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Abstract— Access to experimental data in the development of
algorithms and techniques for wearable computing devices and
body sensor networks allows faster validation and refinement of
algorithms. The MotionSynthesis Toolset is an open source toolset
and database built to assist in data collection and data sharing,
and allow collaboration in review and validation of data sets.
The tools can generate a sequence of movements and synthesize
a data stream based on the data stored in the database. New
movements can be added to the database and the tools by the
community. The tools also allow visualization, and validation of
the movements and data with video and signal waveforms. The
data set has more than 20 subjects and multiple repetitions of
the movements from each subject to increase data diversity.

Index Terms— Wearable computers, open source, databases,
data synthesis, body sensor networks.

I. INTRODUCTION

WEARABLE computing devices and body sensor net-
works (BSNs) are becoming more commonplace in

and out of research environments. They are being used for
health monitoring [1], [2], activity tracking [3], [4], and fitness
applications [5]. Developing new algorithms and techniques
to detect daily activities more efficiently and with higher
precision is an important area of research. Validation of new
systems and approaches is a critical part of research and
development. The validation process typically requires the
design of experiments and the collection of new data, which
take time and make validation more time consuming. Access
to datasets captured from wearable motion sensors can be
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useful as they can enable the validation of these algorithms
and techniques without the need for new experiments or
data collection. Furthermore, if one researcher collects data
to test an algorithm and another researcher collects data to
test another algorithm, it can be difficult to compare these
algorithms fairly because of the differences in the data. Using
a single dataset, like MoST, allows for fair comparisons
between algorithms and for repeatable tests with adjustments
and updates to algorithms.

Activity monitoring and motion sensing with wearable
computers is attracting more research attention due to the
low cost, easy set-up and ubiquitous sensing ability. Various
research topics are widely studied for wearable motion sensor
based activity monitoring systems that target optimizing power
consumption, increasing activity recognition accuracy, and
selecting the best sensor subsets. All of these topics can be bet-
ter understood by having a complete and robust dataset. Thus,
data is of crucial importance to design, optimize, and validate
algorithms; and a dataset like MoST can accelerate research
by reducing the time and effort related to the collection and
validation of data.

Collection and validation of large amounts of data can
be difficult for multiple reasons. There may be technical
limitations and difficulties in capturing certain scenarios [6].
Time is a major issue for collecting large amounts of data.
Setting up equipment, attaching sensors to the subject, and
collecting data can all take a significant amount of time.
A large number of subjects is also, typically, required to
generate a large amount of data. Data collection time must be
scheduled with each subject, which can be difficult depending
on the number and types of subjects and their availability.
Validation of the data is normally handled by the group that
collects the data. Methods such as self-reporting by the subject,
video recording of the collection, and data inspection are used
to validate the data. These methods are effective, but mistakes
can be made and the process can be very labor intensive.

Another consideration to be made when collecting large
volumes of data is the storage and characterization of the
data. Meta-data, with information about the collection process
and the origins of the data, can be very important for users.
Additionally, file storage (e.g. text files, databases, etc.) will
determine the accessibility of the data for users.
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To reduce some of the difficulty in data collection,
validation, and generation, we presented the MotionSynthesis
Toolset (MoST) [6]. This toolset allows the generation of a
sequence of movements, synthesis of a data stream using real
data, visualization and validation of the sequence of move-
ments and data through the use of video and waveforms. While
the initial version of this tool resolves some individual data
collection difficulties, it was a closed system. The development
team would be responsible for all data generation and tool
maintenance.

Open Source development concepts have been used in the
software community to quickly improve the capabilities as
well as the quality of software tools. Allowing other groups
to contribute to the tools, increase the amount of data, and
assist with data validation will allow MoST to improve more
rapidly. In addition, the amount of data that the tools can use
will increase at a much faster rate than the closed model.
A large and broad database will allow for more diverse datasets
to be synthesized by the tools, which will help meet the needs
of a larger section of users.

MoST can quickly provide data that can speed up algorithm
development for wearable sensors. Researchers that do not
have hardware to conduct their own experiments can generate
real sensor data that can be used to verify their algorithms.
Researchers with their own sensors can use the tool to gain
access to new data and add their own data to the database.
Making updates to the tools for ease of use for data access as
well as modification by the community is critical to achieve
this goal.

The primary contributions of this paper are:
1. A movement database with up to 15 repetitions for each

of 23 movements from more than 20 subjects (increased
from four in prior work [6]) with six sensor locations

2. Tools that allows a sequence of movements (diary) to be
determined and synthesized based on data in the dataset

3. A tool to visualize and verify the data from the sensors
as well as the related video for the movements

4. An online search engine to find and download data from
the database based on movement and subject metadata
(e.g. age, sex, height)

5. We validate the uses our dataset and our data synthesis
tools through experiments using a pattern matching
algorithm

The remainder of this paper is organized as follows.
Section II of the paper covers related works. Section III
describes our data collection process, hardware, and software.
Section IV covers the MotionSynthesis tools and the related
updates. We present a validation of our synthesis and use of
the data for algorithm development in Section V. Finally, we
demonstrate another dataset working with MoST and discuss
plans for further enhancement of the tools in Section VI and
our conclusions Section VII.

II. RELATED WORKS

Vision based datasets were some of the first available
and widely used for human activity recognition and pattern
recognition. While these datasets enable users to develop and
validate their algorithms rapidly without putting a lot of effort

into collecting and annotating data, the datasets only enable
users to compare their algorithms based on the original data
in the dataset. A video dataset is published for six different
actions for 25 subjects in four different scenarios, which are
used for action recognition [7]. A similar dataset is proposed in
that includes 10 classes and 90 videos for outdoor actions [8].
Video datasets are extracted from television programs [9]
and movies [10]. The datasets include sports activities and
Hollywood movie actions respectively. Datasets with a large
number of classes and videos are proposed [11], [12]. The
datasets mentioned above are static and the data are meant
solely for use as they were captured. Also, vision based
motion datasets are limited for ubiquitous sensing applications
because of the line-of-sight problem. In essence, the subject
must always be in view of the camera.

The activities of daily living can be divided into two primary
categories. The first type of activity is the low level activity,
which includes the postures (e.g. sitting and standing), the
short-term transition activities (e.g. sit-to-stand and sit-to-lie)
and the dynamic periodic activities (e.g. walking and running).
The second type is high level activity, which is characterized
as long-term complicated tasks that can be composed from
the low level activities (e.g. watching TV and eating dinner).
For example, eating dinner can be composed by the low level
activities of sitting, eating, and drinking.

Several datasets have been published for wearable motion
sensor based activity monitoring systems which are focused
on low level activities. Wearable Action Recognition
Database (WARD) is published by UC-Berkeley and it cov-
ers 7 female and 13 male subjects, with age ranging from
19 to 75 [13], [14]. Each sensor mote has a 3-axis accelerom-
eter and a 2-axis gyroscope and 5 sensors are attached to
different body parts. A dataset was offered by the University
of Rio de Janeiro that covers 5 activities of daily living from
4 healthy subjects with 3-axis accelerometers on 4 different
body segments [15]. Similarly, the database USC-HAD was
offered that includes 7 female and 7 male subjects with
different height, age and weight [16]. Only one waist motion
sensor (3-axis accelerometer and 3-axis gyroscope) was used
to capture 13 activities of daily living. The NINAPRO
database looks at finer hand and wrist movements using
sEMG sensors [17]. Although these datasets offer various low
level activities of daily living with different data collection
configurations, it is hard for the user to add more low level
activities to the database in order to benefit a wide range of
research interests. The user may want to investigate different
activities or more activities than the dataset. Our toolset has
software and an interface that enables the user to annotate and
add more activities to the database in a straightforward manner.
More significantly, our tool is able to synthesize a high level
activity or a sequence of low level activities that is of interest
to the user. This data synthesis feature enables researchers
to synthesize activities instead of collecting data for different
scenarios. This can reduce the cost of data collection while
accelerating the design and validation tasks significantly by
using data that has been validated.

Several other datasets were released for the high level
activities. The TNT15 dataset captures video data from
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8 RGB cameras along with 10 IMU sensors. For 5 move-
ments [18]. A database was offered to cover 17 high level
activities of daily living for 8 different scenarios [19]. This
database provides an interface to annotate and display the low
level activities which compose the high level tasks. The MIT
PlaceLab dataset provides a variety of high level activities of
daily living captured from a fully instrumented apartment with
various types of environmental sensors [20]. CMU-MMAC,
CMU Multimodal Activity Database, was published to provide
human activities in the kitchen, including cooking and food
preparation [21]. Four different modalities, including motion
capture, audio, video and inertial sensors, were used for the
data capture. Another database was released for high level
activities with information of 72 sensors of 10 modalities [22].
Unlike these datasets, our database only uses inertial sensors
which are focused on activity monitoring using the motion
sensor modalities. All of these datasets are static and do not
offer tools with the ability to synthesize different high level
activities outside of the existing dataset. Another advantage of
our dataset and tools is the ability to generate a large amount
of data with both sensor data and video.

Data management for wearable computers has been well
studied. However, the existing works focus on techniques that
involve efficient management of data repositories and enhanc-
ing the speed of recognition and query processing [23]–[28].
The importance of offering data for design and validation
is ignored in these works. An open source set of tools for
context recognition and data validation was created [29]. This
toolchain assists in data collection and validation. Though it
is open source, it has not been updated recently and does not
have a method for outside users to add new data. Additionally,
it focuses on many sensors and a long duration. Our dataset
provides segmentation for low-level activities (e.g. sit-to-stand,
sit-to-lie, etc.) based on likely locations for wearables.

The proposed platform offers many of the capabilities
of the existing datasets, and it enables users to synthesize
data streams for a subject’s activities and scenarios of their
choice. This feature has the potential to accelerate the design,
prototyping and validation efforts. It can reduce the time
associated with system development and potentially provides
more extensive data for validation and system refinement.
Additionally, the open source nature allows the community
to add data to the repository and functionality to the toolset.

III. DATA COLLECTION

As described in our prior work, data collection is one of the
critical tasks in the process of creating a database and related
tools for data synthesis [6]. For this work, data collection
refers to capturing a large amount of data for low level human
activities from different subjects using inertial measurement
unit (IMU) based sensors. A consistent collection process that
covers a basic set of movements along with hardware and
software tools is used to ensure the data collected is reliable
and that it can be validated.

A. Process

The activities selected for the MoST database were chosen
to be useful for multiple types of research activities. A set of

TABLE I

MOVEMENTS IN THE INITIAL MoST DATABASE

Fig. 1. Model showing the sensor locations used for the data collections for
MoST as well as the sensor orientation and axes. The locations are possible
wearable devices and common locations used for research applications.

the most commonly used low level activities of daily liv-
ing [30] were selected. This set of movements is common
for a variety of applications and would therefore be useful for
a large community of users. Each activity is associated with a
beginning and ending posture (e.g. sitting, standing, etc.), and
each posture has at least one movement in the dataset that
transitions into and out of that posture. This requirement is
in place to ensure compatibility with the developed tools. The
initial set of movements collected for the MoST database can
be seen in Table 1 ordered by the number under which the
movement is stored.

For consistency and to properly capture the set of move-
ments described above, six sensors were attached on the
subjects for each collection. Specifically, the body parts on
which the sensors were deployed, are 1) the right ankle,
2) the waist, 3) the right arm, 4) the right wrist, 5) the left
thigh, and 6) the right thigh as shown in Fig. 1 (a). This
configuration serves two other purposes. For others that use the
data, the sensors are located in the most common locations for
commercial and research based wearable devices. This ensures
that users will be able to get data for target locations that a
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Fig. 2. Custom sensor board with 3-axis accelerometer, 3-axis gyroscope,
and TI MSP430 used for data collection.

sensor will likely be worn. Secondly, as others add data to the
database, these sensor locations will likely provide overlap that
will more easily allow combining and comparing data from
multiple sources in the tool. Fig. 1 (b) shows the orientation
of the sensor axes when the subject is in a neutral standing
position (i.e. the position shown in Fig. 1 (a)). Acceleration is
measured along each axis while rotations are measured about
the axis of rotation. All data stored in the database will use
acceleration and rotation data relative to the sensor’s reference
frame.

This sensor configuration was used to ensure all major limbs
could be monitored and that the movements of interest could
be accurately captured by the sensors. It may have been useful
to put a sensor on both sides of the body and at every rigid link;
but a Bluetooth network supports a maximum of seven slave
devices at a time. Additionally, we expect the movements from
one side of the body to be mirrored on the other. These factors
led us to work, primarily, with a single side of the body. Some
sensors may be of little significance for some movements,
but all sensor information is recorded for the entire set of
movements consistently. The availability of all sensor data can
be helpful for the research topic of subset sensor selection.

MoST users must recognize that the open source nature of
the tool means that the specifics of the data collected may
vary. The number and the location of sensors may be altered
depending on the group doing the collection. Additionally, the
populations that the research groups have access to will likely
change the types of movements and data collected. This should
be an advantage for researchers looking for large amounts of
varying data, but it could create inconsistencies in the sensor
positions and the quality of the data collected.

We have increased the number of subjects in the
MoST database from 4 subjects in our prior work [6] to
more than 20 subjects. Each subject performs each movement
15 times consecutively with a short pause between repetitions.
This repetition and the increase in the number of subjects adds
greater variety and diversity to the dataset. Another important
factor in the data collection process and the open source nature
of MoST is the ability of a community of users to view
the raw data, ask questions, make corrections, or apply new
annotations to the database.

B. Hardware

Fig. 2 shows our lab-developed 9-axis wearable motion
sensor that is used for the data collection. It consists of
a Texas Instruments MSP430 microcontroller, a dual mode

Bluetooth module, and an InvenSense MPU9150 which has
a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
magnetometer. The sampling rate is set to 200 Hz which is rel-
atively high for the movements we collected, but ensures that
users will have enough resolution for any signal processing.
Additionally, data can be decimated if this sampling rate is too
high for a specific user. The accelerometers were configured
with a range of ±2g, and the gyroscopes were set with a range
of ±250°/second based on the low intensity of our initial
activity set. The sensor configurations are provided along with
the captured data. It is difficult to guarantee a homogenous
magnetic field and this information would vary outside of the
environment in which it was captured. Therefore, though the
magnetometer data is collected, only the accelerometer and
gyroscope data are reliable and only these modalities should
be used.

The motion data is captured with 16 bit analog to digital
converters (ADCs) on the MPU9150 and passed through an
I2C interface to the microcontroller. Each sample is time
stamped and packetized and passed to the Bluetooth module
via UART. The data is then transmitted to a PC and logged into
a text file. At the same time, synchronized video is recorded
with a web camera connected to the same PC at 15 frames
per second (FPS) with 720p resolution. The synchronized
camera information allows visual validation and annotation
(i.e. parsing) of the movements.

C. Software

Two software tools were designed and developed for the
data collection and validation. The first tool is the data collec-
tion software that provides the ability to set the configuration
parameters before starting the collection and logs all the
motion data into text files and a related video file at the same
time. The file format of each sample is as follows: AccelX,
AccelY, AccelZ, GyroX, GyroY, GyroZ, MagX, MagY, MagZ,
SensorPkt#, SensorTime, PCPkt#, PCTime. The first three
columns are accelerations and the second three are the angular
velocities. The following three columns are magnetometer
data. The next two columns represent the packet number and
time stamp from sensor. The final columns are the PC packet
number and time stamp. Additionally, each video frame is time
stamped to ensure accuracy and synchronicity in the case of
inconsistent frame rates.

Each subject performed each movement 15 times and the
data is parsed by individual repetitions for the database. Using
the Data Visualization tool discussed in Section IV-B, the start
and end of the movements are annotated using the video as the
ground truth. After this, the sensor data and the corresponding
videos are parsed and stored in the repository. Due to feedback
from users of the original MoST data from our prior work,
the data collected is converted to and also stored in the
HDF5 [31] hierarchical storage format. This format allows
for files that contain sensor data as well as meta-data for the
collections in the database. These new data files and video
clips represent the building blocks for the database that is used
in the MotionSynthesis Toolset.
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Fig. 3. The Graph Panel Display shows the available movements and which
movements can follow the selected movements.

IV. MOTION SYNTHESIS TOOLS

A. Diary Generation Tools

The Diary Generation tools include the Diary Generator and
the Graph Panel. These are the primary input tools in this
toolset and the key to generating the desired data streams. They
are Java based tools with a graphical user interface (GUI) that
allows users to select the relevant aspects of the motion diary,
view the movements and movement relationships, and add or
remove movements from a diary.

1) Graph Panel: The Graph Panel is a directed graph that
shows all available movements as vertices. Directed edges con-
nect selected movements to possible subsequent movements.
Fig. 3 shows the Graph Panel with a single movement, stand-
to-sit, selected. The seven movements that can be done after
this movement are connected in the figure. In the prior version
of this tool, movement pairs had to be created for each move-
ment. These pairs included each movement that could occur
before the new movement followed by the new movement,
and the new movement followed by each movement that could
occur afterward. As the number of movements in the system
increases, this would become increasingly cumbersome.

The Graph Panel tool was updated to alleviate this diffi-
culty by using hypergraphs [32] to determine the movement
progressions and for simplicity in adding new movements.
A hypergraph is a graph in which each edge can connect
multiple nodes. There is a hypergraph for starting postures and
another for ending postures. The ending posture of the selected
movement is compared to the hypergraph for starting postures
to determine the next available movements. For example,
if a stand-to-sit occurs, the ending posture is sitting. Based
on this posture, all movements that have sitting as a starting
posture are available for the next movement. Each edge of
the hypergraphs represents a starting or ending posture for
the movements. Fig. 4 shows the hypergraph for the starting
postures based on the 23 movements in the initial database
using the numbering from Table 1. The nodes, represented as
circles are the movements. The edges of the graph are the
starting postures for the movements.

Using the hypergraphs allows users to easily add new
movements to the tool and allows the tool to seamlessly
handle the movements and movement progressions without

Fig. 4. Hypergraph for the starting posture of the movements in the database.

Fig. 5. Diary Generator tool which allows the user to input a sequence of
movements and options based on the database.

requiring knowledge of any previously existing movements or
the related postures of those movements. The starting posture,
ending posture, and movement name are the only pieces of
information necessary to add a new movement to the diary
generation tool. The tool handles adding the new nodes to the
proper edges in the hypergraphs and the Graph Panel display.
For example, adding a movement to MoST that starts and ends
with a standing posture (e.g. running) would require 28 entries
in the original tool vs a single entry in the updated tool. This
greatly reduces the level of effort for adding new movements
compared to the prior version of the tool and makes additions
by the community easier.

2) Diary Generator: The Diary Generator tool allows the
user to generate a diary which is a list of movements that
will be used to synthesize data. When creating the diary,
the user can choose from the six sensor locations used in
our collections, from the different sensor modalities (i.e., the
gyroscope and accelerometer axes), and the subject from
which data is to be generated.

The GUI of the Diary Generator tool is relatively straight
forward: a sidebar contains options and the list of available
movements, while the main panel contains the current diary
information. This interface is shown in Fig. 5, which shows
a small sample diary. One of the options available is a loop
control, which is contained in the same segment of the sidebar
as the movements. This allows the user to repeat a section of
their diary a specified number of times.
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Fig. 6. Diary file based on a sequence of movements.

The movement list in the sidebar will always contain only
movements that can currently be performed. This refers back
to the hypergraph constructed earlier. A movement cannot
be performed if the subject is not currently in the posture
necessary to start it (e.g., a subject cannot lie down and then
jump immediately after).

B. Data Synthesis and Visualization

The Data Synthesis tool allows users to generate new
streams of data based on the diary generated. This can save
significant time in testing algorithms based on a specific
sequence of movements. After the user creates a diary file, data
can be generated using the Data Synthesis MATLAB® tool.
This tool processes the output from the diary generator and
produces the associated data by selecting movements from
the database based on the diary, and stitching together the
individual movements to create the final output data. In the
example input shown in Fig. 6, the x-axis of the accelerometer
for the right ankle and right thigh sensors will be generated.

One of the important considerations for this operation is
how the individual movement data is stitched together. In the
original tool, this method was a simple concatenation of the
segments. This has since been updated to include a smoothing
filter in this process to provide more natural transitions and
reduce the risk of any discontinuities in the data stream. The
smoothing filter is a simple moving average filter with a span
of 10 samples, performed on the 25 samples before and after
each transition.

The main output of this tool is a set of files with data for
each sensor in the same format as the input, which is described
in Section III.C. This makes the output similar to a normal data
collection, with generated packet numbers and timestamps.
This tool also produces two other files, which are a list of
the times at which a transition occurs (e.g. annotations) and
the sequence in which the movements are performed. Both of
these outputs are utilized by the Data Visualization Tool.

A screenshot of the Data Visualization Tool is shown
in Fig. 7. This tool allows users to view their generated data as
well as any associated video that goes with it, using the output
from the Data Synthesis tool and the videos in the MoST
database. For each movement in the diary, the appropriate
video file is loaded and displayed for the user, and each
transition between movements is clearly marked with vertical
lines. More detail on the Data Visualization Tool is giving in
our prior work [6].

C. MoST Database

Many of the existing databases provide a mechanism to
access the original data files. Users may prefer access to the

Fig. 7. Data Visualization Tool.

Fig. 8. Web based search engine for MoST database.

raw data files with no filtering, synthesis, or other modification.
To ensure that this data is easily accessible to the community
without having to access the other tools, the MoST Data-
base search engine was developed and added to the original
MoST toolset. The database stores the raw text files from all
collections for MoST as well as other datasets. The search
functionality allows the user to determine the characteristics
of the data they would like to see (e.g. age of subject, sex of
subject), select the data, and directly download the raw data
files.

Fig. 8 shows the front end of the MoST database search tool.
Unlike the other tools in MoST, the database tool is completely
web based. This allows those that only want access to the raw
data in a simple text format to get the files in a straightforward
manner. Beyond the raw data, the users also have the option
to download the annotation file that gives information on the
starting and ending positions of the specific movement data in
the raw data files.

Finally, users can use this web based interface to directly
upload data to the web server. New uploads must be formatted
and approved, but this capability reduces the difficulty in
making new data searchable by web users.

V. VALIDATION OF MOST DATA

A. Synthesis Validation

MoST offers the ability to generate sequences of movements
based on the segmented single low level movements in the
database. The synthesized sequences may not be the same as
the natural sequence performed by a human. This difference
may come from several factors: 1) there may be different
motions when different subjects are performing the same
movement, 2) data in a single sequence could come from
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multiple subjects in the database, 3) the stitching together of
the movements could differ from natural transitions, 4) the
slightly different orientations of the sensors might cause a
small discontinuity in the transitions between movements. The
data from any specific synthesis might not match a specific
individual perfectly, but we want to show that data generated
by the tool is similar to human data. Specifically, we want
to show that synthesized data is no more different from a
human than humans might be from each other. To validate the
similarity of synthesized data streams and human subject’s
data streams, we will investigate an activity segmentation
application.

We collected two sequences of movement data from five
human subjects that also have data in the MoST database.
During the collection of the validation sequences, we used
the same sensor configuration that was used for the data
collection. We synthesized the same sequences of movements
using MoST for each of the validation subjects from their
segmented data in the database. Therefore, we have nat-
ural sequences as well as synthesized sequences from the
MoST tools for each validation subject.

To compare the synthesized and natural data, we trained
templates based on the movements in the sequences for each of
the subjects. Each movement was performed five times. Based
on inspection of the data from the sensors and the video using
the Data Visualization tool, we determined the sensor and
modality (i.e. accelerometer or gyroscope) that best identifies
the movement. Using dynamic time warping (DTW) [33],
we compared the five instances of the movement to determine
the most representative template from each subject. The DTW
algorithm is used to measure similarity between two time
series. The advantage of this algorithm is that it allows the
speed or timing of the signals to vary. Therefore, if the same
movement occurs at different speeds, the instances can still be
compared and found to be similar.

In the algorithm, a template of a movement is compared
to a stream of data to determine if the movement that the
template represents occurs in the stream. The samples from
the template are compared against the samples in the stream
and the similarity between the template and the stream is called
the DTW distance or DTW cost. Using this DTW cost as our
metric, we compare to a pre-determined threshold to decide if
the template’s movement exists in the stream.

To determine the most representative template, we calcu-
late the DTW distance between all pairs of templates and
determine which instance has the smallest distance to all other
instances. This instance becomes the representative template
for each movement for each subject.

Table 2 lists the two sequences used for synthesis validation.
The first sequence of movements represents a common set
of movements for a student working in a lab. The second
sequence represents part of a possible morning routine.

We use DTW distance and a threshold to detect the
movements. The DTW algorithm used can also provide the
beginning and ending of the movements in the stream. Using
the set of templates from each subject, we identify and segment
the movements from all data streams (synthesized and natural).
The detection as well as the beginning and the ending of

TABLE II

VALIDATION SEQUENCES

Fig. 9. Segmentation of movements for natural data (a) and synthesized
data (b) from subject 3 for the grasp from shelf movement on the arm sensor.
The gold standard is based on visual annotation (natural) or tool annotation
(synthesized).

the movements are compared to annotations to determine a
segmentation error. The natural sequences are annotated based
on video while the synthesized data uses annotations generated
by the Data Synthesis tool.

Fig. 9 shows the segmentation for a natural dataset (a) and
a synthesized dataset (b) from the arm sensor for subject 3
performing the grasp from shelf movement. The solid lines
represent the gold standard segmentation of the movements.
We used video of the sequences to annotate the natural data
sequences. The MoST tool output the annotations used for the
synthesized data. The DTW algorithm is used to determine
the start and finish of each movement. This algorithm output
is used to create the vertical dashed lines that represent the
algorithm segmentation. We find the difference between these
values to determine the segmentation error reported in Table 3.
Because the actual movements in both natural and synthesized
streams are from real data, understanding the transitions
(i.e. segmentation) shows the similarity in natural and
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TABLE III

VALIDATION SEGMENTATION RESULTS

TABLE IV

MOVEMENT IDENTIFICATION RECALL AND PRECISION

synthesized data. The figure also shows the similarity in the
data streams of the natural and synthesized data.

Table 3 shows the segmentation error for each of the move-
ments. The starting and ending samples of each movement
are determined by DTW. The difference between samples
determined by DTW and the annotations were calculated and
averaged for each scenario. The templates trained by each
subject were compared with their own data (i.e. self-validation)
and with the data from the other subjects (i.e. cross-validation)
for the natural and synthesized data.

Table 4 shows the results of the movement identification
from DTW. The recall and precision are shown in this table.
Recall is defined as the number of true positives divided by
the total number of positive instances (i.e. T P/(T P + F N)).
Precision is defined as the number of true positives divided by
the total number of elements selected (i.e. T P/(T P + F P)).
For the trial sequences, the recall of detection was consistently
high. Only the subject 5 based templates failed to identify
all of the same subjects’ movements. All but one of the
movements that were not identified (i.e. false negatives) were
the kneeling movement. This is true for both natural and
synchronized data. The kneeling movement has the most
variation due primarily to the depth differences for the

TABLE V

TRAINING DATA ACTIVITY RECOGNITION RESULTS

subjects. Some kneeled with their knee touching the floor and
others just enough to reach the floor with their hand. The
precision was also high with very few false positives detected.
Again, there is very little difference between the synthesized
and natural data based on this measurement.

B. Training Data Validation

Beyond synthesis, the MoST dataset can be used directly
as training data for algorithm development. To validate
this use case, we created a stand-to-sit template using the
MoST dataset. Another researcher that is recording long term
data created training data (i.e. 10 repetitions) for the stand-
to-sit movement. This data was collected at 40Hz with an
accelerometer range of ±4g. This training data was also
recorded in an environment with stools that are taller than the
chairs used during the MoST data collection with the sensor
in the subject’s pocket. We use the x-axis of the accelerometer
for both templates.

Using the right thigh sensor from the MoST dataset for the
template, the MoST data is decimated and scaled to match
the characteristics of the data in the in the system under test.
The MoST based template and the template from the new
training data are tested over a two days of data from the
long term data collection. The continuous data from the first
day had a single subject and lasted approximately four hours.
The data from the second day had three subjects and had
approximately eight hours and fifteen minutes of collection.

We use the DTW algorithm and thresholding to find
instances of stand-to-sit in the long term data using the
template from MoST and the template from the training data.
We expect the template generated from MoST to perform
similarly to the template generated specifically for this dataset.
From the two days of data, there were 25 stand-to-sit instances
observed on the video recording of the lab area used for
the long term data collection. Using the MoST template,
24 of these instances were detected. Using the task specific
templates, 23 of the instances were detected.

Table 5 shows the instance detection and error as well as
the difference in time for the start of the instances found using
both templates. The instances of the movement are expected
to be found at the same start time if the templates behave
the same. In the majority of cases, there is no difference
in the time of the instances found. There is one outlier
with a 24 second difference for the instances between the
two templates.
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Fig. 10. Stand-to-Sit start times for outlier. The x marks the start based on
the MoST template and the circle marks the start based on the data specific
template. The triangle marks the end of the movement for both templates.

Fig. 10 shows the start times of this instance based on
the MoST template (marked with x) and the data specific
template (marked with a circle). This error is due to the
MoST template matching a part of the signal that was before
the actual stand-to-sit as well as the stand-to-sit. The subject
stopped walking and stood for several seconds before sitting.
The algorithm mapped the end of the walking data to the
first samples of the MoST template. Because the rest of the
movement before the stand-to-sit was relatively flat due to
the subject standing still, the template was mapped to this
segment and the DTW cost stayed below the threshold for
this entire segment. This caused the difference in start time
though the proper instance of the movement was detected.
One other instance has a time difference of 2 seconds, and
all other instances have a difference of 1 second or less. The
average time difference overall instances is 1.39 seconds with
a median value of 0 seconds. The template generated from
MoST data would allow this algorithm to be tested without
generating new templates and therefore save time for algorithm
development.

A single application cannot prove the value of the data gen-
erated by MoST. However, we chose DTW for both validation
scenarios as it is a robust algorithm for processing time-series
and has been well studied. The use of this algorithm provides
an example of how data synthesized from MoST can be used
and at the same time shows the similarity between natural
data and synthesized data. The results show that the MoST
synthesis data is generally similar to the human data and can be
useful for implementing and testing algorithms. It also shows
that the MoST data can be used directly to save time and
effort for recording training data for algorithm development
even when there are differences in the sensor setup (i.e. range,
sensitivity, frequency, location).

VI. ENHANCEMENTS

MoST allows the synthesis of data sequences based on real
sensor data that can be used for development of algorithms for
wearable sensors. The MoST data can also be used to allow
transfer learning [34]. The information gathered from this data
can be adapted to and used in other training scenarios. Any
algorithms developed or information gained from MoST data
can be used to inform new algorithms. The development team
as well as the open source community will contribute to the
increased capabilities and quality of the system.

Fig. 11. Synthesis of wrist sensor data from MoST and UTD MHAD.

The primary enhancement is to increase the amount of data
in the database. The increase in data will add further variability
to the dataset. We are currently adding our own data, but we
must ensure data from other sources is compatible. To test
the ability of adding new data for use with MoST, we added
the inertial sensor data from the University of Texas at Dallas
Multimodal Human Action Dataset (UTD MHAD) [35]. This
dataset has inertial data from a single sensor as well as
Microsoft Kinect depth and RGB camera data. The dataset has
3-axis gyroscope and 3-axis accelerometer data collected with
ranges of ±1000 deg/s and ±8g respectively at 50Hz stored
as MATLAB files. Updates to the Data Synthesis tool were
made to handle synthesis using both datasets, which requires
adjustments for range, sampling rate, and file type.

Fig. 11 shows an output of the Data Synthesis tool created
using movements from the MoST dataset (blue, solid sections)
as well as the UTD MHAD dataset (red, dashed section). This
plot represents acceleration data from the x-axis of a sensor
worn on the right wrist and shows how data from similar
sensor locations in different datasets can be merged using the
MoST tools. The sequence of movements is sit-to-stand, swipe
right hand left (MHAD), swipe right hand right (MHAD),
stand-to-sit, sit-to-lie, and lie-to-sit. Of the 27 movements in
the UTD MHAD dataset, 23 of the movements differ from
those already in MoST.

In the future, the toolset will accommodate collaborative
efforts. Other researchers can add additional movements.
As long as there is some overlap in sensor locations, there
is no limit to the amount or type of movement and activities
added. Additionally, the synthesis tool can be updated to
output a variety of data rates and different bit depths to emulate
varying sensor platforms. We are defining a file format that
will more easily allow the community to add new data. The
file will detail metadata about the subject (e.g., age, sex, etc.).
Additionally, the sensitivity and range of the sensors, sensor
modalities and axes, and the orientation (relative to neutral
posture) of the sensors should be defined in the file. While
additional data can be added as discussed with manual updates,
this updated file format and information will allow a new
software tool to handle the conversion from the original data
format into a MoST compatible format automatically. The
Data Visualization tool must also be updated to handle videos
that do not have frame timing information and data that does
not have video.
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With data coming from many sources, there is a risk of low
quality data being added to the database. We will develop
a confidence metric (i.e. ranking system) that allows the
community to determine the quality of data in the system. The
highest quality data will be selected for use in synthesis and
lower quality data to be used less frequently. The community
will validate the quality of the data through this system.
Additionally, the community will be able to label and annotate
data based on new needs and movement types.

Another difficulty of adding additional data is ensuring users
are able to find the data they need in the system. Making
improvements to the database search tool for sorting through
large amounts of data will be critical. Additionally, the data
used by the other tools in MoST will be stored in the HDF5 file
format for simpler access. This hierarchical file format will
allow for the structure of the data to be more easily understood
without having to know about all of the data in the file.
It also allows storage of the raw data, the meta-data, and the
annotations in a single file.

Because some of our tools are built in MATLAB, we will
also provide the executables for these functions to allow users
without a license to have access to the related functionality.
Considerations will be made in the future towards moving to
license-free tools to allow editing by a larger group of users.

VII. CONCLUSIONS

The MotionSynthesis Toolset is an open source tool that
should allow researchers and other users to synthesize large
datasets with much less effort than standard data collection.
They will also be able to contribute data that can be used in
synthesis. The open source nature of the tool will allow for
greater collaboration as well as improvement of the quality
and amount of data in the database. Algorithm development
and analysis can be hastened with the data from the tool.

MoST is available at http://motionsynthesis.org and on
Github. The tool will be supported through additional data
collection as well as efficiency and usability improvements
for the tools. Community usage and feedback will add to the
overall quality of the data and the usability of the toolset.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding organizations.

REFERENCES

[1] Y. Wang, L. Li, B. Wang, and L. Wang, “A body sensor network platform
for in-home health monitoring application,” in Proc. 4th Int. Conf. IEEE
Ubiquitous Inf. Technol. Appl. (ICUT), Dec. 2009, pp. 1–5.

[2] J. Wannenburg and R. Malekian, “Body sensor network for mobile
health monitoring, a diagnosis and anticipating system,” IEEE Sensors J.,
vol. 15, no. 12, pp. 6839–6852, Dec. 2015.

[3] M.-M. Bidmeshki and R. Jafari, “Low power programmable architecture
for periodic activity monitoring,” in Proc. ACM/IEEE 4th Int. Conf.
Cyber-Phys. Syst., Apr. 2013, pp. 81–88.

[4] J. Mann, R. Rabinovich, A. Bates, S. Giavedoni, W. MacNee, and
D. K. Arvind, “Simultaneous activity and respiratory monitoring using
an accelerometer,” in Proc. Int. Conf. IEEE Body Sensor Netw. (BSN),
May 2011, pp. 139–143.

[5] G. Bordello, W. Brunette, J. Lester, P. Powledge, and A. Rea,
“An ecosystem of platforms to support sensors for personal fitness,” in
Proc. Int. Workshop IEEE Wearable Implant. Body Sensor Netw. (BSN),
Apr. 2006, pp. 174–178.

[6] T. R. Bennett et al., “MotionSynthesis toolset (MoST): A toolset
for human motion data synthesis and validation,” in Proc. 4th ACM
MobiHoc Workshop Pervasive Wireless Healthcare (MobileHealth),
New York, NY, USA, 2014, pp. 25–30. [Online]. Available: http://doi.
acm.org/10.1145/2633651.2637472

[7] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions:
A local SVM approach,” in Proc. 17th Int. Conf. Pattern Recog-
nit. (ICPR), vol. 3, Aug. 2004, pp. 32–36.

[8] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as
space-time shapes,” in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV),
vol. 2, Oct. 2005, pp. 1395–1402.

[9] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action MACH a spatio-
temporal Maximum Average Correlation Height filter for action
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2008, pp. 1–8. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2-s2.0-51949084792&partnerID=40&md5=
22e680a9d509bcd8686307cc24d702ad

[10] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2008, pp. 1–8.

[11] O. Kliper-Gross, T. Hassner, and L. Wolf, “The action similarity labeling
challenge,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3,
pp. 615–621, Mar. 2012.

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB:
A large video database for human motion recognition,” in Proc. Int.
Conf. Comput. Vis. (ICCV), Nov. 2011, pp. 2556–2563.

[13] P. Kuryloski et al., “DexterNet: An open platform for heterogeneous
body sensor networks and its applications,” in Proc. 6th Int. Work-
shop IEEE Wearable Implant. Body Sensor Netw. (BSN), Jun. 2009,
pp. 92–97.

[14] A. Y. Yang, S. Iyengar, P. Kuryloski, and R. Jafari, “Distributed seg-
mentation and classification of human actions using a wearable motion
sensor network,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2008, pp. 1–8.

[15] W. Ugulino, D. Cardador, K. Vega, E. Velloso, R. Milidiú, and H. Fuks,
“Wearable computing: Accelerometers’ data classification of body pos-
tures and movements,” in Advances in Artificial Intelligence—SBIA.
Berlin, Germany: Springer-Verlag, 2012, pp. 52–61.

[16] M. Zhang and A. A. Sawchuk, “USC-HAD: A daily activity dataset for
ubiquitous activity recognition using wearable sensors,” in Proc. ACM
Conf. Ubiquitous Comput., 2012, pp. 1036–1043.

[17] M. Atzori et al., “Characterization of a benchmark database for myoelec-
tric movement classification,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 23, no. 1, pp. 73–83, Jan. 2015.

[18] T. V. Marcard, G. Pons-Moll, and B. Rosenhahn, “Multimodal motion
capture dataset TNT15,” Leibniz Univ. Hannover, Hanover, Germany,
and Max Planck for Intelligent Systems, Tübingen, Germany, Tech. Rep.,
2016.

[19] P. Zappi, C. Lombriser, E. Farella, L. Benini, and G. Tröster, “Experi-
ences with experiments in ambient intelligence environments,” in Proc.
IADIS Int. Conf. Wireless Appl. Comput., 2009, pp. 171–174.

[20] S. S. Intille et al., “Using a live-in laboratory for ubiquitous computing
research,” in Pervasive Computing. Berlin, Germany: Springer-Verlag,
May 2006, pp. 349–365.

[21] F. De la Torre Frade et al., “Guide to the Carnegie Mellon University
multimodal activity (CMU-MMAC) database,” Robot. Inst., Pittsburgh,
PA, USA, Tech. Rep. CMU-RI-TR-08-22, 2008.

[22] D. Roggen et al., “Collecting complex activity datasets in highly rich
networked sensor environments,” in Proc. 7th Int. Conf. IEEE Netw.
Sens. Syst. (INSS), Jun. 2010, pp. 233–240.

[23] D. Takada, T. Ogawa, K. Kiyokawa, and H. Takemura, “A context-aware
AR navigation system using wearable sensors,” in Human-Computer
Interaction. Ambient, Ubiquitous and Intelligent Interaction. Springer,
2009, pp. 793–801.

[24] C. Doukas and I. Maglogiannis, “Managing wearable sensor
data through cloud computing,” in Proc. IEEE 3rd Int. Conf.
IEEE Cloud Comput. Technol. Sci. (CloudCom), Nov./Dec. 2011,
pp. 440–445.

[25] V. Loseu, H. Ghasemzadeh, and R. Jafari, “A mining technique
using N n-grams and motion transcripts for body sensor net-
work data repository,” Proc. IEEE, vol. 100, no. 1, pp. 107–121,
Jan. 2012.

[26] V. Loseu, J. Mannil, and R. Jafari, “Lightweight power aware and
scalable movement monitoring for wearable computers: A mining and
recognition technique at the fingertip of sensors,” in Proc. 2nd Conf.
Wireless Health. ACM, 2011, p. 7.



BENNETT et al.: MoST: AN OPEN SOURCE TOOL AND DATA SET 5375

[27] M. L. Sbodio and W. Thronicke, “Ontology-based context management
components for service oriented architectures on wearable devices,”
in Proc. 3rd IEEE Int. Conf. Ind. Informat. (INDIN), Aug. 2005,
pp. 129–133.

[28] K. Murao, Y. Takegawa, T. Terada, and S. Nishio, “CLAD: A sensor
management device for wearable computing,” in Proc. 7th Int. Workshop
Smart Appl. Wearable Comput. (IWSAWC), Jun. 2007, p. 46.

[29] D. Bannach, “Tools and methods to support opportunistic human
activity recognition,” Ph.D. dissertation, Dept. Fachbereich Informatik,
Kaiserslautern Univ. Technol., Kaiserslautern, Germany, 2015.

[30] D. Foti and L. Kanazawa, “Activities of daily living,” in Pedretti’s
Occupational Therapy: Practice Skills for Physical Dysfunction, 6th ed.
2008, pp. 146–194.

[31] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson,
“An overview of the HDF5 technology suite and its applications,” in
Proc. EDBT/ICDT Workshop Array Databases, 2011, pp. 36–47.

[32] C. Berge and E. Minieka, Graphs and Hypergraphs, vol. 7. Amsterdam,
The Netherlands: North Holland, 1973.

[33] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series,” in Proc. KDD Workshop, 1994, vol. 10. no. 16,
pp. 359–370.

[34] L. Zhang, W. Zuo, and D. Zhang, “LSDT: Latent sparse domain transfer
learning for visual adaptation,” IEEE Trans. Image Process., vol. 25,
no. 3, pp. 1177–1191, Mar. 2016.

[35] C. Chen, R. Jafari, and N. Kehtarnavaz, “UTD-MHAD: A multi-
modal dataset for human action recognition utilizing a depth cam-
era and a wearable inertial sensor,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2015, pp. 168–172.

Terrell R. Bennett (S’14) received the S.B. degree
in electrical engineering and computer science from
the Massachusetts Institute of Technology, in 2002,
and the M.S. degree in electrical engineering from
the University of Texas at Dallas, in 2007.

He was an Electrical Design Engineer with the
industry from 2007 to 2013. He is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering, University of Texas at Dallas. His
research is focused on signal processing and algo-
rithm design for synchronization of cyber-physical

systems and the Internet of Things as well as working with data from wearable
sensors to detect activities, estimate motion, and improve the quality of the
sensor data.

Mr. Bennett received the Texas Analog Center of Excellence Analog
Fellowship, the Best of Doctoral Colloquium Award at Body Sensor Networks
2014, and the Best Presentation of Session Award at the American Control
Conference 2013.

Hunter C. Massey (S’15) received the bachelor’s
degree in computer engineering from the University
of Texas at Dallas, Richardson, TX, in 2014, where
he is currently pursuing the M.S. degree in com-
puter engineering. His research interests lie in signal
processing and data analysis.

Jian Wu received the M.S. degree in communication
and information systems from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2012. He is currently pursuing the Ph.D. degree
in computer engineering with Texas A&M Univer-
sity. His research interests include signal processing
algorithm development for IMU-based movement
monitoring and activity recognition.

Syed Ali Hasnain (S’16) received the bachelor’s
degree in electrical engineering from the National
University of Science and Technology, Pakistan.
He is currently pursuing the Ph.D. degree in com-
puter engineering with Texas A&M University.
His research interests include wearable computing,
context awareness, embedded systems, and signal
processing.

Roozbeh Jafari (SM’12) received the Ph.D. degree
in computer science from UCLA. He completed
a post-doctoral fellowship at UC-Berkeley. He is
an Associate Professor of Biomedical Engineering,
Computer Science and Engineering, and Electrical
and Computer Engineering with Texas A&M Uni-
versity. His research interest lies in the areas of
wearable computer design and signal processing.
His research has been funded by the NSF, NIH,
DoD (TATRC), AFRL, AFOSR, DARPA, SRC,
and industry (Texas Instruments, Tektronix, and

Samsung & Telecom Italia). He has authored over 100 papers in refereed
journals and conferences. He served as the General Chair and Technical
Program Committee Chair for several flagship conferences in the area of
wearable computers, including the ACM Wireless Health 2012 and 2013,
the International Conference on Body Sensor Networks 2011, and the Inter-
national Conference on Body Area Networks 2011. He was a recipient of
the NSF CAREER Award in 2012, the IEEE Real-Time and Embedded
Technology and Applications Symposium Best Paper Award in 2011, and
the Andrew P. Sage Best Transactions Paper Award from the IEEE Systems,
Man and Cybernetics Society in 2014. He is an Associate Editor of the IEEE
SENSORS JOURNAL, the IEEE INTERNET OF THINGS JOURNAL, and the
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChancery-MediumItalic
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


