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ABSTRACT 
This paper presents a method to synchronize the data streams 
from multiple sensors, including wearables and sensors in 
the environment. Our approach exploits common events 
observed by the sensors as they interact. We detect physical 
and cyber couplings between the sensor data streams and 
determine which couplings will minimize the overall clock 
drift. We present a graph model to represent the event 
couplings between sensors and the drift in the sensor timing 
and propose a solution that employs a shortest path algorithm 
to minimize the overall clock drift in the system based on the 
graph model. Experimental results over two trials show an 
improvement of 21.5% and 43.7% for total drift and 59.4% 
and 60.7% for average drift. 
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INTRODUCTION 
Technological advances are increasing the number of sensors 
in the environment at a rapid pace, and we will soon be 
dealing with trillions of sensors and actuators globally [9]. 
On a smaller scale, smart homes offices, etc. with hundreds 
to thousands of sensors are becoming a reality [5]. Wearable 
sensors can be incorporated into smart environments to 
detect activities [4, 7], and determine location [1, 7].  

Given this multitude of sensors, combining data to derive 
valuable information requires that the sensors have an 
accurate sense of timing (i.e. synchronization) between them. 
Long-running environmental sensors may be battery 
powered and therefore, power constrained. Using wireless 
communication in this situation could lead to shorter battery 
life. In low-power embedded systems, adding an additional 

chip for a RTC or a higher accuracy oscillator may not be 
feasible due to the added cost and power. Collected data is 
less valuable if it is not well-synchronized. Offline methods 
are needed to synchronize data from sensors that are 
independent of specific sensor configurations and can be 
employed after data collection. 

A single event can trigger notable measurements in multiple 
sensors. We call this concept of shared measurements a 
“coupling.” This coupling could be physical, or cyber. The 
sensor-data coupling defines an event that occurred at a 
specific global time. If the local sensor times related to this 
event are not the same, there is some error in one (or both) of 
the sensor clocks that needs to be corrected. Environmental 
sensors are often fixed in a single location. Humans, on the 
other hand, can move freely throughout an environment. 
With this in mind, a human with a wearable device can 
become an “agent” of synchronization in the system.  

We present an offline synchronization technique that is 
applicable to heterogeneous sensor networks to reduce total 
system drift by using humans with wearable devices as 
synchronization agents in the environment. We introduce a 
graph-based method to determine the subset of alignments 
that best reduces the system drift. The primary contribution 
of this paper is our novel method of synchronization based 
on physical or cyber couplings between the sensor data 
streams. To the best of our knowledge, this is the first 
investigation with this view of synchronization. 

RELATED WORKS 
Our technique targets synchronization of data from 
wearables and sensors in smart environments. Lu and Fu 
presented techniques for location-aware activity recognition 
in an outfitted lab with a variety of sensors (e.g. pressure 
sensors, vibration sensors, motion sensors, etc.) to determine 
activity in an unobtrusive manner through a wireless sensor 
network (WSN) that is also used for synchronization [10]. 
Surie et al. also presented a smart home environment that 
uses WSN for communication and synchronization of 
sensors [13]. They used 81 sensors on 42 objects to 
determine activities based on interactions with the subject.  

Tapia et al. installed a large number of state-change sensors 
into two subjects’ one-bedroom apartments to detect 
activities using high-accuracy RTC chips on the sensors and 
interpolate this data to a reference clock [14].  In all of these 
scenarios, the researchers control all of the sensors in the 
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environment and assume known communication and 
synchronization protocols for the sensors.   

Many synchronization protocols such as the timing-sync 
protocol for sensor networks (TPSN) [6] and the reference 
broadcast synchronization (RBS) technique [3] have been 
developed for wireless sensors networks. These techniques 
work by sending synchronization messages (TPSN) or 
reference packets (RBS) to nodes in the network to facilitate 
synchronization. Several other WSN synchronization 
methods are based on TPSN and/or RBS with adjustments 
for energy efficiency [8]. 

Some techniques use data from wearable sensors to 
synchronize two sensor modalities. Hardegger et al. [7] and 
Plotz et al. [12] use specific movements (jumping and hand 
motions, respectively) from a subject to synchronize 
wearable sensor data with video being captured.  

SENSOR SYNCHRONIZATION  
Due to power concerns and operating conditions, sensors in 
a WSN may not have access to GSM, GPS or another high-
accuracy common clock. Without a perfect absolute clock 
for each sensor, synchronization techniques are necessary. 
The synchronization and timing issues in sensor nodes are 
due, in part, to the accuracy of hardware oscillators, which is 
typically measured in parts per million (���). 

Oscillator accuracy in WSNs can vary from ±20ppm for a 
crystal oscillator to ±5000ppm or higher for digitally 
controlled oscillators (DCOs), voltage controlled oscillators 
(VCOs), and relaxation oscillators. With this in mind, we 
estimate the relative drift between two times, �� and ��, as  

 
��,� =

����|�����|�

�,���,���
 where � ≠ � (1) 

Sensors and Alignment 

A smart home environment can feature a network of 
environmental and wearable sensors. Let the set of all 
sensors in the system be denoted as 

 � = {��, ��, … , ��}, � ∈ ℕ. (2) 

Each of the � sensors in the network generates a data stream 
of observations, denoted ��

�, that include a data value and a 
corresponding timestamp by the local sensor clock  

 ��
� = {��

�, ��
�}, � ∈ ℕ (3) 

where ��
� and ��

� are the data value and timestamp at the 
��� index from sensor ��, respectively.  

When multiple sensors in � experience a shared event 
measurement, or wireless communication, these events 
happen to the sensors at the same global clock time 
irrespective of their timestamps. We can leverage these 
events to synchronize the sensor data streams. Specifically, 
we search the data streams for evidence of events that are 
observed by multiple sensors. For example, the opening cap 
motion found on a wrist worn wearable as well as on the cap 
of a pill bottle. First, we define alignment points. 

Definition: An alignment point is a representation of a 
physical or cyber event in a sensor data stream that can be 
accurately distinguished and directly related to the same 
event in the data stream of another sensor (i.e. coupling).  

When sensors are physically coupled through proximity of 
location, we will search for events in their data streams that 
can be used as an alignment point. We formally describe 
alignment between two sensors as 

 ��
� ≡ ��

� where � ≠ �. (4) 

In an ideal system, ��
� = ��

�. In real systems ��
� ≠ ��

� and a 

drift exists. We determine the times related to the data points 
selected to generate a set of alignment points denoted as 

 � = ����
�, ��

��| ∃�, �, �, � ���ℎ �ℎ�� ��
� ≡ ��

��. (5) 

Each alignment point in � includes the relevant observations 
from a pair of sensors. Once alignment points are found in 
the sensor data streams, the sensor times can be adjusted to 
reduce drift. Template and entropy based methods to 
determine alignment points have been presented previously 
for sensor pairs [2]. We expand on these concepts for 
multiple sensors below. 

Multi-Sensor Synchronization Formulation 
We want to select the subset of alignment points from the set 
of alignment points, �, defined in (5) that create the greatest 
reduction in total system timing error (i.e. drift). To 
accomplish this, we define a graph model of the system  

 � = (�, �� ∪ ��). (6) 

where the vertices, �, represent the observations from each 
alignment in �, edges, ��, represent the alignments (i.e. 
coupling between two observations), and edges, ��, 
represent the drift between observations on a single sensor.  

Figure 1 shows a sample graph with a global clock and four 
sensors. Because we define alignment points between a pair 
of sensors, each alignment point is represented by two 
vertices and one edge in the graph. Therefore, 

 |�| = 2|�| ��� |��| = |�|. (7) 

Figure 1: Sample graph model with alignment and drift 
edges for 4 sensors and the global clock. 
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We sort the vertices by sensor and time to generate a multi-
level bipartite graph. Each edge, ��,� connects vertices, �� and 

��. Each of the edges in �� also has a weight, ��,�, based on 

the estimated alignment error  

 ∀ ��,� ∈ ��, ����ℎ� = ��,�. (8) 

The edges in �� have a weight, ��,�, based on the drift 

between observations described as 

  ∀ ��,� ∈ ��, ����ℎ� =  ��,� (9) 

where ��,� is the relative drift between �� and �� given that �� 

and �� are vertices representing consecutive observations on 

a single sensor calculated as described in (1). 

Each column in the graph shown in Figure 1 represents a 
sensor in the network. The solid horizontal lines represent 
the alignment edges, and the vertical dashed lines represent 
the drift edges. The time at each vertex is defined as 

 ���
= �������,��

+ ��  (10) 

where �������,��
 is the true global time at the vertex, �� is the 

total drift at the vertex, and ���
 is the locally reported time for 

the vertex. 

The total drift at each vertex in the graph can be determined 
by 3 possible factors. In Figure 1, the neighbors of vertex �� 
are �� and ��� on the drift edges and �� for the alignment 
edge. The drift at �� would be determined by the minimum 
edge weight of the neighbors and node drift of the neighbors. 
We make the following observation: 

Observation 1: The total drift at each vertex �� is dependent 

on its neighboring vertices and is calculated as 

 �� = ���(�� + ��,� , �� + ��,�, �� + ��,�). (11) 

We defined our relative drift estimates in (1). The elapsed 
time that the clock has been running must be known to 
estimate the relative drift. This time difference is maintained 
by each sensor. Therefore we make another observation: 

Observation 2: Every vertex in the graph must have a path 
to the global clock.  

Our goal is to minimize the drift at each vertex to ensure the 
time is as close to the global time as possible. This means we 
must select the subset of alignments to reduce the total drift 
at each node. This objective is mathematically stated as 

 

��
� ⊂ ��|�������� � ��

|�|

���

. (12) 

To solve this problem, we make one additional observation.  

Observation 3: The global clock can be treated as an ideal 
clock source with 0 ��� accuracy so all global clock 
vertices have total drift ��  =  0. Also, all relative drifts, ��,�, 

between global clock vertices will be 0. 

We take advantage of the weighted graph and our earlier 
observations to guarantee the optimal ordering of local 

decisions. Based on Observation 3, all global clock nodes 
can be viewed as a single node. Observation 2 says every 
vertex in the graph has a path back to the global clock. 
Finally, Observation 1 says that the total drift at each vertex 
is influenced by the drifts of the neighboring vertices and the 
weights of their edges. Therefore, starting at the first global 
clock vertex, we find the shortest path to all sensor vertices. 
The shortest path to each vertex indicates the best set of 
edges such that the drift at that vertex is minimized. This 
allows us to determine ��

� and the order to minimize the total 
drift in the system. 

EXPERIMENTS AND RESULTS 
We conducted two trials of experimental validation. In each 
trial, we had two subjects wear a custom IMU sensors on the 
wrist of their dominant hand. Sensors were also attached to a 
door, a pill bottle, and a cup in the environment. The custom 
sensor nodes included a 3-axis gyroscope and 3-axis 
accelerometer collecting data at 200Hz. Trial 1 lasted three 
minutes and Trial 2 lasted five minutes. MATLAB was used 
to process the experimental data. 

Results and Analysis 
Trial 1 produced a graph with a total of 42 vertices, 21 
alignment edges (��), and 32 drift edges (��). Trial 2 
produced a graph with 46 vertices, 23 alignment edges (��), 
and 40 drift edges (��). 

The subjects using the wearables are being used as the 
synchronization agents. Therefore, we use a crystal oscillator 
for the timestamps on the wrist-worn sensors and a DCO for 
the timestamp on the sensors in the environment. We 
estimate that the Bluetooth error as 13�� [11] and the 
entropy and template based alignment error as 52�� and 
132�� [2] respectively. We use 20��� and 5000��� for 
the wearable and environmental sensor stability respectively. 
We calculate the drift for the graph vertices using the crystal 
oscillator as the gold standard. 

 

Figure 2: Trial 1 environmental sensor time data sorted 
from minimum to maximum drift.  

Figure 2 shows the drift from the environmental sensors for 
synchronized (our method) and unsynchronized (original) 
data for Trial 1. We calculated the drift at each sample and 
sorted from minimum to maximum drift. Though the 
maximum drift for the synchronized and unsynchronized 
data are close, it can be seen that the synchronized data has 
less overall drift and more samples with low drift.  
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Table 1 shows the total drift results from each trial at the 
observations, as described in (12), and the average drift for 
all sensor data. Our method improves the total system drift 
by 43.7% in Trial 1 and 21.5% in Trial 2 when considering 
the observations. We linearly interpolate the timing data 
between the observations on each sensor to reduce the drift 
on the entire data stream. When looking at the average drift 
across the data on the environmental sensors, the drift is 
reduced by 59.4% in Trial 1 and 60.7% in Trial 2. 

Metric 
Sensor Data 

w/Alignment (our 
method) 

Sensor Data w/o 
Alignment 
(original) 

Trial 1: |�| = ��, |�� ∪  ��| = �� 

Total Drift 2,405�� 4,270�� 

Average Drift 140.9�� 346.6�� 

Trial 2: |�| = ��, |�� ∪ ��| = �� 

Total Drift 4,981�� 6,344�� 

Average Drift 194.8�� 495.8�� 

Table 1: Total drift at observations and average drift results 
based on all data points and timestamps  

CONCLUSION 
We presented an alignment and synchronization technique 
for a smart environment using human subjects with wrist-
worn sensors as the agents for synchronization. Using the 
physical interactions between the subjects and the 
environment and sensor clock accuracy estimates we 
developed a graph model to determine a subset of alignments 
to reduce the total system drift and the average system drift. 
The algorithm shows a decrease in average drift of 
approximately 60% for the trials. 
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