communication between local receiver nodes to synchronize. FTSP uses media access
control (MAC) layer timestamping of a synchronization message and linear regression
to reduce the effects of non-deterministic transmit errors in WSNs. These techniques
have been used as the basis for other synchronization techniques that focus on energy
efficiency, resilience, or message reduction [Guidoni et al. 2010; Huang and Wu 2010;
Jain and Sharma 2011; lae Noh and Serpedin 2007; Yildirim and Kantarci 2014b].

Many other WSN synchronization concepts have been presented, based on a vari-
ety of ideas and goals. Su and Akyildiz present a technique designed to work well
with a changing network topology by electing new master and leader nodes to diffuse
synchronization data [Su and Akyildiz 2005]. There are techniques based on gradient
synchronization to ensure higher levels of synchronization between neighboring sensor
nodes [Pinho et al. 2012; Sommer and Wattenhofer 2009; Yildirim and Kantarci 2014a].
Other researchers focus on techniques that not only synchronize the network locally but
also synchronize with external clocks (e.g., coordinated universal time (UTC)) [Swain
and Hansdah 2011; Yildirim and Kantarci 2014a; Yildirim and Kantarci 2014b]. Intel-
ligent reduction in synchronization messages and related overhead, while keeping a
high synchronization accuracy, is also explored [Lamonaca et al. 2014; Qian et al. 2010].
All of the methods discussed thus far require either one-way or two-way communication
between the sensor nodes in the network. Additionally, many of the techniques require
a consistently connected network topology for the synchronization. Our technique does
not require wireless communication between sensor nodes, but it can take advantage
of any communication to assist in the synchronization of data.

There are some synchronization techniques that do not require sensor communi-
cation. These techniques use the sensor data to assist in the synchronization of the
system. An offline data-driven approach is used to synchronize the data from 100 seis-
mic sensors [Lukac et al. 2009]. These sensors suffered delay due to common faults
in environmental systems. This approach relied on regularly occurring events and a
model of the event propagation to allow correction of the time information. This tech-
nique is limited in that it requires a known regularly occurring seismic event, and the
model is based on specific characteristics of the sensor deployment (i.e., sensor locations
and distances).

Environmental signals are also used to assist in the synchronization of a WSN
[Harashima et al. 2012]. Based on the noise-induced synchronization theory, the envi-
ronmental signals being measured are used as an additive noise that synchronizes the
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sensors. Because it is expected that the sensors in a limited range will see the same
environmental signals, these signals can be used to aid the synchronization.

Our proposed technique allows for timing synchronization with no communication
between the sensors and no synchronization overhead at the sensor. Therefore, het-
erogeneous low-power sensors can be synchronized in a system based on the events
measured by the sensors. Additionally, the proposed technique does not require a fixed
sensor topology.

3. DATA-DRIVEN SYNCHRONIZATION

We will provide background on some of the causes of clock inaccuracies. This will be
followed by the description of the synchronization algorithms.

3.1. Clock Oscillators

Ideally, all sensor nodes would have access to global system for mobile communication
(GSM), global positioning system (GPS), or another high-accuracy common clock. Be-
cause of power concerns and operating conditions, this is not always possible. Without a
perfect absolute/global clock for each sensor, synchronization techniques are necessary.

The synchronization and timing issues in sensor nodes are due, in part, to the accu-
racy of hardware oscillators. The stability (i.e., accuracy) of an oscillator can be affected
by many factors, including the type of oscillator, the operating temperature, and fre-
quency shifts (i.e., jitter). Oscillator stability is typically measured in parts per million
(ppm), which is calculated as

ppm = �t
T

× 1,000,000, (1)

where �t is the difference between the actual time passed and the measured time
passed (i.e., delay or drift) and T is the total time passed. The accuracy of the oscillators
used in sensors typically vary from ±20ppm for a crystal oscillator to ±5,000ppm or
higher for digitally controlled oscillators, voltage controlled oscillators, and relaxation
oscillators. Oscillators with higher accuracy generally cost more and consume more
power [Broman et al. 2013]. To save on the costs and reduce power concerns, sensors
may not be designed with the most accurate clock sources. While these tradeoffs enable
more long-term, low-cost sensors, they also increase the need for sensor synchronization
techniques.

As an example of typical clock drift, Figure 1 shows data from an experiment designed
to measure delays between multiple clock sources on a single custom sensor used for our
experiments. The sensor has a software-generated real-time clock. The RTC (i.e., local
clock) is based on a 32MHz crystal oscillator with ±25ppm stability, which generates
a small drift; but the update of this RTC is scheduled by the Contiki operating system
(OS) running on the chip. This scheduling delays the RTC update and the restart
of the counter and causes errors in the clock. The plot shows the difference between
timestamps for the RTC versus the UTC clock that the sensor received from the server.

Considering the UTC time from the server as the most accurate in the system,
Figure 1 shows that the relative drift changes as time passes. There is a monotonically
increasing drift between sensor clocks based on how long they have been running. In
this figure, the drift for the local clock increases at varying rates. This variation is
due to the scheduling of the clock update in the OS. Because it is a non-preemptive
update, the scheduling of this update can vary. We use the information from this figure
to determine drift estimates and build the delay models generated by the expected
stability (i.e., ppm) for the sensor clock.

The total difference in the time measurements is greater than 36min (∼2,200s) for the
local clock after about 10.25h of operation. The effects of this inaccuracy could be ampli-
fied in a system that has multiple sensors with low-accuracy clocks and long runtimes.
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Fig. 1. Clock source differences for over ∼10.25h.

Additionally, sensors with high-accuracy clocks can still have frequency fluctuation due
the factors mentioned, which further increases the need for synchronization.

One possible solution to the system-based clock error is to design the system with
the most accurate clock (i.e., atomic clock) or provide access to GPS or some other
reference. However, in a heterogeneous IoT system, these design decisions are not
likely to be made by a single party and are likely to differ for all sensors. Furthermore,
radio interference and environmental considerations may make GPS synchronization
difficult or impossible for some sensors. Another solution could be to timestamp the
data when it is received at some central processing node or server. This assumes little
to no delay in the reception of all data and that there is no additional delay in the
system that handles the timestamps. These assumptions also cannot be guaranteed in
a heterogeneous system.

3.2. Synchronization Formulation

In the IoT, there will be a network of sensors providing data. Let the set of all sensors
in a network be denoted as

S = {s1, s2, . . . , sn}, n ∈ N (2)

Each of the n sensors in the network generates a data stream consisting of observations
that include a data value (i.e., measurement) and a corresponding timestamp. This
timestamp could be from a local clock source/oscillator, from an off-chip source (e.g.,
GPS), or inferred in cases where the sensor outputs at a specific data rate but does not
timestamp the data. These observations for the sensor data are described as

on
i = {xn

i , tn
i }, i ∈ N. (3)

where xn
i and tn

i are the data value and timestamp at the ith index from sensor sn,
respectively.

When multiple sensors in S experience a physical interaction, shared event mea-
surement, or wireless communication, we can leverage the fact that these couplings
occurred to these sensors at the same global clock time, irrespective of the sensor times-
tamps. We can use these events to synchronize the timing of the sensor data streams
by searching the data streams for evidence of couplings that are observed by multiple
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sensors. For example, two microphones in a room would both have a response in their
data when a person starts to speak. Based on this idea, we define alignment points.

Definition 3.1 (Alignment Point). An alignment point is a representation of a physical
or cyber event in a sensor data stream that can be accurately distinguished and directly
related to the same event in the data stream of another sensor (i.e., coupling).

For example, a sensor measuring the movement of a light switch and a light sensor
would have measurements in their respective data streams related to the events of
turning on and turning off the lights. For motion sensors, interactions between people
and objects can be determined. When sensors are physically coupled through proximity
of location, we will search for events in their data streams that can be used as an
alignment point. We formally describe alignment between two sensors as

ok
i ≡ ol

j where k �= l. (4)

In an ideal system, the times of the observations would be the same. When they are
not the same, a drift exists. We determine the times related to the data points selected
to generate a set of alignment points denoted as

A = {(
ok

i , ol
j

) |∃i, k, j, l sucht that ok
i ≡ ol

j

}
. (5)

Each alignment point in A includes the relevant observations from a pair of sensors.
If more than two sensors measure the same event, then each coupling will be listed
separately in the set based on sensor pairs. Once alignment points are found in the
sensor data streams, the sensor times can be adjusted to correct drift and other timing
errors. We previously presented methods to determine alignment points [Bennett et al.
2015a] and briefly review the template- and entropy-based methods for finding physical
coupling-based alignment points below.

3.3. Template-Based Alignment Point Selection

If there is a pre-existing synchronized template that records the interaction between
two sensors when measuring an event (i.e., a two-signal template), then this two-
signal template can be used to find alignment points in the dual-sensor data streams
and synchronize the data. Consider a person wearing a sensor on their leg doing a
stand-to-sit action onto a chair with a pressure mat. In ideal conditions, the data from
the wearable and the pressure mat could be recorded to generate a well-synchronized
two-signal template.

We use the two-signal template to find alignment points in other datasets. This
is done in two parts. Using data from the first sensor’s template (e.g., the stand-to-
sit movement), we apply the dynamic time warping (DTW) algorithm [Berndt and
Clifford 1994] to the data from the wearable sensor to find all matching instances
(i.e., observations) in the sensor data. DTW is used because it is not sensitive to speed
variations. With wearable sensors, people may perform actions at different speeds, and
this allows a general template to match in these scenarios.

Once the observations are found in the first sensor’s data stream, the corresponding
instances from the second sensor data stream must be found to form the alignment
points. The algorithm used for matching the first sensor’s template to the second sensor
is covered in Section 3.5.

3.4. Entropy-Based Alignment Point Selection

Entropy (i.e., Shannon entropy) is a measurement of the amount of information in a
signal [Cover and Thomas 1991] and is calculated as

H (Xn) = −
∑

p
(
xn

i

)
log2 p

(
xn

i

)
, (6)
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Fig. 2. Entropy calculations for various windows in a data stream.

where p(xn
i ) is the probability of a given xn

i in the signal’s distribution based on a
histogram. Using a sliding window across a data stream, the entropy is calculated for
each window. The highest entropy values indicate segments of the data stream with the
most information or most “interesting” distributions. For example, if a person with a
wrist-worn wearable with a motion sensor picks up a coffee mug with a motion sensor,
then there will be corresponding high entropy measurements in the data streams of
the coffee mug and the wearable sensor.

Figure 2 shows an example of entropy calculations for a data stream using a seven-
bin histogram. The horizontal dashed lines show the histogram bin levels. The boxes
show three different windows of the data stream. The histogram bins are based on
the maximum and minimum values of the entire signal. Note that using histograms
reduces the entropy measurements for noisy signals. Noise is inherently high entropy,
and the histogram bins dampen this by capturing the high-frequency noise in a single
histogram bin and therefore reducing its effect. This assumes that the noise satisfies

Anoise × N < Asignal, (7)

where Anoise and Asignal are the peak amplitude of the noise and signal, respectively,
and N is the number of histogram bins.

Because of this, we see that segments of the signal with a larger range of values will
have a higher entropy (e.g., 2.27 bits for the first segment). Segments of the signal with
no movement will have a lower entropy (e.g., 0 bits for the third segment). Based on
this concept, the entropy peaks are used to select data points in the first sensor’s data
stream that will be used for matching with a shared event in the second sensor’s data
stream.

3.5. Mutual Information Matching Algorithm

Once the observation, ok
i , on the first data stream is selected through the template

method or the entropy method, the corresponding observation, ol
j , on the second data

stream must be determined. There are numerous signal matching algorithms that can
be used, including cross correlation and earth mover’s distance [Ling and Okada 2007].
Through comparison of different approaches, we selected an information theory concept
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Fig. 3. Matching of template determined by finding the maximum mutual information value.

called mutual information to match the signals. Mutual information is defined as

I(Xk; Xl) =
∑

p
(
xk

i , xl
j

)
log2

p
(
xk

i , xl
j

)
p
(
xk

i

)
p
(
xl

j

) , (8)

where p(xk
i ) and p(xl

j) are the probability distributions (estimated by histograms) of
signal xk

i and signal xl
j , respectively, and p(xk

i , xl
j) is the joint probability for signal xk

i

and signal xl
j .

In the template-based alignment point selection, the mutual information of the two-
signal template is calculated against the data segment in the first signal found by
DTW and a sliding window from the second sensor’s data stream. The peak of mutual
information is used to determine the matching data segment on the second data stream.
In the entropy-based alignment point selection, the mutual information is calculated
between the first data stream segment, ok

i , and a sliding window on the second data
stream. In both cases, the search range on the second sensor data stream is determined
as

range = (
tk
i − tl

0

) × ppml

1,000,000
, (9)

where tk
l is the time of the observation in the first data stream, tl

0 is the start time
of second sensor, and ppml is the stability of the second sensor. Using the time of the
observation from the first sensor, the window = tk

l ± range. Longer runtimes gener-
ate larger search windows because the estimated drift grows over time. As with the
template-based method, the peak of the mutual information calculation is selected as
the corresponding observation, ol

j , for the second data stream as shown in Figure 3.
The two observations together define the alignment point (ok

i , ol
j).

A limitation of this method is that the alignment points may have some error due to
inaccuracies in the mutual information-based pattern matching algorithm. To account
for this possible error, we assign an error estimate, ε, to each alignment point based on
the expected quality and type of the alignment point. For example, wireless messages
shared between sensors (i.e., cyber couplings) have alignment errors measured in tens
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Fig. 4. Graph model for multi-sensor system.

of milliseconds, while alignments found through physical coupling can have drift errors
measured in seconds.

4. MULTI-SENSOR MAPPING

We presented a graph-based model of a multi-sensor system in our prior work [Bennett
et al. 2015b]. Figure 4 shows an example of the graph model. In this graph, the vertices
represent observations from the sensors, the horizontal edges represent the alignments
between two observations, and the vertical edges represent the drift between observa-
tions on each sensor due to clock instability. The edges have associated weights based
on expected drift (di, j for vertical edges) or expected alignment error (εi, j for horizon-
tal edges). This model is used, along with a shortest path algorithm (e.g., Dijkstra’s
algorithm [Dijkstra 1959]), to estimate the best subset of possible alignment points to
reduce drift in the system.

As we continue to test with more sensors and more possible interactions, there may be
a possible alignment point with ambiguity around the sensors involved. For example,
if there are three people in a conference room and all of them get up and leave at
approximately the same time with only one person opening the door, then there are
three possible couplings to consider when determining which person opened the door.
In this section, we discuss the techniques used to determine the most likely couplings
in ambiguous scenarios and methods to further improve the synchronization results.

The alignment point selection and matching approaches discussed in Section 3 are
the basis for our synchronization algorithm. Consider humans with wrist-worn sensors
encountering environmental sensors (e.g., sensors on doors, cups, etc.); we need to
determine the alignment points between candidate observation pairs. If we consider
every coupling that occurs on an environmental sensor to be equally likely to have
been caused by all people in the environment with wearable sensors, then we will have
ambiguity and a graph with many couplings that do not actually exist. Starting with
this graph of all possible couplings, we must “prune” the graph and remove ambiguous
and erroneous couplings. This includes finding the best alignments for known sensor
couplings and resolving ambiguity in couplings with uncertainty. With these factors
in mind, we use the delay model, the match quality, the concept of logical outliers,
and timing error-based outliers to determine the most likely alignment points for
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Fig. 5. Example of using the delay model to determine which sensors might have coupling.

synchronization of the stored data and to prune the graph of all possible couplings into
an ideal graph of the most likely and least ambiguous couplings as such as the one
shown in Figure 4.

4.1. Delay Model Mapping

Based on the stability measure (ppm) for a clock and the amount of time that the sensor
has been operating, there is an expected drift in the sensor timing. The estimation of
this drift for a particular observation, on

i , is found by rearranging Equation (1) and is
defined as

dn
i = �t = ppmn × T n

i

1,000,000
, (10)

where ppmn is the stability for sensor sn and T n
i is how long the sensor has been

operating until the observation in question. We are using the delay model based on the
possible drift between sensors to determine which sensors are possible candidates for
an alignment point with the sensor in question. Based on the expected drift in a sensor,
we determine the interval, tn

start to tn
stop, of possible times on the sensor, sn, as

tn
start ≤ tn

i ≤ tn
stop, (11)

where tn
start = tn

1 − dn
1 and tn

stop = tn
end + dn

end. It should be noted that tn
start will be equal to

tn
1 because there is assumed to be no drift when the sensor first starts because no time

has passed (i.e., T n
1 = 0).

Figure 5 illustrates an example of how the drift is used to determine sensors that
might have a coupling. In the figure, the data labeled s1 represent the data from the
sensor that will be synchronized. In this example, s2, s3, and s4 have ideal clocks. Using
the entropy-based alignment point selection method described in Section 3.4, the event
(i.e., observation o1

k) in the s1 data can be identified. The drift, d1
k , is based on the delay

model and gives a range on either side of the measured event that could correspond to
when the measured event actually occurred. Based on this range, we can see that s4
does not have a measured event within the range in question. Therefore, we remove
this sensor from consideration when looking for couplings with s1. The figure also shows
that there are events measured on s2 and s3 that are possibly due to the same event
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that is observed on s1. We must determine which of these events is the same as the
event measured on s1.

4.2. Logical Outliers and Match Quality

There are other considerations that should be taken into account before assuming the
sensors with data can be used for coupling. We use the idea of logical outliers to help
further reduce ambiguity and reduce the risk of misinterpreting couplings.

Definition 4.1 (Logical Outlier). A logical outlier is a coupling/alignment point that,
in conjunction with other known information about the system, creates a contradiction
based on time, data, or physical proximity.

Logical outliers can be determined based on several different criteria. The first con-
sideration for logical outliers is physical proximity. If information from the system
shows that two sensors are in different locations, then there cannot be a physical
coupling between these sensors. For example, if a person with a wrist-worn sensor is
known to be in a car, then his or her data cannot be coupled with sensors in an of-
fice. This information could be determined through received signal strength indicator
(RSSI) signals, radio frequency identification (RFID), or a camera that watches the en-
vironment. When considering the physical location for a coupling, whether a sensor is
in the location where the coupling occurred, rn

i , can be considered binary and is defined
as

rn
i =

{
1, iff sn in location at tn

i ± dn
i

0, otherwise . (12)

Another consideration for logical outliers is based on time. The timestamps on the
sensors must increase monotonically. If a proposed coupling creates a scenario in which
two or more segments on a sensor occur out of chronological order, then a time-based
logical outlier has occurred. This is possible if many possible couplings occur within
a short time frame and as the search windows increase in size due to drift. These
both increase the number of options within a given drift range, which can increase the
number of possible errors based on the matching algorithm. All of the observations on
a single sensor due to the matching algorithm must remain in chronological order,

∀on
j , on

i ; tn
j < tn

i where i > j. (13)

When multiple sensors (i.e., wearable sensors) could have caused a coupling with a
single sensor (i.e., environmental sensor), the most likely coupling must be determined
to create the alignment point. As described in Section 3.5, we use a matching algorithm
based on mutual information to determine alignment points. The maximum peak of the
mutual information calculations is used to determine the most likely match between the
two segments of sensor data under test. Mutual information increases as information
about one random variable tells us more about another random variable. If we expect
that two segments are similar, then knowledge about the first segment can give us
information about the second segment. The two segments that tell the most about
each other are likely to be the most similar and therefore have the highest mutual
information.

These peaks represent the quality of a given match between data segments on a pair
of sensors (e.g., an environmental sensor versus a wearable sensor). The magnitude of
these values can vary based on the data being compared. This means that the mutual
information values of correct matches can have a large range. Therefore, we compare
the peak mutual information values from each sensor pair to the peak value from the
other sensor pairs to find out which wearable sensor was most likely a part of a specific
coupling. The maximum peak mutual information value of the possible couplings is
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chosen as the most likely coupling. Given the set of mutual information peaks, Mci , for
a coupling, ci, the most likely sensor is determined to be the sensor with the mutual
information peak value equal to the maximum mutual information peak. We denote
this sensor as sci , where

sci = sn iff sn mutual information peak = max(Mci). (14)

Because the maximum peak value of mutual information may be very close to other
peak values, we also provide a parameter, λ, which allows for a further reduction in
the amount of ambiguity in the matches. If other peaks are within λ% of the maximum
value, then the peak can be considered ambiguous. It is important to note that the
ultimate goal of the algorithms is to synchronize the system and not necessarily to
find a match for every coupling. If some possible alignment points are ambiguous,
then removing them from consideration may be more beneficial than matching them
incorrectly.

4.3. Timing-Based Outlier Detection

If all of the ambiguous couplings have been properly resolved, then we would expect
that the alignment points determined are useful for synchronization of the system.
Unfortunately, as was mentioned in Section 3, there can be some error in the matching
algorithms. These errors can occur due to large movement speed differences between
the test data and the templates when using DTW or due to an erroneous data segment
being selected in the mutual information matching. Because an incorrect match can
greatly reduce the quality of the overall synchronization, it is important to determine
which matches are likely to be incorrect and remove them from the synchronization
calculations. Because we are looking for outliers, we make two assumptions. The first
assumption is that we have at least three alignment points between two sensors,
because any two points define a linear model and there would be no possible outliers
with two or fewer points. Our second assumption is that our matching algorithms find
the correct matches more than 50% of the time. Again, if a majority of the matches
found are erroneous, finding outliers will not provide much benefit.

If there are sufficient couplings between two sensors, then we look for outliers in
the alignment points. As each alignment point is found, we get the timing information
from the observations. Based on the times of the matching segments, we calculate the
following parameter for each alignment point:

δk,l
z = tk

i − tl
j, z ∈ N (15)

where δk,l
z is the timing adjustment/correction for each alignment point between sensors

sk and sl. Because drift increases based on time, the time correction is not enough to
determine outliers. Without any synchronization applied, this number would increase
monotonically for a clock with poor stability versus an ideal clock. Considering our
delay model, we recognize that the drift is approximately linear over time. We also
note that the sensors are providing data at fixed rate. Therefore, we normalize the drift
correction as

τ k,l
z = δk,l

z

i
, (16)

where τ k,l
z is the error per sample, and i is the sample number of the observation.

Essentially, τ k,l
z represents the slope of the delay in the system based on the alignment

points. Considering the need to remove possible matching errors (outliers), and the
relative linearity of the delay over time, a linear model can be used to detect and reject
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outlier alignment points. By considering the per-sample error of the alignment points
from the beginning of the dataset, alignment points that do not fit the current model
should be rejected as outliers.

The modified z-score is used for timing-based outlier detection [Iglewicz and Hoaglin
1993] and is defined as

Hk,l
z = 0.6745(τ k,l

z − τ̃ k,l)
MAD

(17)

with MAD denoting the median absolute difference and τ̃ k,l representing the median.
As is recommended by Iglewicz and Hoaglin, we use a threshold η = 3.5 and remove
alignment points as outliers when the absolute value of the modified z-score is higher
than this threshold. The modified z-score was designed to find outliers in datasets that
have too few samples for other outlier detection methods.

4.4. Alignment Point Discovery and Pruning Algorithm

Algorithm 1 shows how all of these tools come together to determine the final set of
alignment points that make up the graph that is used for synchronization. We start
with the set of observations from an environmental sensor, sj , selected by the alignment
point selection algorithm described in Section 3.4, which we call � j, and the sets of
all observations from each of the m wearable sensors, W1 . . . Wm. We then eliminate
possible couplings based on the delay model and physical location as described in
Sections 4.1 and 4.2, respectively (Algorithm 1: line 4). Possible matches are determined
as presented in Section 3.5 (Algorithm 1: line 5), which are filtered based on the match
quality as presented in 4.2 (Algorithm 1: lines 9 and 10). These are further reduced
by the timing-based outliers discussed in Section 4.3 and the timing logical outliers
covered in 4.2 to produce the final set of couplings (Algorithm 1: lines 16 and 17).

ALGORITHM 1: Alignment Point Discovery and Pruning

1: for all o j
i ∈ � j do

2: for all W do
3: Wk ← W
4: if ( tk

start ≤ t j
i ≤ tk

end AND rk
i = 1) then // sensor has data at time and in lab

5: mik ← Match Algorithm (o j
i , Wk) // look for match on wearable k

6: Mci + mik // add mutual information to set
7: end
8: end
9: sci ← s(max(Mci )) // select the largest value from set
10: if (sci − λsci still max) then // compare max after removing λ

11: Ak ← (o j
i , ok

l ) // add alignment point to the set
12: end
13: for all Ak do
14: Calculate Hk, j

z // calculate the modified z-score
15: for all (o j

i , ok
l ) do

16: if (tk
j <tk

i where i> j OR Hk, j
z > η ) // check for timing based outliers

17: remove (o j
i,o

k
l ) // remove timing based outliers

18: end
19: end
20: end
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Table I. Sensor Types and Capabilities

Fixed Mobile
Sensor Type Wearable Environmental Environmental

Collects IMU Data (40Hz) Yes No Yes
Broadcasts Beacons (1Hz) Yes Yes No

Receives Beacons (i.e., RSSI) Yes No Yes
Data Collection/Storage MicroSD None MicroSD

Battery/Wall Plug Battery Wall Plug Battery

5. EXPERIMENTS AND PERFORMANCE EVALUATION

Our experiments take place in a lab environment. Four lab members put on a wrist-
worn sensor on their dominant hand when they first arrive in the lab on a given day,
and they do not remove it until the end of the day. The lab members carry out their
normal daily tasks (e.g., going to class, typing, having meetings, etc.). In addition, there
are other sensors throughout the lab. The data collected by these sensors are used for
our experiments. The next sections will explain the sensors and how the algorithms
discussed work with the data.

5.1. Sensors

The primary sensor used in our experiments is a custom IMU-based sensor. Each
sensor has a Texas Instruments CC2538 microprocessor, which handles processing of
incoming data, and an InvenSense MPU9150 IMU that measures 3-axis accelerometer
and 3-axis gyroscope data. The CC2538 allows the sensors to send and receive beacons
over the Zigbee protocol. These beacons allow sensors to calculate an RSSI that we use
to approximate location [Kajioka et al. 2014].

The sensors provide a local software-based RTC that is used to timestamp obser-
vations made by the sensor (i.e., IMU measurements, RSSI beacons received, UTC
messages). These data include IMU readings from the MPU9150, RSSI readings from
other sensors, and UTC, which is received from a server every 20s. As each of these
observations are made by the sensor, the data are timestamped with the local clock
and stored locally on a micro SD card.

Though all of the sensors are based on the same hardware, they are running different
firmware based on their purpose in the system. Table I covers the capabilities for the
sensors that are set up as wearable sensors, fixed environmental sensors, and mobile
environmental sensors. Wearable sensors are affixed to the body of one of the people in
the lab and provide information about their activities. The fixed environmental sensors
are attached to walls, shelves, and other locations in the lab. These sensors primarily
serve as consistent beacons within the lab environment. The mobile environmental
sensors are attached to movable items in the lab (e.g., water bottles, chairs, erasers).
These sensors can provide context based on the interactions people in the lab have with
them.

5.2. Experimental Setup

There are a few other components to the experimental setup beyond the sensors. As
mentioned, there is a server that sends out timing information. The server also com-
mands each sensor to send out beacons sequentially to avoid collisions.

Finally, the experiments are recorded by a ceiling mounted camera with a fish-eye
lens. This allows the camera to capture a 360×180 degree view of the lab space. The
camera data are used to validate interactions observed in the data. Figure 6 shows an
example of the lab setup used for these experiments. The camera is centrally located
to capture the entire room. The fixed environmental sensors are around the room to
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Fig. 6. Example of the lab setup for the experiments.

provide the beacons, and the mobile environmental sensors and people are free to move
around the rest of the room.

Typically, there are four people with wearable sensors, five fixed environmental sen-
sors, and two mobile environmental sensors during the experiments. Data are collected
from the time the first person arrives in the lab until the last person leaves the lab.
The daily data collections generally last between 9 and 10h. All data are collected on
microSD cards and processed offline using MATLAB.

5.3. Analysis

In this section, we will present examples from our data collections of how the algorithms
are applied and discuss the effects of the updates on overall synchronization. In this
dynamic system, sensors enter and exit the environment at different times as the
subjects with wearable sensors leave or enter the lab based on their independent
schedules (e.g., going to class, going to lunch, etc.). Sensors also start and stop at
different times due to the subjects starting and ending their days at different times.
The need to recharge or exchange batteries for the mobile environmental and wearable
sensors also causes variation and gaps in the collection of sensor data.

Delay model mapping is our first step in selecting possible alignment points and
reducing ambiguity. The delay model is estimated based on an expected clock accuracy
and knowledge of approximately how long the clock has been running as described in
Equation (1). The local clock on the sensor has an estimated stability from 20,000ppm
up to 60,000ppm and can vary in this range over time. This error is due in part
to the non-preemptive handling of RTC updates on the sensor. Understanding this
error and how long a sensor has been operating, we can eliminate some sensors as
possible alignment points. Figure 7 shows an example of this. The red dashed line is
the acceleration magnitude from mobile environmental sensor 2, which is attached to
an eraser. The blue signal is from a wearable sensor, wrist-sensor 2. The vertical green
lines show the worst-case expected error based on the delay model. The wrist sensor
in question does not have any movement data during the time period in question.
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Fig. 7. Example of using the delay model to determine which sensors might have coupling.

Table II. Peak Mutual Information Values for Wrist-Worn Sensors versus a Movable Environmental Sensor

Wrist Sensor 1 Wrist Sensor 2 Wrist Sensor 3 Wrist Sensor 4
MI Peak MI Peak MI Peak MI Peak

Coupling 1 0.902 0.857 0.559 0.695
Coupling 2 0.812 0.536 0.533 0.593
Coupling 3 0.670 0.611 0.591 0.599
Coupling 4 0.677 0.768 0.739 0.793

In fact, the sensor was powered off during this time and has no data at all. Based
on this information, we are able to eliminate (i.e., prune) this wearable sensor from
consideration as the sensor that coupled with the environmental sensor. This reduces
the amount of possible couplings that must be investigated.

As was discussed in Section 4.2, the match quality is another factor used to remove
ambiguity in possible alignment points. The match quality is a comparison of the
peak mutual information values for all sensors that may be involved with a coupling.
Our movable environmental sensors are static the majority of the time, so we expect
the IMU data to have a low magnitude usually. Because these sensors are affixed to
inanimate objects, if there is motion on the sensor, we expect that it occurred due to one
of the subjects with a wearable sensor. To determine the coupling, we must determine
which of the subjects most likely moved the object.

Table II lists four possible interactions/couplings for a moveable environmental sen-
sor. Each coupling could have occurred based on one of the wrist-worn sensors in the
environment. The peak mutual information value is calculated for each possible cou-
pling between the environmental sensor and one of the wearable sensors. Each possible
coupling is considered independently. In this situation, we can see that the first three
couplings likely occurred between the person wearing wrist sensor 1 and the environ-
mental sensor. Coupling 4 appears to have been caused by the person wearing wrist
sensor 4. When looking at the match quality measure (i.e., MI peak), we consider how
large the maximum mutual information value is relative to the others. There is less
certainty about couplings with mutual information values from all wearable sensors
that are not distinct. Therefore, we only consider couplings that have mutual informa-
tion peaks based on λ = 5. This means the maximum peaks have a margin of at least
5% over other mutual information peaks.
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Fig. 8. Example of a logical outlier based on RSSI measurements.

Table III. Sample Error, Modified Z-Score and Outlier Information

τ
k,l
z −0.607 × 10−3 −0.602 × 10−3 −0.589 × 10−3 0.615 × 10−3

Hk,l
z 0.883 0.466 0.466 86.09

Outlier? No No No Yes

Logical outliers can be determined in a number of ways. Physical proximity relative
to another sensor can be used to determine if a coupling is logically possible. When
considering the peak mutual information scores, we may find false positives. When
sensors are in the lab, they receive beacons from other sensors and store this RSSI
data. Each time a beacon is received, this is timestamped on the sensor with the
local clock. When the sensors are outside of the lab, they do not receive RSSI data.
Figure 8 shows IMU data from a mobile environmental sensor as well as rn

i , defined in
Equation (11), which is generated from RSSI data from a wearable sensor. It can be seen
that the wearable sensor was not in the lab space between 15:00 and 16:00. Therefore,
the couplings that occur during this time cannot be attributed to this wearable sensor.
Regardless of any other information (e.g., mutual information) that may suggest that
these sensors are coupled, the RSSI information eliminates this option as a logical
outlier. This information is used to remove all possible couplings between these two
sensors during this time period from consideration for our graph.

It is worth noting that the available information may leave some ambiguity as to
which wearable sensor coupled with the environmental sensor. As was previously
stated, the ultimate goal is not to determine every possible alignment point but
to reduce ambiguity where possible and synchronize the system with the available
information.

In Section 4.3, we explained that detecting timing-based outliers requires multiple
couplings between two sensors. It is also assumed that the algorithm finds alignment
points accurately. If the alignment points all have a variety of error, then timing-based
outliers may not be found or quality alignments may be considered outliers. The first
row of Table III shows the error-per-sample values calculated for four couplings between
two sensors. The second row shows the modified z-score as calculated in Equation (16).
The final row labels the outliers. Because the modified z-score for the sample error in
the fourth column is greater than the threshold, η = 3.5, it is considered an outlier.
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Table IV. Maximum and Average Drift for Synchronized Data for Day 1

Day 1 ∼9.6h collection time. 3 people with wearable sensors
Wrist 1 Wrist 2 Wrist 3

Original Data Drift Median 366s 303s 53s
Max 694s 1269s 232s

Data Driven Synchronization Median 5s 54s 18s
Max 41s 490s 197s

This information does not say that the coupling did not occur but that the correction
made does not fit the model and therefore may be a detriment to synchronization.

5.4. Performance

As mentioned, the sensors have a local RTC. This clock is synchronized to the UTC
when the sensor is first powered on. After the initial synchronization, the local clock
on the sensor runs independently. We use the local clock as our default sensor timing.
Our gold standard for synchronization calculations will be based on the UTC clock, as
this is the most accurate clock in the system.

Because the environmental sensors are always in the lab, these sensors always
had access to the UTC updates from the server when operating. For this reason, we
synchronize the environmental sensors through cyber couplings with the UTC. The
environmental sensors are then used to synchronize the wearable sensors through
physical couplings.

We show the results for the algorithms run on two different days of data. The data
collections are generally between 9 and 10h in length. The number of people with
wearables sensors varied between 3 and 4. We measure the median and maximum
drift for the data. The median drift is calculated based on all samples of IMU data on
each sensor

In the following tables, we present the original data drift versus the data driven syn-
chronization algorithm for the wearable for each day. We will present further analysis
on the scenarios that generated the synchronization results.

The data collection on Day 1 was over a period of 9.5h. The results for this data
collection are shown in Table IV. There was a total of 41 couplings between the three
wearable sensors and the two environmental sensors. Wrist 1 had a reduction in median
drift of greater than 98%, while Wrist 2 had a reduction of around 82%, and Wrist 3 had
a 66% reduction. Of the 41 couplings, 5 couplings were attributed to the incorrect person
based on the mutual information peaks. However, all of these errors were discarded
through later stages of the algorithm. For example, Figure 9 shows the original clock
drift (red line), the synchronized clock drift without outlier rejection (blue line), and the
synchronized clock drift with outlier detection (green line) for the Wrist 1 sensor. There
were three erroneous alignment points found for this wrist sensor based on mutual
information. Using timing-based outliers, they are removed from the calculations, and
the drift is greatly reduced.

Wrist 2 did not perform as well as Wrist 1 due to having more alignment points that
were inaccurate. The maximum error in the synchronized data was due to a single
alignment point. Because this point occurred in the middle of the data, the subsequent
alignment points were able to correct this error so it did not carry forward in the data.
Wrist 3 saw the smallest reduction in drift for a few reasons. The primary reasons
are the amount of couplings and the timing of the couplings. This sensor had the
least couplings of the group, and they were relatively early (approximately 3h into the
collection). There was no drift at the last coupling, but the algorithm does not correct for
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Fig. 9. Original data versus Synchronized data with and without outlier rejection.

Table V. Maximum and Median Drift for Synchronized Data for Day 2

Day 2, ∼9.5h collection time. 4 people with wearable sensors
Wrist 1 Wrist 2 Wrist 3 Wrist 4

Original Drift Median 551s 142s 505s 247s
Max 3788s 317s 1999s 573s

Data Driven Synchronization Median 24s 6s 75s 36s
Max 1910s 44s 913s 168s

any drift after the last coupling measured. Therefore, the drift on this sensor continued
to grow for the majority of the collection time.

The results for the second day are shown in Table V. This collection has four subjects
with wearable sensors, two environmental sensors, and 70 couplings based on align-
ment point selection between them before the algorithm prunes the alignment points.
Wrist sensors 1, 2, 3, and 4 see median drift improvements of 96%, 96%, 84%, and
84%, respectively. Wrist 1 and Wrist 2 both have a few erroneous alignment points
that lead to their max errors. These errors can occur in the matching algorithm due to
the size of the search window and the similarity of some movements. When there are
multiple errors, the outlier rejection will only remove more extreme outliers but not
every incorrect coupling. In this dataset, no timing based outliers were removed from
the Wrist 1 sensor data, but two were removed from the Wrist 2 sensor data, which is
why Wrist 2 sensor has a smaller maximum error.

Wrist 3 has many alignment points but has a number of erroneous points throughout
the day. This, combined with the drift of the sensor, increases the median drift error
on this sensor. There are also no alignment points removed through outlier rejection.
The circumstances for Wrist 4 are similar to the circumstances for Wrist 3 on day 1.
There were two couplings in this case that occur approximately 1.5h before the end
of the data collection. Both of these couplings match well but cannot remove any drift
for the remaining time of the collection. Because of this, the maximum error in this
sensor’s data occurs at the end of the collection.

5.5. Graph Model

As was discussed in Section 4, we use a graph model to determine which alignment
points should be used for synchronization. These decisions are made based on some
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Fig. 10. Day 1 data alignment graph with 1h UTC intervals. The star nodes near the bottom represent the
first observation on each sensor.

estimates in our model. Because our sensors have software (SW) based RTCs with 1s
resolution and wireless communication times are in the tens of milliseconds for our
packets, all interactions with the server can be considered ideal. These alignments
would have a very small edge weight, and because the server is our “perfect” global
clock in this system, these edges will always be used.

The other interactions that must be considered are the physical interactions between
the moveable environmental sensors and the wearable sensors. We must determine
which of these alignments are useful for synchronization. Because of the high rate of
couplings between the environmental sensors and the server (every 20s) and the high
rate of drift on the wearable sensors, our model would use every edge to synchronize.
We consider slower servers/environmental sensor coupling rates to determine when
there might be a benefit in reducing the number of alignments used in the day 1 graph
assuming drift edge weights based on a fixed stability (20,000ppm), alignment edge
weight of 5s, and the actual topology from the collection.

Figure 10 is a graph for the collection from day 1 with server/environmental sensor
UTC time updates happening at the top of each hour (note that this graph is formatted
in this manner for space considerations). Each sensor is color coded, and the stars rep-
resent the first observation on each sensor. There are 66 total couplings in the graph.
In this scenario, there are six alignments that are not used based on the shortest path
algorithm. This is due in large part to the stability of the sensors used in this esti-
mate. With 20,000ppm, there are about 72s of expected drift every hour of operation.
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Fig. 11. Subset of a graph for UTC once an hour.

With such large drift, updates from the server are critical for the environmental sen-
sors to have a clock that is reasonably accurate. When increasing the rate of server
couplings to 30min intervals, the model again uses all alignments points available for
synchronization.

To further illustrate this point, we can look more closely at one of the alignments
that would not be used based on the shortest path algorithm when the server couplings
occur at 1h intervals but is used when the interval is shorter. Figure 11 is a subset of
the previous graph rearranged to more clearly show the selection of alignments. There
are two alignments shown for the Wrist 1 sensor. One with Environmental Sensor 1
(Env1) and the other with Environmental Sensor 2 (Env2). There are three paths
(two through Env2 and another through Env1) shown in the figure to the observation
marked with the χ . The algorithm will find two paths to that observation, one with
weight of 40.84s and the other with a weight of 41.16s. Only one of the lower weight
paths will be chosen to reach this observation, and because the path through Env1
includes a required alignment, the alignment between Env2 and Wrist1 will not be used
in this case. The observation on Env2 that is coupled to the χ observation happened
almost halfway between two server couplings. This is why the drift on the two Env2
edges are so similar. If the server couplings occurred more frequently, then the drifts on
Env1 and Env2 would be smaller, but the nearly worst-case drift edges seen on Env2
would decrease by more than the drift of the edge on Env1. Therefore, all alignments
in this subgraph would be used. As we stated earlier, due to the drift estimate for
the sensors, these scenarios only occur when there is an interval of 1h or more for
server/environmental sensor couplings in our system.

5.6. Performance Analysis and Future Directions

In general, our alignment algorithm and pruning techniques worked well to reduce
the overall drift in the system. However, there were still some cases where we had
matching errors that hurt the overall drift reduction. One of the primary factors that
generated errors was the window size for the matching algorithm. When the amount
of drift in the system can vary, the algorithm needs to be able to handle the worst-
case drift. This means that the search windows in the sensor data streams may be
larger than necessary for some data. When considering larger windows of data, there
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are more opportunities for false positives. For example, if considering a sensor with
approximately 20,000ppm of error, then there can be 72s of drift after 1h of runtime. If
we do not know whether a sensor is faster or slower than the sensor data that we are
trying to align with, then there would be 144s of data to search through.

When considering over 2min of data, it is possible that multiple events similar to the
interaction in question could be found. This risk only increases as time passes and the
amount of possible drift increases. There are a few concepts that could mitigate this
risk. If the sensor stability is consistent, then the search area used in the matching
algorithm could be reduced by centering the search on the regions of the data stream
based on the expected drift. If the speed of one sensor relative to the other is unknown,
then this method would generate two smaller search windows centered around the
time of the interaction based on sensor Sn and the drift estimate of the other sensor
(i.e., t n

i + d1). Another concept would be to weight the matching algorithm score (e.g.,
mutual information) based on the height of the peak relative to other peaks from the
same sensor’s signals or the proximity of the peak to the expected drift locations. This
would essentially be increasing the value of matching scores that fit expectations of
the system. Reducing the search area without excluding valid parts of the segment
may also be possible by estimating the sensor stability for segments of interest. When
the sensor stability varies (as in our case), a method to determine the stability within
a specific range would allow for the window size to adjust to fit the needs of each
coupling further increasing the opportunity for correct matches. Considering multiple
alignment points at a time may also help in reducing ambiguity. Analyzing a collection
of points at the same time could reduce search window sizes and allow for reduced
processing. Additionally, this method may reduce the possibility of erroneous points by
highlighting more logical outliers.

Having more alignment points gives better synchronization results for a few reasons.
First, if the drift is not linear, more points over time will help to better track the
changing drift. As we saw with Wrist 3 in the first day’s data, having a few points early
improved synchronization, but the lack of points throughout the collection reduced the
potential improvement. Additionally, outlier detection performs better as the dataset
gets larger and more consistent. Therefore, looking at more sensors and things in the
environment (e.g., lights, laptops, mobile devices, other people) to generate couplings
could increase the number of alignment points available and thereby increase the
synchronization improvements in the system.

As the number of sensors in the system grows, the amount of ambiguity in couplings
grows. Because the algorithms are executed offline or on cloud-based servers, we do
not expect computation to be a major concern. The algorithms can also be executed
on the data from multiple sensors simultaneously if necessary. The greater difficulty
comes as the types of sensors in the system increases. This means that the types of
couplings between sensors will increase, and this must be understood before couplings
can be found in the data streams. If sensors collect a similar type of data, then the
entropy-based alignment point selection could be used to find the couplings. If they
collect different data modalities, then the template based alignment point selection
must be used. The obstacle faced in both of these scenarios is that an expert will
be needed to determine if couplings can occur between sensor types and what those
couplings would be. Once the couplings are characterized, they can be leveraged for
any dataset. Beyond possible error in the matching algorithms, this is one of the key
limitations of this technique. However, once the types of couplings are determined, the
algorithms should be able to run without constraint. Moreover, the additional sensors
will likely increase the amount of couplings that each sensor is involved in and improve
the outlier rejection techniques and improve the overall synchronization.
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We generally expect that wireless messaging based synchronization techniques will
be more accurate, if available. To compare our technique with these systems would
require an on-sensor clock that is more accurate than both. Our current sensors do
not have this type of clock. Therefore, we are unable compare our technique with
wireless synchronization techniques. It is also important to note that our proposed
technique is useful after the data collected and hence is orthogonal to wireless-based
synchronization techniques where synchronization must occur as the data are being
collected.

6. CONCLUSIONS

We presented a data-driven synchronization method for sensors along with algorithms
to resolve ambiguity in multi-sensor environments. The updates to the algorithm
worked well to identify and remove poor alignment points when the sensors had
multiple couplings. Additionally, many possible couplings were rejected before being
processed. This technique improved median sensor drift error by 66% to 98% in our
experiments. This was all accomplished with no additional hardware or software modi-
fication on the sensors. Without this technique, the data that had been collected would
have remained poorly synchronized.

There were erroneous alignment points that were not removed, but the synchroniza-
tion was still improved for all sensors. In situations where there is a single coupling on
a sensor that meets all criteria (e.g., highest mutual information value, RSSI values,
valid data within the delay range of the targeted segment), it is difficult to determine
whether this alignment is erroneous, but a larger number of couplings helps to reduce
the impact of a single erroneous alignment point on synchronization quality.

We are currently looking into the effects of variations in data sampling frequency,
which may require resampling or time scaling, on the accuracy of the synchronization
technique. For future work, we will look into a larger variety of environmental sensors
that will lead to increased couplings. In this work, the RSSI data were used in a
binary fashion. The sensor was considered to be in the lab or not. Using the RSSI to
gain more fine-grained information on location may help to further reduce the risk
of using incorrect couplings for synchronization and determine if none of the sensors
in the environment are responsible for a particular coupling (i.e., a person without a
wearable sensor causes the event). Additionally, we consider a fixed graph of alignments
and drifts. Each update to the system could affect the other observations. If there are
two very reliable couplings with a high-quality clock for a sensor, then other couplings
on that clock may become less valuable as we correct the drift through the higher-
quality couplings. We will explore how to efficiently solve this problem with a graph
that is dynamic.
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