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Wearables are being widely utilized in health and wellness applications, primarily due to the recent ad-
vances in the sensor and wireless communication, which enhance the promise of wearable systems in pro-
viding continuous and real-time monitoring and interventions. Wearables are generally composed of hard-
ware/software components for collection, processing, and communication of physiological data. Practical im-
plementation of wearable monitoring in real-life applications is currently limited due to notable obstacles.
The wearability and form factor are dominated by the amount of energy needed for sensing, processing and
communication. In this paper, we propose an ultra low-power granular decision making architecture, also
called screening classifier, which can be viewed as a tiered wake up circuitry, consuming three orders of
magnitude less power than the state-of-the-art low-power microcontrollers. This processing model operates
based on computationally simple template matching modules, based on coarse to fine grained analysis of
the signals with on-demand and gradually increasing of the processing power consumption. Initial template
matching rejects signals that are clearly not of interest from the signal processing chain keeping the rest
of processing blocks idle. If the signal is likely of interest, the sensitivity and the power of the template
matching modules are gradually increased and ultimately the main processing unit is activated. We pose
optimization techniques to efficiently split a full template into smaller bins, called mini-templates, and ac-
tivate only a subset of bins during each classification decision. Our experimental results on real data show
that this signal screening model reduces power consumption of the processing architecture by a factor of
70% while the sensitivity of detection remains at least 80%.
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1. INTRODUCTION
Mobile wearable computers, that form Body Area Networks (BANs), bring to fruition
many opportunities to continuously monitor individuals with sensors placed on the
body, or implanted in the body. These platforms promise to revolutionize many appli-
cation domains including healthcare and wellness monitoring. Examples of such appli-
cations include rehabilitation [Tamura et al. 2013], sports medicine [Jones 2007], geri-
atric care [Tamrat et al. 2012], gait analysis [Salarian et al. 2013; Ma et al. 2015], phys-
ical activity monitoring [Saeedi et al. 2014a; Alinia et al. 2015; Saeedi et al. 2014b],
diagnosis of obesity and depression [Sigmund et al. 2014], and detection of neuro-
degenerative disorders such as Alzheimer’s [Abbate et al. 2014], Parkinson’s [Cancela
et al. 2014], Huntington’s [Emmerik and Wegen 2002] diseases, nutrition monitoring
[Hezarjaribi et al. 2016], and monitoring and treatment of chronic diseases [Maciuca
et al. 2013; Fallahzadeh et al. 2015]. In the past few years, new wearable applications
have evolved and proved to be effective. Yet, one of the major obstacles is the size and
weight of the sensor units. Smaller wearable units can enhance comfort and compli-
ance. Smaller implantable units can enable many new applications. Battery size has
been the dominating factor in the size of the sensors. Battery-less units operating on
piezo, or units that require significantly smaller batteries, are not currently possible.
The proposed technique in this paper aims to significantly reduce the power consump-
tion of wearable units, and specifically the processing architecture.

Wearable computers, which form the core components of a BAN, are often composed
of several sensors, a processing unit (e.g., a microcontroller), a communication module
and a battery. Our current focus is on wearable motion sensors that are used for detec-
tion of human actions such as ‘Sit to Stand’ or ‘Lie to Sit’. We propose an architecture,
equipped with a granular decision making module (GDMM) which monitors incoming
signals/actions. The granular decision making module attempts to detect actions that
are not of interest as early as possible while consuming the least amount of energy.
If the incoming action is likely of interest, the module will turn on the main signal
processing unit (e.g., the microcontroller) for further processing. The granular decision
making is constructed in a sequence of coarse to fine grained operations. At the be-
ginning, the screening or preliminary signal processing may not exhibit high accuracy
for classifying the incoming actions, but operates at an ultra low-power. The objec-
tive of the initial screening is to identify incoming actions that are ‘obvious rejects’ or
‘accepts’. As the module begins to observe the incoming actions that are likely of inter-
est, more accurate decision making and screening processes are activated. Intuitively,
screening at the beginning is done by a classification module with tunable parameters
adjusted to consume the least amount of energy (e.g., by observing fewer samples with
lower bit resolution). The tunable parameters are adjusted to enhance the accuracy
of signal processing and classification as the incoming signal or incoming action trav-
els through the screening blocks in the GDMM. The tunable parameters include time
duration of actions, number and location of samples within each action, and bit resolu-
tion of sampled data. Collectively, screening blocks can select any combination of these
transformations to adjust processing (or power) vs. accuracy. The decision making is
performed in this fashion because often the incoming action is so dissimilar to the
action of interest (also called target action) that it can be rejected even with a coarse-
grained analysis of the signal. For incoming actions that the screening block cannot
reject with high confidence levels, the main signal processing unit will be activated.
The main advantage of this method is the power saving due to removing actions that
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are not of interest from the signal processing chain as early as possible, deactivating
the remaining modules in the signal processing chain.

Applications of wearable healthcare monitoring have unique properties motivating
our proposed technique: Events of interest often occur with a low duty cycle (e.g.,
< 1% − 5%) and the randomness to the incoming signals, even in cases where the
signals are not of interest, is not significant. This assumption holds for many wear-
able applications where the objective is to detect sparse events such as walking using
motion sensors, [Dobkin 2013; Hagler et al. 2010; Guenterberg et al. 2009b], cardiac
arrest [Dhulipala and Kanagachidambaresan 2014; Cong et al. 2009a] and seizures
[Shahrokhi et al. 2010; Liew et al. 2009] using implantable sensors. We utilize these
unique properties of the applications in order to reduce the power consumption of the
wearable unit by orders of magnitude in the signal processing chain. Although in our
approach every effort will be taken to ensure that granular decision making module
provides acceptable precision in signal processing, in the events where it generates
false positives, the sole cost would be the energy consumed to wake up the main sig-
nal processing unit for improved precision. Finally, the events are captured with a low
sampling rate (e.g.,≤100Hz−1kHz) which implies that the processing can also be done
at a slow speed.

2. RELATED WORK
Several power-aware wearables consuming hundreds of µW have been presented in
the literature [Varel et al. 2014; Liew et al. 2009; Sasaki et al. 2006]. An implantable
wireless monitoring device for cataract surgery is proposed in [Varel et al. 2014]. It is
composed of an on-chip micro mechanical pressure sensor array, a temperature sensor,
a microcontroller-based digital control unit, and an RF. The low-power interface sys-
tem for implantable neural recording, presented in [Liew et al. 2009], uses power dis-
tribution techniques. The study in [Sasaki et al. 2006] presents an accelerometer with
a 3D loop antenna using radio waves for power feeding. However, a microcontroller
is used as control unit of the battery-free accelerometer. These systems, are either
not programmable, or a microcontroller is entirely in charge of the programmability.
In contrast, our signal screening module is reprogrammable and can be configured to
identify various movements and templates.

Several other application-specific sensing devices have been proposed in recent
years. Examples include a patient-specific seizure detector in [Shoeb et al. 2009], an
implantable battery-less blood pressure monitor [Cong et al. 2009a; 2009b], an ECG
sensing micro-system with adaptive RF powering [Chaimanonart and Young 2009], an
implantable blood pressure monitor for in vivo measurement [Cleven et al. 2014], an
implantable battery-free application specific system with telemetric and EMG record-
ing circuitry [Parramon et al. 1997], a battery-less wireless biosensor for cardiovas-
cular applications [Najafi and Ludomirsky 2004], an ultra low-power sensing device
for measuring pulse oximetry [Huiku and Virtanen 2013], and a battery-less sensing
device with radio frequency energy-harvesting [Mandal et al. 2010; Zhang et al. 2013].
All these studies, however, focus solely on power consumption of the sensing module
and still require a microcontroller for processing of the data. Our proposed processing
model takes into account unique properties of physical movement monitoring and BAN
applications to significantly reduce the power consumption of the processing architec-
ture.

There have been efforts towards creating ultra low-power semiconductor compo-
nents and devices. Multi-threshold CMOS (MTCMOS) circuits are an example [Di and
Smith 2014]. A wireless system with MTCMOS/SOI circuit technology is suggested
which lowers the supply voltage of the LSIs 0.5 V and reduces the power dissipation to
1 mW [Douseki et al. 2003]. The power rating of 1 mW, however, is still larger than a
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Fig. 1: The custom-designed wearable sensor node used in our
data collection

typical power budget that could be supplied by energy harvesting circuits. The power
budget of energy harvesting circuits is often in the range of tens of µWs. For exam-
ple, a battery-less vibration-based energy harvesting system was proposed for ultra
low-power ubiquitous applications which can generated 36.79 µW [Chao et al. 2007].
Although these techniques focus on circuit and transistor-level low-power design, our
approach to devising ultra low-power BANs is a system-level design and optimization
aiming at substantially reducing power consumption of the processing unit by keep-
ing the main processing unit in the loop only when the event of interest is detected
but these events do not happen often; hence, the amount of energy saving would be
significant.

3. SENSING AND PROCESSING ARCHITECTURES
The main units of a typical BAN system are explained in the following section. We are
particularly interested in movement monitoring applications that use inertial informa-
tion to examine human motions for the purpose of patient monitoring, diagnosis and
treatment. However, the proposed methodology may be applicable to other monitoring
domains (e.g., a pacemaker that is required to detect abnormal ECG signals) because
such applications also intend to detect sparse events.

3.1. Sensor Nodes
A BAN is composed of several sensor nodes attached on the patient’s body, embedded
with the clothing, or implanted in the human body. Motion sensor nodes are typically
used in activity monitoring applications. An example of motion sensor nodes with em-
bedded accelerometer and gyroscope is shown in Fig. 1, which is also used for our
experimental data collection and validation of the proposed algorithms. Each node in-
cludes a microcontroller (i.e., TI MSP430) for signal processing, and a custom-designed
sensor board including a 3-axis accelerometer and a 2-axis gyroscope for inertial data
collection. The sensor node has also a radio module for communication with other sen-
sor nodes in the network or with a gateway such as a cell phone.

3.2. Per-node Signal Processing
Each sensor node has a microcontroller which can sample motion sensors at a cer-
tain rate. The acquired signals need to undergo specific embedded signal processing
tasks in order to make higher level interpretations of human movements. The goal
of main signal processing chain (MSPC) is to extract useful information from sensor
data. Frequently, this data is a high-level observation, such as “Is the subject run-
ning?” or “What is the stride length when the subject is walking?”. In other words,
the purpose of main signal processing is to provide a ‘fully’ software programmable
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Fig. 2: Overall system architecture illustrating granular deci-
sion making module (GDMM) in connection with communication
unit, sensor units, and other computing modules.

environment for development of ‘highly’ reliable signal processing technique for action
detection/verification and extracting details from the signals (e.g., balance during ‘sit
to stand’ when it occurs). Typically, signal processing tasks are imposed by the applica-
tion of the BAN. However, a basic requirement of movement monitoring applications is
to detect actions first, and perform additional processing next. This application is usu-
ally referred to as action recognition [Ghasemzadeh et al. 2009; Ghasemzadeh et al.
2010]. A typical signal processing chain for action recognition includes filtering, seg-
mentation, feature extraction, feature conditioning, and classification. The sampled
data are first filtered to improve signal to noise ratio. A segmentation module [Lin and
Davis 2010; Hamm et al. 2013; Guenterberg et al. 2009a] then separates portions of
the signal that correspond to activities from those associated with rest (non-activity).
The set of statistical features extracted from individual segments is reduced in size
using feature conditioning techniques to speed up and enhance the classification task.
At the end of the main signal processing chain (MSPC), a classifier (e.g., k-Nearest
Neighbor [Amato and Falchi 2013]) is utilized to identify the action performed by the
subject.

4. ULTRA LOW-POWER MODEL
In many BAN applications, only a very small set of human actions is of interest. For
example, gait analysis only is concerned with walking, fall detection with falls, Parkin-
son’s disease monitoring with certain movements such as tremors, and sleep apnea
with restless leg movements [Lanza et al. 2014]. These target actions may occur in-
frequently. Considerable energy is wasted processing non-target actions. Efficiently
rejecting non-target actions with a screening classifier could lead to a significant in-
crease in system lifetime.

4.1. Granular Decision Making
An overall architecture of the proposed screening approach is illustrated in Fig. 2.
The granular decision making module (GDMM), which is composed of several coarse
to fine grained screening classifiers, is responsible for screening sensor readings and
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Fig. 3: Block diagram of the granular decision making module
(GDMM) and the main signal processing chain (MSPC).

activating main processing unit upon arrival of an event (e.g., action/movement) of
interest.

Fig. 3 shows the block diagram of the granular decision making module (GDMM)
and main signal processing chain (MSPC). The main component in the diagram is the
granular decision making module, communicating with main signal processing block.
The main signal processing is implemented on the main processor (e.g., a microcon-
troller). The granular decision making module is an ultra low power screening classi-
fier aiming to reject actions that are not of interest. This functionality is created by a
multiplier-accumulator structure that implements a template matching function.

4.2. Template Matching
The screening classifier and the main signal processing form a rejecting chain of two
classifiers. While the main signal processing uses classical pattern recognition tech-
niques to classify actions, the screening classifier employs simple template matching
techniques to estimate the likelihood of occurrence of a target action. An unknown ac-
tion is processed by the template matching block first. If the template matching block
does not reject the action, it is evaluated using the main signal processing block (i.e.,
the microcontroller). A template matching block functions as a binary classifier based
on the cross correlation [Chen et al. 2013].Cross correlation takes the advantage of
programmability and low computational complexity. The incoming signal is compared
to a predefined template of the target action. The comparison assigns a score value
representing similarity between the current action and the template (target-action).
The cross correlation score is then compared against a threshold and the action is
either accepted or rejected. Only in case of acceptance the main signal processing is
activated. The cross correlation measure was chosen because it can be implemented
in hardware by a series of multiplications and additions. The size of the data storage
units including memory and buffer depends on the size of the mini-templates.
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4.3. Optimization Strategy
The template matching block described previously can be optimized for further en-
ergy saving by adjusting several tuning parameters. These parameters include time
duration of actions considered for cross correlation calculation, number and location
of samples [Ghasemzadeh and Jafari 2011b], and bit resolution of the sampled data
[Ghasemzadeh and Jafari 2013]. This allows us to use a sequence of template match-
ing blocks each contributing to the classification of events only to certain level while
providing the benefit of low power consumption. The focus of this paper is on mini-
mizing the number of samples used for calculation of the cross correlation function.
Motivation behind this optimization is that even with a fixed bit resolution and action
duration, only small portions of the template need to be considered when measuring
similarity of an input signal with the template, hence offering the opportunity to fur-
ther save on the computations and energy consumption. We address this optimization
problem by dividing a full template into several bins, each forming a mini-template.
Mini-template approach will further reduce power consumption of the system allow-
ing for realization of significantly less power-hungry wearable units that can even-
tually enable battery-less technologies for monitoring platforms. Furthermore, mini-
templates highlight prominent patterns in the signal and eliminate irrelevant portions
of the signal, and therefore, improve performance of signal processing and sensitivity
of the classification system.

4.4. Motivational Example
Fig. 4 illustrates motivation behind using mini-templates. This figure shows real data
collected with our wearable sensors where only three actions are used for visualiza-
tion. The graphs show raw sensor readings from Z-axis accelerometer of a node placed
on the ‘Waist’ of the subject. Assume ‘Sit to Stand’ (bold black plot) is the action of
interest and the other two actions, ‘Kneeling’ (dashed blue plot) and ‘Step Forward’
(dashed red plot) may occur as non-target. Clearly, if the entire template is considered,
the target action can be distinguished from the two others based on the cross correla-
tion measure. Assume each template is divided into three bins as indicated by (I), (II),
and (III). None of the bins can solely achieve small false positive rates. For instance,
if only bin (I) is used, a ‘Step Forward’ action may be classified as ‘Sit to Stand’ lead-
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ing to high misclassification rate. Similarly, in bins (II) and (III) ‘Kneeling’ is strongly
correlated with the target action (‘Sit to Stand’) resulting in a large number of false
positives. However, assume the case where only bins (I) and (II) are activated for tem-
plate matching. The only action that can be accepted by both bins is ‘Sit to Stand’. If
an action is accepted by bin (I), it can be confidently considered as either ‘Sit to Stand’
or ‘Step Forward’. If the action is further accepted by bin (II), the choice of ‘Step For-
ward’ is ignored leaving ‘Sit to Stand’ as the final classification decision. By activating
only two bins rather than the entire template, one-third of the multiply-add opera-
tions are discarded from the template matching resulting in 33% savings. Therefore,
our objective is to find a minimum subset of template bins that can confidently activate
the main signal processing block while maintaining low false positive rates. We note
that the ordering of processing mini-templates is also important because a suboptimal
ordering can result in a larger number of bins being processed.

5. MINI-TEMPLATE OPTIMIZATION
As discussed in the previous section, the template matching block in Fig. 3 can be di-
vided into several lower cost blocks associated with a set of predefined mini-templates.
We pose an optimization problem to find the minimum subset of template bins and
their ordering required for detection of a target action subject to a given lower bound
on sensitivity rates, called true positive rates, of the screening block. We call this op-
timization problem Minimum Size Mini-Template Set (MSMTS). Throughout this sec-
tion, we use the notations in Table I to formulate this problem.

5.1. Overview of Decision Path Construction
We overview different steps needed to find an optimal decision path using the proposed
GDMM. In describing these steps, we assume that a set of training examples associ-
ated with human actions are given and one action is specified as target. Furthermore,
the system is aimed to minimize the power consumption such that a minimum desir-
able sensitivity to the classification of the target action is guaranteed. Moreover, a set
of screening blocks associated with different template bins and their corresponding
power consumption are given.

Step 1: Using a set of training instances or the target action and non-target actions,
determine the sensor that best distinguishes between target action and non-target
actions. The process of sensor selection is described in Section 5.2.

Step 2: Generate a template associated with the target action using the training
examples. The template is generated based on the approach that will be described in
Section 5.3.

Step 3: Set the threshold for each screening block such that the block meets the
minimum desirable sensitivity. In order to maintain this requirement, the threshold
for a given screen block is set according to discussion in Section 5.4. Intuitively, the
threshold is set to the largest value that satisfies the sensitivity requirement. This is
mainly due to the fact that larger values of the threshold result in lower sensitivity
rates. Thus, we start with a small value (e.g., close to ‘0’ which would result in 100%
sensitivity) and increase this value as long as the sensitivity rate is still above the
desirable value (λ).

Step 4: For each screening block, compute the weakly correlated set WCSk based on
Definition 5.3.

Step 5: Construct a decision path. The process of decision path construction will be
defined by Problem 1 and will be suggested by Algorithm 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 01, No. 01, Article 01, Pub. date: January 2016.



A Hardware-Assisted Energy-Efficient Processing Model for Activity Recognition using Wearables01:9

Table I: Notations

Term Description
â target action
A set of n not-target actions
ai i-th non-target action
ali l-th training trial of action ai
Ti template generated for action ai
K number of template bins
B set of template bins due to template partitioning
bk k-th template bin due to template partitioning
MTik k-th mini-template of ai associated with bk
γ(Ti, Tj) similarity score between templates Ti and Tj
O optimal subset of bins used for classification
R size of optimal set O found by MSMTS problem
λ lower bound on sensitivity of the screening blocks
tpk sensitivity or true positive rate for template bin k
thrk threshold value for template bin k

5.2. Prominent Sensor Selection
Given a target action â and A = {a1, a2, . . . , an} a set of n non-target actions, we first
collect data with all these actions and from a number of wearable motion sensors. Let
S = {s1, . . . , sm} denote the set of m sensors. In this article, we hypothesize that we
can develop the granular decision making module for detection of the target action by
examining only one sensor stream. In Section 6, we will test this hypothesis using real
data and will demonstrate that it is possible to use only one sensor axis for detection of
an individual target action. Our sensor selection algorithm is based on the similarity
score defined below.

Definition 5.1 (Similarity Score). Given two time series signals f and g of length
N , the similarity score γ(f ,g) between the two signals is defined based on their nor-
malized cross correlation by

γ(f, g) =

∑N
t=1[f(t)− f̄ ][g(t)− ḡ]√∑N

t=1[f(t)− f̄ ]2
∑N

t=1[g − ḡ]2
(1)

where f̄ and ḡ denote mean values of f and g.

Let xlij denote the sensor signal associated with the l-th trial/instance of non-target
action ai from sensor sj . Furthermore, let x̂lj represent l-th trial of the target action
â captured using sensor sj . Without loss of generality, we assume that there exist L
signal trials of each action including target and non-target. For each sensor sj , we
compute µj as follows.

µj =

n∑
i=1

L∑
r=1

L∑
l=1

γ(x̂lj , x
r
ij) (2)

The value computed by µj represents the total amount of similarity between the
training instances of the target action â and non-target actions in A. The prominent
sensor used for our target action screening is then the sensor whose instances repre-
sent minimum similarity between target and non-target actions. Thus, the prominent
sensor, ŝ, is given by
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ŝ = argmin
j

µj (3)

5.3. Template Generation
Given a target action â and A = {a1, a2, . . . , an} a set of n non-target actions, we
generate T̂ , template for target action, from the set of training trials. Templates are
generated as shown in Definition 5.2 according to the similarity score in Definition 5.1.

Definition 5.2 (Template). Given a target action â with L training trials X̂ = {x̂1
j ,

. . . , x̂Lj } obtained from prominent sensor sj and non-target actions ai ∈ A with training
trials X = {X1j , . . . , Xnj} obtained from prominent sensor sj such that Xij = {x1

ij , . . . ,
xlij , . . . , xLij} has L training trials, a template T̂ for â is the best representative trial
with respect to the similarity score γ between all pairs of the training trials. The trial
that is most similar to the trials from the target action and most dissimilar to the trials
from non-target actions is finally chosen as candidate for target action template. Thus,
a template T̂j using prominent sensor sj is given by Equation 4.

T̂j = argmax
l

θlj (4)

where θlj is given by

θlj =

∑
r:r 6=l γ(x̂lj , x̂

r
j)∑n

i=1

∑L
r=1 γ(x̂lj , x

r
ij)

(5)

In Equation 5, the numerator calculates the summation of similarity scores across
all training instances that are within the dataset for the target action â. The denom-
inator, in contrast, represents the overall similarity between the training instance l
from target action class â and all other non-target actions ai.

Each template is evenly divided into K bins B = {b1, b2, . . . , bK}. Each bin bk rep-
resents a set of mini-templates associated with target action and different non-target
actions. We investigate how each one of the bins contributes to detection of a target
action and choose the best sequence of template bins to be examined during template
matching.

5.4. Minimum Size Mini-Template Set Problem
In this section, we formally define MSMTS problem. Each template bin, bk, is assigned
a threshold value, thrk, for the cross correlation analysis. This threshold determines
how sensitive that bin is to detection of the target action â. Thus, we set the threshold
such that the given sensitivity (i.e., true positive) requirement of the application is
met. Intuitively, the threshold is set to the largest value that satisfies the sensitivity
requirement. We note that the result of the cross validation is a value ranging between
0 and 1 indicating completely dissimilar and completely similar signals respectively.
Therefore, a larger thrk value results in lower sensitivity rate because such a value
requires higher similarity of a performed action to the target action template during
system training. Thus, we start with a small threshold value (e.g., close to ‘0’ which
would result in 100% sensitivity) and increase this value as long as the sensitivity
rate is still above the desirable value (λ). Therefore, the choice of the threshold would
satisfy this requirement: tpk ≥ λ, and is given by
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thrk =

{
argmax

l
γ(M̂T k, â

l
k)|tpk ≥ λ

}
(6)

where M̂T k denotes the k-th mini-template associated with target action â and âlk
represents the k-th segment of the target action drawn from training trial l. Therefore,
the threshold thrk is computed after the template of the target action is generated,
and based on the amount of similarity of the training trials of the target action and
the template.

By setting the threshold based on Equation 6, our system aims to maintain a min-
imum sensitivity rate of λ, to target action, on all screening blocks while attempting
to minimize the false positive rates due to accepting non-target actions. We note that
the choice of the threshold thrk will impact the false positive rates due to activating
a screening block or including a screening block on the decision path. In fact, lower
values of thrk translate into higher likelihood of classifying non-target actions as tar-
get, resulting in high false positive rates. As a result, we set the threshold as high
as possible such that the sensitivity requirement is met. Yet, it is possible that some
non-target actions look similar to the target from the point of view of some screen-
ing blocks. Thus, we need a method for identifying how well each screening block is
at rejecting non-target actions. In order to quantify capability of individual screening
blocks in rejecting non-target actions, we define a Weekly Correlated Set of actions for
each bin bk.

Definition 5.3 (Weakly Correlated). Let aik denote the k-th signal segment for ac-
tion ai. Within each bin bk, the signal segment aik is referred to as weakly correlated
with the target action if γ(M̂T k,aik) < thrk = 1− εk, where M̂T k denotes the k-th mini-
template associated with target action â. Similarly, for each bin bk, a setWCSk, Weakly
Correlated Set, is defined as the set of actions ai whose signal segment aik is weakly
correlated.

Intuitively, an incoming signal that is weakly correlated in bk will be rejected. The
signal, however, will be further processed by subsequent bins if it is accepted by a bin
bk on the decision path. Clearly, in order to accept an event, it needs to be weakly
correlated with all non-target actions. Therefore, the weakly correlated set WCSk as-
sociated with a bin bk indicates how many actions are likely to be rejected by bk. As
soon as WCSk are computed for all screening blocks (i.e., bins), we need to find an
optimal ordering of the blocks such that the number of such blocks is minimized and
the collection of the blocks can reject all non-target actions.

In order to formally define our optimization problem, we first define complete order-
ing. Informally, a complete ordering of the template bins is a sequence of the bins, or
equivalently screening blocks, which is capable of rejecting all non-target actions in
A based on the concept of weakly correlated action defined previously. We then define
ordering cost for a complete ordering. The ordering cost takes into account the number
of bins that need to be examined on the decision path (i.e, bin ordering) in order to
reject a non-target action. The overall ordering cost is then the summation of the costs
over all non-target actions.

Definition 5.4 (Complete Ordering). An ordering O={b1, b2, . . . , bR} is complete if
the following condition holds.

R⋃
k=1

WCSk = A (7)
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Definition 5.5 (Ordering Cost). Let O={b1, b2, . . . , bR} be a complete ordering of
bins and f(ai) a function that returns the index of the first bin in which the following
condition holds:

{ai | ai ∈ A} ⊂
f(ai)⋃
k=1

WCSk (8)

That is, f(ai) is the number of bins, in a sequence from the complete ordering O, that
need to be examined to reject ai. We note that this examination process involves choos-
ing bins from the complete ordering in a sequence, starting with b1 in the complete
ordering set O={b1, b2, . . . , bR}. Then the total cost of the ordering is given by:

Z =
∑
ai∈A

f(ai) (9)

Problem 1 (MIN SIZE MINI-TEMPLATE SET). Given a finite set A, of non-target ac-
tions, and WCS={WCS1, WCS2, . . . , WCSK}, a collection of subsets of A such that the
union of all WCSi forms A, MSMTS is the problem of finding a complete linear com-
plete ordering, O, such that the cost of the ordering is minimized.

5.5. Problem Complexity
Through the following theorem, we prove that the MSMTS problem is NP-hard.

Theorem 1. The Min Size Mini-Template Set problem is NP-hard.

Proof: 1. It is straightforward to see that Min Sum Set Cover (MSSC) problem can
be reduced to our MSMTS problem. The known MSSC problem is described as follows.
Let U be a finite set of elements and S={S1, S2, . . . , Sm} a collection of subsets of U such
that their union forms U . A linear ordering of S is a bijection f from S to {1, 2, . . . , m}.
For each element e ∈ U and linear ordering f , we define f(e) as the minimum of f(S)
over all {Si : e ∈ Si}. The goal is to find a linear ordering that minimizes

∑
e f(e). It is

easy to see that by replacing elements of U with those of A, and also replacing subsets Si

with WCSi we obtain the same problem as MSSC. Therefore, MSMTS is an NP-hard
problem.

Theorem 2. There exists no polynomial-time approximation algorithm for MSMTS
with an approximation ratio less than 4.

Proof: 2. Reducing MSSC problem to MSMTS preserves approximation of any cor-
responding solutions. Therefore, any lower bound for MSSC also holds for MSMTS. In
[Feige and Tetali 2004], it is shown that for every ε > 0, it is NP-hard to approximate
MSSC within a ratio of 4 − ε. Therefore, 4 is also a lower bound on the approximation
ratio of MSMTS.

5.6. Greedy Solution
The greedy algorithm for MSMTS is adapted from the greedy algorithm for MSSC
and is shown in Algorithm 1. At each step, it searches for the bin bk that can reject
largest number of remaining non-target events (by searching through the WCSk). It
then adds such a bin to the solution space O and removes the actions it can reject from
further consideration. Such actions are represented by the maximum cardinality set,
WCSk, as shown in Algorithm 1. Because the algorithm will not need to examine such
actions anymore, it will remove those actions from all weakly correlated sets WCSj

(j={1,. . . ,K}) including the set with maximum cardinality (i.e., WCSk). The algorithm
terminates when all non-target actions are rejected. The approximation ratio is 4 as
previously discussed.
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Algorithm 1 Greedy solution for MSMTS
Calculate set WCSk for every bin bk
O = φ
while

(⋃
bk∈OWCSk 6= A

)
do

Select bin bk such that WCSk is maximum cardinality
O = O

⋃
bk

for all ai ∈WCSk do
remove ai from all WCSj (j={1,. . . ,K})

end for
end while

6. VALIDATION
6.1. Experimental Setting
We carried out a number of experiments to collect real-data using wearable sen-
sors and to demonstrate successfulness of our hardware-assisted proposed processing
model in efficiently reducing power consumption of the processing tasks. Our exper-
iments involved three subjects performing 14 actions, each ten times, while wearing
a number of wearable sensor nodes with embedded 3-axis accelerometer and 2-axis
gyroscope sensors. The wearable node was a custom-designed sensor board attached
to a TelosB mote, as described in Section 3.1 and shown in Fig. 1. The experimental
actions were as follows: (1) Stand to Sit; (2) Sit to Stand; (3) Sit to Lie; (4) Lie to Sit; (5)
Bend and grasp; (6) Rise from bending; (7) Kneel; (8) Rise from kneeling; (9) Look back;
(10) Return from look back; (11) Turn clockwise; (12) Step forward; (13) Step backward;
and (14) Jump. Each subject wore seven sensor nodes secured to the upper body, lower
body, and waist. The nodes were programmed to sample five sensors including x, y,
z accelerometer and x, y gyroscope at 50 Hz. Our prior research [Ghasemzadeh and
Jafari 2011a] shows that this sampling rate is sufficient to capture details of human
daily living activities. The data were collected using a custom-designed MATLAB tool
for further processing. The experiments resulted in capturing over 210, 000 samples
of motion sensor data per sensor node, equivalent to a total of 1, 470, 000 samples for
the entire wearable network. We developed a segmentation tool for labeling the move-
ments in order to gather ground truth labeled training data. This tool allowed us to
examine the collected data and label them based on the type of activity performed by
the subject. The tool used the video recording of the experiments which allowed us
to observe when a movement starts and when it ends. We used 50% of the data for
training, selected at random, in the template generation process as well as in finding
optimal decision path. The remaining 50% were used as test data to determine the
accuracy of the activity recognition and the amount of power savings.

6.2. Calculating Power Numbers
Our objective was to measure energy savings when a particular action is considered
as target action (i.e., to be identified & accepted) and the rest of the actions are con-
sidered as non-target. For each action, we generated a unique template as described
in Section 5.3. As discussed in Section 4.3, the power consumption of each screening
block depends on several tunable parameters. In particular, the number of samples
used for template matching affects the power consumption significantly.

To estimate power consumption of the template matching approach, the screening
blocks were implemented using 12-bit Multiplier-ACcumulator (MAC) units. The MAC
units were designed using Verilog. The cross-correlation algorithm was developed by
a series of MAC steps depending on the number of incoming samples. At each clock
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Fig. 5: Power performance of the proposed decision making sys-
tem while screening ‘Sit to Stand’ movements. (a) Power con-
sumption of the entire system; (b) System power savings achieve
by the low power screening approach.

instant, the digitized template data and the incoming signal data were multiplied and
added to the previous MAC value. This continued, depending on the number of samples
for each incoming event, until the cross correlation value was computed for the entire
action signal.

The design was synthesized using Synopsys with the 45 nm standard Cell library.
The simulations of the Verilog RTL were completed using ModelSim PE. In order to
extract transistor level netlist, the gate-level Verilog was imported to Cadance using
Verilog-in tools. Finally, the power numbers were estimated by simulating net-list in
Synopsys Hspice. The source of the power consumption can be categorized into two
groups including dynamic power and leakage power. Dynamic power consumption is
the amount of power dissipation due to charge and discharge of the load capacitance
during operation. The load capacitance passes small current (i.e., leakage current)
even when all transistors are in idle mode. There are several reasons for leakage
current, including weak inversion, drain-induced barrier lowering, gate-induced drain
leakage, and gate oxide tunneling [Roy et al. 2003]. We present dynamic current and
leakage current together. Since the idle time increases by applying our mini-template
technique, the leakage power, which is one of the most important factors in nano-meter
CMOS technologies, increases. The reduction on dynamic power, however, is dominant
and finally leads to achieving an overall power saving. In order to calculate dynamic
power, we used the notion of average current, which presents the area under the dy-
namic current divided by the time duration representing the application deadline. Ap-
plication deadline specifies how quickly the output must be computed. The application
deadline used for all the mini-templates in our work is assumed to be 20ms. This is due
to the fact that the sampling sensor sampling frequency is 50Hz, and it was assumed
that the output must be computed before the next sample arrives. Furthermore, the
operating voltage VDD used in our synopsis simulation was 1.1V and Fclk = 5MHz de-
fined the circuit operating frequency. The operating frequency of 5MHz is commonly
used in the literature for similar applications [Zhang et al. 2010].
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Fig. 6: Accuracy performance of the proposed decision making
system while screening ‘Sit to Stand’ movements. (a) False posi-
tive rate and MSPC activation rate; (b) Measured sensitivity ver-
sus the given lower bound on sensitivity of the entire recognition
system.

6.3. Full Template Scenario
In the first step, we considered ‘Sit to Stand’ as target action and all other actions as
non-target. The main goal was to study different aspects of the proposed architecture
in details by looking at one specific movement as target action. Later, in Section 6.5,
we will present results for other actions as well. The main reason for choosing ‘Sit to
Stand’ for the first set of analysis was its clinical significance and applications. ‘Sit
to Stand’ actions are typically used as a means to assess motor function in clinical
populations [Volpato et al. 2008; Kim et al. 2011; Rolland et al. 2006; Zheng et al.
2014; MAller et al. 2012; Regterschot et al. 2014; Cheng et al. 2014].

The power consumption of a screening block with full size template was computed
as discussed in Section 6.2. The power consumption of the granular decision making
module alone was 8.44µW which is significantly smaller than the power consumption
of a typical signal processing chain (e.g., power consumption of processing unit of a
Telos mote is 3 mW in active mode).

We first analyzed the effectiveness of the decision making module while a full tem-
plate is used for screening. Fig. 5 and Fig. 6 illustrate the power and accuracy perfor-
mance of the system obtained through this experiment. For this analysis, the given
lower bound on the sensitivity of the system is assumed to range from 50% to 100%.
Fig. 5(a) shows the power consumption of the system including the GDMM and micro-
controller as a function of sensitivity. As expected, the power consumption increases as
the sensitivity of the screening module grows. The power consumption of the system
ranges from 0.21 mW for 50% sensitivity to 1.29 mW for 100% sensitivity, resulting in
an average power consumption of 0.67 mW. We observe a sudden increase in the power
consumption when sensitivity changes from 70% to 75% and another jump when it
grows from 90% to 95%. This is in fact due to the increase in false positives as is il-
lustrated in Fig. 6(a). This observation perhaps can be taken into consideration while
exploring accuracy/power tradeoffs of the system. The graph is clearly divided into
three distinct areas with low (50% to 70%), moderate (75% to 90%) and high (95% to
100%) sensitivity rates. Clearly, this provides the designer of the system with the flex-
ibility to choose higher accuracy rates at the cost of extra power consumption and less
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power savings. Fig. 5(b) shows the amount of power savings achieved using the pro-
posed decision making module. The power saving numbers range from 57% for 100%
sensitivity to 92% for the case of 50% sensitivity, with an average savings of 78%.

Fig. 6(a) shows false positive rates of the screening module as well as percentage of
the times that the main processing will be activated. The false positive numbers range
from 1.5% to 36.3% with an average of 15.6%. These numbers correlated with the MSPC
activation which ranges from 6.7% to 42.7% resulting in an average of 22.0% chances
of activating the main processor for performing more complex signal processing tasks.
We note that activation of the main processor occurs on any action that is classified as
positive. That includes both false positives (i.e., non-target action) and true positives
(i.e., target action).

Fig. 6(b) shows actual sensitivity of the decision making module versus the desir-
able ones. As expected, the measured sensitivity would always exceed the lower bound
sensitivity which is given as a design parameter. This is mainly due to the thresh-
old setting mechanism which is discussed previously. The threshold for each screening
block is set to guarantee the given sensitivity. This is further confirmed by all the data
point in Fig. 6(b) falling into the area above the dashed line.

6.4. Mini-Template Case
In the next step, we divided the entire template into several bins and used the Min
Size Mini-Template Set (MSMT) problem to find minimum number of bins that are
required for detecting ‘Sit to Stand’. A template on Z-axis accelerometer is a vector of
340 samples that corresponds to 6.8 seconds of sensor readings. A choice of K=10 (for
example) generates ten bins, each having a length of 34 samples. Using the template
generation formula (i.e., equation (4)) described in Section 5.3, we computed the tem-
plate for all 14 actions. Fig. 7 illustrates templates of all actions using a single-axis
node worn on the ‘Waist’ of the user. In this case, each signal template is divided into
10 equal-length bins that are highlighted as b1 to b10 on the x-axis of each graph. The
vertical axis (i.e., y-axis) shows the amount of acceleration in mm/s2. The acceleration
numbers shown in the figure refer to the acceleration of the ‘Waist’ in sagittal plane.
This figure further emphasizes on our two key hypotheses: (1) there are tangible differ-
ences between different pairs of actions (2) a relatively small portion of the template
would suffice to distinguish between the target and non-target actions.

We solved our optimization problem (see Problem 1) using the greedy algorithm de-
scribed in Algorithm 1. Ideally, only a small subset of the bins would suffice for reliable
identification of the target action. Intuitively, the amount of power consumption would
decrease as the number of bins increases. The amount of improvement, however, be-
comes negligible as soon as enough resolution of the signal segment is obtained due to
consideration of new mini-templates. We set the number of bins to 2 at the beginning
and increased this number until no significant reduction in the power consumption
was observed. Fig. 8(a) shows the power consumption of the screening blocks as the
number of bins grows. The power consumption of the module, which is denoted by
dashed curve, ranges from 8.44 µW (for 2 bins) to 4.07 µW (for 68 bins) as the number
of bins increases. As illustrated in the figure, the amount of improvement in power
consumption is minimal beyond 20 bins. In fact, the power of GDMM is enhanced only
5.8% when the number of bins grows from 20 to 34. The bold curve in Fig. 8(a) shows
the fraction of the template that is chosen to be active for action classification. The
dashed curve in Fig. 8(b) shows the number of active bins versus the number of bins
(K). The number of active bin remains almost linear after K = 10. The bold curve in
this figure is the length of each bin with respect to K.

Fig. 9 shows the amount of power savings as a function of the number of bins used
for the optimization and analysis. The amount of power savings is computed by com-
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Fig. 7: Templates of various actions using ‘Waist’ sensor node.
Each signal template is divided into 10 bins as shown on x-axis.
On each graph, y-axis shows the amount of acceleration in sagit-
tal plane (i.e., orthogonal to lateral plane of the body)

paring the total power consumption of GDMM when the mini-template approach is
applied versus the full-template case. The power reduction is a result of optimizing
mini-template set which leads to lower computational load in GDMM. Furthermore,
Table III and Table II shows more details on how these performance metrics change as
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Fig. 8: Power performance of the mini-template. (a) Power con-
sumption of the GDMM and template activation percentage ver-
sus number of original template bins used for power optimiza-
tion. (b) Number of active bins and bin length as a function of
number of bins.
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Fig. 9: Percentage of power savings as the number of bins in-
creases.

a function of number of bins. Table II compares the power consumption of the decision
paths (i.e., multiple screening blocks with mini-templates) with that of a full template
to highlight the amount of additional power reduction achieved due to the construc-
tion of the mini-templates. By increasing the number of bins, the fraction of the full
template which needs to be fed into GDMM decreases which results in lower dynamic
power. Table II shows the power dissipation numbers in detail. The average amount of
dynamic and leakage currents are shown in third and fourth column, respectively. The
total power PTot is characterized by the summation of the dynamic PDyn and leakage
PLeak powers in the last column. The power saving values were then estimated in a
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Table II: Power analysis of 12bit GDMM due to increasing num-
ber of bins for VDD = 1.1V , Fclk = 5MHz .

No. #Bins IDyn(µA) ILeak(µA) PDyn(µW) PLeak(µW) PTot(µW)
1 2 6.54 1.13 7.20 1.24 8.44
2 5 5.23 1.13 5.75 1.24 7.00
3 10 3.27 1.13 3.60 1.24 4.85
4 20 2.90 1.13 3.18 1.24 4.43
5 34 2.66 1.13 2.92 1.24 4.17
6 68 2.57 1.13 2.83 1.24 4.07

Table III: Improvements due to increasing number of bins

No. #Bins Step Improv. (%) Template Activation (%) Overall Improv. (%)
1 2 NA 100 0
2 5 20 80 20
3 10 37 50 50
4 20 10 45 55
5 34 8 41 58
6 68 3 39 60

similar fashion for templates and mini-templates of different lengths on the incoming
data.

The power consumption of the entire system is 0.85 mW on average, which results in
an average power savings of 71.6%. Furthermore, the system exhibits 6.7% false pos-
itive rates on average, and the main signal processing chain is activated 28% of the
times. We should note that power saving results presented in this article are based
on the assumption that all actions occur with equal probabilities. In reality, however,
target actions may occur less frequently, resulting in higher power savings due to in-
frequent activation of the main processor.

In Table III, step improvements and overall improvements are listed versus the
number of bins. Step improvement refers to the amount of improvement achieved by
increasing the number of bins (K). For instance, for K = 5, the template activation
is 80% (4 bins out of 5 are activated) and for K = 10, this number is 50%. There-
fore, by increasing the number of bins from 5 to 10, we achieve 37% step improvement
((80−50)/80 = 37%). Overall improvement shows percentage of improvement in power
optimization achieved by our optimization compared to the baseline (i.e., full size tem-
plate), as proposed in Section 5. We note that if the full template is divided into a
small number of bins (e.g., K = 2) most of the bins might be on the decision path,
which results in a small or no improvement. Therefore, it is important to divide the
template into a sufficiently large number of bins (K) and find only a small number of
bins (R) for screening as suggested by the Min Size Mini-Template Set problem. In our
experiments, a ratio of 10% to 15% between length of mini-templates and length of full-
template (e.g., 34 and 340 for ‘Sit to Stand’) leaves sufficient information within each
mini-template for classification, according to our experiments. Therefore, the number
of bins can be set to satisfy this requirement. As suggested in Table III, we obtained
an average improvement of 40.7% with mini-templates for detecting ‘Sit to Stand’.

6.5. Extension to Other Actions
In order to measure the power consumption of our system for screening individual ac-
tions, we consider each action as target, and find minimum number of mini-templates
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Fig. 10: Power performance of the system for two cases with 80%
and 50% sensitivity rate. (a) Power consumption of the system
including screening blocks and microcontroller; (b) Power saving
due to the preliminary signal processing and early rejection of
irrelevant movements.

needed for screening that particular action. The value of acceptance/rejection thresh-
old (see Definition 5.3) was set to guarantee a minimum sensitivity (also known as
true positive rate) which is given by the user. This problem was repeated for two cases
with sensitivity rates of 50% and 80%. The test was done setting number of bins (K) to
20.

Fig. 10(a) shows the total power consumption of the system (including screening
block and microcontroller). For the case of 80% sensitivity, power consumption values
range from 0.27 mW to 1.95 mW with an average of 0.89 mW over all the experiments.
For the 50% sensitivity, power consumption of the system ranges from 0.19 mW to 0.73
mW, and the average value is 0.36 mW. As it can be observed from this analysis, the
power consumption of the system decreases as the sensitivity rates decrease. This is
mainly because with a smaller sensitivity rate, less actions will be accepted as target
action due to the low precision of the screening blocks. On the other hand, higher
sensitivity rates will result in more actions being processed by the main processor
(as they are accepted by the screening blocks) which results in overall higher power
consumption of the entire system due to significantly higher power consumed by the
microcontroller.

The overall power savings are achieved for screening different actions are shown in
Fig. 10(b). The 80% sensitivity results in power savings ranging from 35.2% to 90.2%
with an average of 70.1%. The amount of saving in the overall power consumption
ranges from 75.6% to 93.9% with an average of 87.6%.

We also calculated the actual sensitivity rates that are obtained as a result of thresh-
old setting for template matching. Fig. 11(a) shows the measured sensitivity rates for
both cases of 50% and 80% desirable performance. When the given sensitivity is set to
80%, the measured values are between 80% and 86.7%. These number give an average
measured sensitivity of 81.9%. Similarly, measured sensitivity ranges from 50.3% to
66.7% when the given lower bound is set to 50%.

Fig. 11(b) illustrates the false positive rates for the analysis cases and for each one
of the 14 studied actions. The false positive rate ranges from 1.0% to 62.9% for the case
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Fig. 11: Accuracy performance of the system for two cases with
80% and 50% senility rate. (a) Sensitivity of the screening blocks;
(b) False positive rate of the screening blocks (the entire granular
decision making module).

of 80% desirable sensitivity. The average false positive rate across all the actions is
23.9%. In the case of 50% sensitivity, the obtained false positive rate is between 1.0%
and 20.7% with an average of 6.9%. We note that the false positive rate decreases as
the sensitivity goes down from 80% to 50%. This can be explained as follows. A lower
desirable sensitivity rate (e.g., 50% compared to 80%) would results in the thresholding
algorithm to choose a larger threshold for the template matching. The large threshold
would diminish the precision of the template matching algorithms, and therefore, less
actions will be accepted by the screening blocks and passed to the next processing level
(i.e., microcontroller).

Finally, Fig. 12 shows the percentage of the time that the main processor is activated
for each action as target and for two scenarios under analysis. The activation of the
microcontroller differs for different actions and ranges from 8.7% to 64.7% when guar-
anteeing 80% sensitivity, and ranges from 6.0% to 24.0% for 50% sensitivity assurance.

6.6. Robustness of Template Generation
In Section 5.3, we described the process of template generation. Intuitively, we find a
trial in the set of training trials associated with the target action. The target action
trial is chosen such that it best represents the target action but is also most dissimilar
to non-target actions. However, the non-target action set could be potentially large.
Therefore we investigate the possible impact of non-target actions on the outcome of
our template generation method. In this paper, we used a set of 13 non-target actions.
In order to demonstrate the robustness of the template generation process to changes
of the non-target action set, we performed an analysis to show how the output of our
template generation algorithm changes as new non-target actions are added to the
system. We start by randomly choosing one non-target action at a time and computing
the template trial each time a new action is added to the non-target set. We repeated
this process for 5 scenarios each representing a sequence of randomly selected non-
target actions.

Fig. 13(a) shows 5 scenarios where each scenario represents a random sequence of 13
non-target actions. For this analysis, we considered ‘Sit to stand’ as our target action.
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Fig. 12: Activation of the main signal processing chain for differ-
ent movements considered as target.

In Fig. 13(b), we show the trial number of the target action which has been identified,
by our template generation algorithm, as the template for the target action. For ex-
ample, for scenario1, the non-target action set initially contains only one action, ‘Sit
to lie’. The system selects trial ‘12’ of the target action as template. When the second
non-target action, ‘Lie to sit’, is added, the template trial changes to ‘25’. By adding
the third action, ‘Step forward’, the trial number for scenario1 changes to ‘30’. We,
however, note that for the rest of the sequence (4th to 13th non-target actions for sce-
nario1), the same trial (i.e., trial ‘11’) is consistently chosen as template. Thus, for
scenario1, the effect of non-target action on template generation disappears after in-
cluding only 4 non-target actions. As it can be observed from Fig. 13(b), for scenario2,
scenario3, scenario4, and scenario5, this effect disappear after adding 9, 3, 8, and 2
non-target actions respectively. On average, the set of non-target actions included only
5.2 actions in order for the template generation to stabilize.

Fig. 13(c) shows the amount of Θ in Equation 5 for the generated template for each
scenario and number of non-target actions. The value of Θ depends on the target trials
as well as non-target trials. This is the reason behind the fluctuation of Θ by addition
of each non-target trial. However, we must take into the consideration that although
the chosen template depends on the set of other actions’ trials as well, it is, regard-
less of other actions, chosen within the target action training set. This is the reason
why for example in scenario1, after adding 4 actions the chosen trial does not change
regardless of the minor changes in Θ. This analysis demonstrates that our template
generation scheme is robust to potential changes in the non-target action set and tends
to quickly converge to a stable outcome.

7. DISCUSSION AND FUTURE WORK
We used cross-correlation scores to perform preliminary low power signal processing
by quantifying similarity between incoming signals and target action. This approach
is promising and allows for significant power saving while achieving acceptable accu-
racy performance. Higher power savings can be obtained in the expense of increase in
false positive rates. In order to maintain smaller false positive rates, more complicated
computing blocks (as alternatives for cross-correlation) can be used. Clearly, there are
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Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

Sit to lie Step backward Rise from bending Step forward Rise from bending

Lie to sit Step forward Sit to lie Bend & grasp Jump

Step forward Kneel Rise from kneeling Jump Step forward

Look back Return from look back Step forward Rise from kneeling Rise from kneeling

Step backward Stand to sit Jump Rise from bending Step backward

Kneel Jump Return from look back Step backward Kneel

Bend & grasp Bend & grasp Kneel Lie to sit Return from look back

Turn clockwise Turn clockwise Bend & grasp Return from look back Sit to lie

Jump Lie to sit Turn clockwise Stand to sit Step forward

Rise from kneeling Step forward Lie to sit Sit to lie Lie to sit

Rise from bending Rise from kneeling Step backward Step forward Bend & grasp

Return from look back Sit to lie Stand to sit Kneel Turn clockwise

Stand to sit Rise from bending Step forward Turn clockwise Stand to sit

(a) Scenarios showing five sequences of randomly selected non-target actions. For this ex-
ample, ‘Sit to Stand’ is considered as target action. The table shows how the 13 non-target
actions are added to the system for each scenario.

# of non‐target actions Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

1 12 3 12 19 12

2 25 14 12 19 11

3 30 14 11 18 11

4 11 14 11 14 11

5 11 14 11 14 11

6 11 14 11 14 11

7 11 14 11 14 11

8 11 14 11 11 11

9 11 11 11 11 11

10 11 11 11 11 11

11 11 11 11 11 11

12 11 11 11 11 11

13 11 11 11 11 11

(b) Evolution of trial section for ‘Sit to Stand’ as the number of non-target actions grows.
The table shows the trial of ‘Sit to Stand’ selected as template as the number of non-target
actions changes from 1 action to 13 actions. The results are presented for 5 randomly gen-
erated sequences of non-target actions.
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(c) The value of Θ in Equation 5 for the target action trial selected
as template as the number of non-target action grows from 1 action
to 13 actions. The results are presented for 5 randomly generated
sequences of non-target actions, specified as ‘Scenario1’ to ‘Scenario5’.

Fig. 13: Analysis of the robustness of the template generation
approach due to addition of non-target actions.
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tradeoffs between complexity of screening blocks and desired sensitivity rates. Cur-
rently, we are investigating alternative similarity measures for cross-correlation, and
studying different system design tradeoffs.

The data storage units including template storage and the buffer are needed for all
the cases as shown in Fig. 3. For example assuming a 50Hz sampling frequency, a 2-
second movement and template, and a 12-bit Analog-to-Digital Convertor (ADC), the
total data storage for a full template scenario is 2400 bits. This is because ‘Memory’ and
‘Buffer’ in Fig. 3 will require 50 × 2 × 12 = 1200 bits each. As another example, if the
window size is increased to 6.8 seconds, as in our experiments, the total amount of data
storage with a full template will be 50×6.8×12 = 4080 bits for each one of ‘Memory’ and
‘Buffer’ in Fig. 3 resulting in a total data storage of 8160 bits. This amount of storage,
however, is not always necessary because, depending on the amount of sensitivity rate
and number of template bins, only a portion of the template will be active. For instance,
with a given sensitivity rate of 80% and number of template bins of 10, the storage size
for ‘Memory’ in Fig. 3 will be 2040 bits (4080/2) since the template activation is only
50% as suggested in Fig. 8(a). Thus, the total storage will be 2040 + 4080 = 6120 bits
(765 Bytes) in this case.

There might be some concerns about whether or not the set of non-target activities
are the best representative of the possibly broad range of non-target activities. To ad-
dress this concern, two facts need to be considered. First, a broad range of applications
in the area of BANs are designed for controlled scenarios (such as the applications
mentioned in Section 1) where a reasonable set of non-target actions can be listed.
Secondly, the proposed energy-aware model assumes that the set of all activities are
given. This information can be fed into our model either by using a supervised learn-
ing activity recognition approach or alternative approaches such as semi-supervised
learning models [Stikic et al. 2011; Lara and Labrador 2013] which aim to tackle the
common issue of supervised learning (i.e., the set of non-target actions is sometimes
large). Prior studies [Logan et al. 2007; Huynh et al. 2008] which have conducted open
world experiments consisted of long-term daily activity recordings of individuals in
nonlaboratory conditions suggest that in real world scenarios the final set of activities
ranges from 8 to 20 which leads to a reasonable memory overhead of 144× 8 to 144× 20
Bytes for a given/desirable specific sensitivity of 80%.

The granular decision making module presented in this article assumes a fixed-
length template based on normal speed of the human movements. In reality, however,
human movements can occur at different speeds. The decision making module can still
work by dynamically adjusting the length of the template. Variations in the speed can
be handled through a signal scaling method. The signal scaling can be done during
template matching and based on the detected speed. In such scenarios, the template
can be adjusted using a normalization factor by down sampling or up sampling. In
fact, the system can start with a low power saving if the speed of the incoming signal
is much different than that of the template. However, the main processing module can
report back to the GDMM over time about the speed of the current action. Then the
GDMM will adjust the template length accordingly. As part of our future work, we
plan on evaluating the performance of our system with respect to temporal changes in
the incoming signals.

The amount of power savings that can be achieved by our screening approach highly
depends on the frequency of occurrence of the target action. For our experiments, we
assumed that all actions are equally likely, and therefore, ‘Sit to Stand’ occurs 7.1%
of the times. In reality, however, human actions are sparse occurring a lot more infre-
quently, which results in much higher power savings.

In this article, we focused on analyzing the accuracy performance of the granular
decision making module independent of the exact types of the computing algorithms
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that take place in the main signal processing chain. We assumed that the main signal
processing chain will perform more complex signal processing for activity recognition
and/or extraction of more detailed information from the sensor signals when an action
of interest occurs. Thus, the accuracy performance metrics discussed in this paper
(e.g., false positive rates and true positive rates) are reported for the granular decision
making module rather than the main signal processing chain.

Our experimental validation involves an implicit assumption that actions occur con-
tinuously and at equal rates. In reality, however, human actions may be occurring at
significantly lower rates. We note that infrequent occurrence of the target action will
result in activating the main processor less frequently, and therefore, achieving more
power savings.

Our ongoing research on devising granular decision making involves refinement of
the template matching for further optimization with respect to other tunable parame-
ters such as bit resolution of sensor readings and duration of incoming actions in both
time and frequency domains.

In this article, we focused on development of the GDMM and studied its impact on
reducing power consumption of the main processor. As part of our ongoing research, we
are currently investigating full integration of the GDMM within the main processor
and refining our power model to account for additional power sources, such as I/O
power dissipation, due to such an integration.

8. CONCLUSION
In this article, we presented a new ultra low-power signal screening approach with
the goal of significantly reducing energy consumption of wearable computers. We
also demonstrated the efficacy of the proposed processing model for energy saving in
healthcare applications. The proposed signal screening model is based on a sequence
of template matching operations each associated with a fraction of a pre-specified sig-
nal template, called mini-template. The idea is to reject actions that are unlikely to
be the target action of interest and initiate detailed processing by the main processor
only if the incoming signal is highly correlated with the predefined template. Our ex-
perimental results demonstrate the efficacy of the proposed architecture significantly
reducing the power consumption of the system. Specifically, we obtained an energy
savings of over 70.1% while detecting transitional daily activities while maintaining
80% sensitivity in activity recognition.
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