
Configurable Digital Signal Processing

Softer Side
On The

June 2003 COTS Journal [49]

K ey military applications such as
image processing, sonar/radar and
SIGINT can enjoy significant perfor-

mance gains by using reconfigurable com-
puting. Therefore, it’s perhaps surprising
that the technology has been so slow to
gain broad acceptance. Among the barriers
is a lack of clear understanding about its
real performance differences compared to
traditional compute architectures.

Work done at ULCA’s Computer
Science department paints a clearer pic-
ture and proposes a method to enhance
the performance of reconfigurable com-
puting. Researchers there devised the
concept of a micro-sequencer-based
reconfigurable system, and introduced
with it the concept of Quick Recon-
figuration. The approach exploits simi-
larities among various applications to
save on reconfiguration time.

Using the micro-sequencer architec-
ture, the group demonstrated that a sig-
nificant increase in speed is gained by
reconfiguring a system on a set of image-
processing benchmarks. The benchmarks
took merely hundreds of microseconds
versus the hours needed in traditional
FPGA reconfigurations. Using this archi-
tecture also makes the parameters of a
system, for instance the size of data bus,
easy to modify in order to customize the
system for a specific application. The
results, detailed later, show that power

consumption and silicon area are
reduced by 72% and 77% respectively, by
using a customized 8-bit data bus versus
a 64-bit data bus, while the speed is
improved by 157%.

FPGAs Make it Possible
Before getting into the details of the

micro-sequencer scheme, it’s helpful to
examine the underlying hardware that
makes reconfigurable computing possi-
ble. Programmable system capability
forms the heart of reconfigurable com-
puting. Programmable devices including
FPGAs contain an array of programma-
ble computational units that can be pro-
grammed through the configuration bits.
This gives us the flexibility of having ded-
icated hardware to perform specific com-
putational units combined with a paral-
lelism capability.

Reconfigurable systems provide the
flexibility and reuse of hardware for mul-
tiple applications. Reconfigurable hard-
ware can be used to execute designs that
are larger than the available hardware
resources. In such cases, a part of a large
application is executed on the hardware.
By reusing the reconfigurable hardware,
the remaining tasks of the application can
be loaded and executed on the hardware
at runtime. This is known as runtime
reconfiguration. Another issue that neces-
sitates the integration of reconfiguration
in a hardware platform is that some appli-
cations require reconfiguration in differ-
ent abstraction levels of the system. For
example, some applications require dif-
ferent variations of an algorithm to exe-

cute their task. A non-flexible hardware
realization for such applications has to fit
all required algorithm variations on the
die. This, if possible, makes the design
and fabrication processes more compli-
cated and expensive.

Dealing with Delays
A major drawback of using runtime

reconfiguration is the significant delay of
reprogramming the hardware. The total
runtime of an application includes the
actual execution delay of each task on the
hardware along with the total time spent
for hardware reconfiguration between
computations. The latter might domi-
nate the total runtime, especially for
classes of applications with a small
amount of computation between two
consecutive reconfigurations. Hardware
reconfiguration often takes hundreds of
milliseconds or longer based on the size
of the application. To reduce the recon-
figuration overhead, some previous
works have used different approaches.

In many applications, only a small
portion of the design changes at a time
and the entire hardware does not have to
be reconfigured. This has led the industry
to add the capability of Partial
Reconfiguration to some of their recent
products. FPGAs are examples of such
reconfigurable hardware, and some of
the recent FPGA devices have the capa-
bility of partial runtime reconfiguration.

Another method used to gain speed
is called configuration prefetching. This
method tries to overlap the computation
with the reconfiguration of the hardware.

Roozbeh Jafari, Graduate Student
Henry Fan, Graduate Student
Majid Sarrafzadeh, Professor
UCLA Computer Science Department

Micro-Sequencer Approach
Speeds Reconfiguration

Not all reconfigurable computing schemes were created equal. A micro-sequencer
architecture offers faster performance and greater flexibility.

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

Therefore, to maximize this overlap, it
seeks a way to minimize the chance that
reconfiguration is prefetched falsely.

Configuration compression is anoth-
er approach to minimize the reconfigura-
tion time. In this method, the configura-
tion delay is reduced by compressing the
data transferred from the host computer
to the programmable system. A major
portion of delay is due to the distance
between the host computer and the pro-
grammable device. Reconfiguration can
be accelerated by using a fast memory
(configuration cache) near the reconfig-
urable array. This method is called config-
uration caching.

Speedy Micro-Sequencing
In Micro-Sequencer-based Quick

Reconfiguration (MSQR), the reconfigura-
tion is performed by altering the algorithm
loaded onto the memory of the proposed
architecture. Also new instructions can be
generated by modifying the microcodes
stored in the control unit. Using microcod-
ed architecture in the control unit of the
micro-sequencer facilitates the parallelism
and adds new computational units to the
datapath. In this case, the control unit
needs the minimum modification since it
is highly regular compared to sequential-
machine-based controllers.

Efficient reconfiguration of an FPGA
is a critical issue because of the time over-
head involved. Sometimes in order to
reconfigure a system from one algorithm
to another, the processes of synthesis,
placement and routing have to be per-
formed, which are highly expensive in
terms of CPU time and may take hours to
complete. In the micro-sequencer
approach, when a system is to be recon-
figured, only the new algorithm has to be
loaded onto the memory micro-
sequencer. When new instructions are
required for the new algorithm, the
memory structure is updated. This is the
Micro-Sequencer-based Quick
Reconfiguration method. Because this
method does not require physical recon-
figuration, a significant speed increase is
gained in the process.

MSQR in Image Processing
MSQR is applicable to those applica-

tions where the types of computations do

not vary substantially from one task to
another. The motivation of this research
is to enhance the reconfiguration process
for image-processing algorithms. It’s
important, therefore, to verify if image-
processing algorithms are altered substan-
tially during the reconfiguration process.

Most image-processing algorithms
are computationally intensive and should
be executed on hardware resources to
allow real-time processing. Moreover,
these algorithms change in nature and
parameters based on information avail-
able from targets. For instance, in a fea-
ture-tracking algorithm, the number of
targets, their position and their distance
to the camera can change the algorithm
(or its parameters) to increase the effi-
ciency of tracking motions. As a result,
image-processing algorithms are proper
candidates for mapping onto reconfig-
urable resources. This not only provides
fast running time, but also allows dynam-
ic modification of the algorithm through
runtime reconfiguration. Both cannot be
achieved by mapping this type of algo-
rithm onto traditional fixed software or
hardware platforms.

The micro-sequencer architecture
makes use of microcode architecture for
the design of the control unit. In this
approach, the relation between inputs
and outputs is treated as a memory sys-
tem. Control signals are stored as words
in a microcoded memory. At each clock
tick during instruction execution, the
appropriate (micro) control word is
fetched from microprogram memory to
supply the control signals.

The microcode control unit itself is a
small stored program computer. It has a
micro program counter, a microprogram
memory and a microinstruction word,
which contains the control signals and
sequencing information. The action of
the microcode control unit is exactly like
that of a general-purpose computer: fetch
a microinstruction, execute it by applying
the control signals in the control word to
the computer’s datapath, determine the
address of the next microinstruction, and
fetch the next instruction. Figure 1 shows
a block diagram of a typical design of a
microcoded control unit.

The microprogram counter contains
the address of the next microinstruction

to be fetched from the control store, a fast
local memory that contains the control
words. The control word is copied into
the microinstruction registers. The con-
trol store consists of microinstructions
that control the datapath directly.

Because image-processing algo-
rithms tend to have similar computation-
al behavior, it can be inferred that the
capabilities of the datapath satisfies the
new algorithm and it does not have to be
modified. However, since the algorithm
changes, the opcode part of the micro-
sequencer, which contains the instruc-
tions for a specific algorithm, has to be
updated. This process can be simply done
by writing the new algorithm (the new
instructions) onto the memory. This
approach is significantly faster than tra-
ditional physical reconfiguration.

Sometimes, due to the constraints of
new algorithms, the order of utilization
of components in the datapath may have
to be altered, or further, instantiation of a
new computational unit may be
inevitable. In this case, the microcodes in
the control unit can be easily modified to
satisfy the new requirements. Meanwhile,
a new computational unit is added to the
datapath. This achieves higher perfor-
mance because of utilizing parallelism in
computationally intensive algorithms.
MSQR is therefore effective both in terms

The Softer Side

June 2003 COTS Journal [53]

The block diagram depicts a typical
design of a microcoded control unit. The
microprogram counter contains the
address of the next microinstruction to be
fetched from the control store, a fast local
memory that contains the control words.
The control word is copied into the
microinstruction registers.

Figure 1

PLA (computes the start address of the micro-instruction)

Op-codes for an Algorithm

MUX

µPC

Control Store

µInstruction Word

Data Path Output DataInput Data

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

of providing flexibility and performance.

Microinstruction Format is Key
Microinstructions are an important

part of the controller and have to be

defined so that the maximum flexibility is
gained for reconfiguration. There are two
types of microinstructions: horizontal and
vertical. In the horizontal microcode, each
bit represents a control signal for a com-
ponent in the datapath. In the vertical
microcode, however, the control of similar
components in the datapath is compacted
in a group of bits in microinstructions.

This requires a local decoder to gen-
erate all control signals usable for com-
ponents in the datapath. The advantage
of the horizontal microinstructions is its
lower access time to reach the designated
component in the datapath. However, as
the size of the datapath grows, the num-
ber of control bits increases resulting in
larger microinstructions. Table 1 shows
the microinstruction format for the
MSQR architecture. A few more bits are
reserved for newly inserted components
in the datapath. The instruction set for-
mat of the MSQR design is very similar to
a RISC instruction set. It has a fixed 32-
bit instruction width. The details of the
instruction format are shown in Figure 2.

In order to support the template
generation, a better format is one with
four register index operands. The op-
code of this instruction is specified by the
template generator. In order to support

the quick reconfiguration, the micro-
sequencer machine needs to support the
new instruction set whenever there is a
new hardware implementation. Figure 3
shows the fields of the new instruction
format. The UCLA team also implement-
ed an assembler for its proposed instruc-
tion set. The syntax was chosen such that
parsing is minimized.

Experimental Results
The UCLA team implemented the

micro-sequencer in VHDL. The code was
written structured and generic so that the
size of the data bus/address bus can be
easily modified. The reconfiguration
times of two image-processing algo-
rithms were measured: once using the
traditional physical reconfiguration and
once using the novel method of MSQR
on a Wildstar/PCI board. The results are
shown in Tables 2a, 2b and 2c.

To show the flexibility of the pro-
posed architecture, a background subtrac-
tion algorithm, which requires an 8-bit
data bus, was implemented on various
micro-sequencers with 8, 16, 32, 64 and
128-bit data buses. The goal was to mea-
sure power, area and longest path delay for
all above variations. This experiment was
done using Synopsys’ Power Compiler.

The Softer Side

[54] COTS Journal June 2003

Similar to a RISC instruction set, the instruction set format of the MSQR design has a fixed
32-bit instruction width. The first field is the operation code (op-code) by which the type of
operation is determined. The second, third and forth fields are the register indices. Some
instruction, for example, ADD, SUB and BRL have three indices, but some only have one.

Figure 2

LD, ST, LA, ADDI, ANDI ORI

LDR, STR, LAR

NEG, NOT

BR

BRL

ADD, SUB, AND, OR

SHR, SHRA, SHL

SHC

NOP, STOP

Ra Rb c2

Rc

Op

Ra

Ra

Ra

Ra

Ra

Ra

Rb

Rb

Rb

Rb

Rb

Rc

Rc

Rc

Rc

Op

Op

Op

Op

Op

Op

Op

Op

Cond

Cond

Count

c1

Shown here is the microinstruction format
for the MSQR architecture. A few more
bits are reserved for newly inserted com-
ponents in the datapath.

Table 1

Horizontal Microcode Format

Micro-
instruction
register Index

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

Signal
Name

ENDbit

PCena

Cout

MDout

Rout

MAin

MDin

Cin

PCin

IRin

Ain

Rin

INC4

RD

WR

ADD

GRa

GRb

GRc

Shown here are the fields of the MSQR
instruction format. The first field is the op-
code of the instruction. The second to the
fifth fields are the indices of the operand
registers.

Figure 3

Ra Rb Rc RdOp

Microprocessor
Opcode

Operand 1

Operand 2

Operand 3

Operand 4

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

The measured power, area and data arrival
times are shown in Figures 4a, 4b and 4c.

A micro-sequencer-based architec-
ture enhances the efficiency of reconfigu-
ration on an FPGA. The experimental
results prove that the time needed to
reconfigure the control unit of a system is
far less than the time it takes to physical-
ly reconfigure the whole system. Besides
the reconfiguration time, the micro-

sequencer-based system provides flexibil-
ity for data bus/ address bus design.

The UCLA team demonstrated this
point by modifying the size of the data bus
for a specific application. Such features
can be exploited when the algorithms are
unknown at the stage of micro-sequencer
design. A significant improvement in
power consumption, speed and silicon
area is gained by providing this flexible

feature. Moreover, MSQR provides an effi-
cient way for reconfiguration with a con-
siderable increase in speed in the reconfig-
uration process versus the traditional
physical reconfiguration.

UCLA Computer Science Dept.
Los Angeles, CA.
(310) 825-3886.
[www.cs.ucla.edu].

The Softer Side

June 2003 COTS Journal [55]

In order to illustrate the flexibility of the MSQR architecture, the UCLA team ran a background
subtraction algorithm, which requires 8-bit data bus, implemented on various micro-
sequencers with 8, 16, 32, 64 and 128-bit data buses. They measured power, area and
longest path delay for all above variations.

Figure 4

Power Consumption (µW)
80

70

60

50

40

30

20

10

0
8 bit 16 bit 32 bit 64 bit 128 bit

Area
350000

300000

250000

200000

150000

100000

50000

0
8 bit 16 bit 32 bit 64 bit 128 bit

Longest Path Delay (ns)
250

200

150

100

50

0
8 bit 16 bit 32 bit 64 bit 128 bit

lib
ra

ry
 c

el
ls

lib
ra

ry
 c

el
ls

lib
ra

ry
 c

el
ls

The UCLA team measured reconfiguration
times of two image-processing algorithms:
once using the traditional physical reconfig-
uration and once using the MSQR method
on a Wildstar/PCI board. The tables show
clear speed advantages for MSQR.

Table 2

Traditional Reconfiguration
Time Breakdown

Algorithm
Process

Synthesis
(sec)

Placement and
Routing (sec)

Programming
FPGA (msec)

Feature
Selection

176

1514

621

Background
Subtraction

54

270

220

Table 2a

Quick Reconfiguration Time

Algorithm

of
Instructions

MSQR Time
(µsec)

Feature
Selection

387

42

Background
Subtraction

131

30

Table 2b

Reconfiguration Time vs.
Quick Reconfiguration Time

Algorithm

Traditional
Reconfiguration
Time (sec)

MSQR Time
(µsec)

Feature
Selection

1690.621

42

Background
Subtraction

322.220

30

Table 2c

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

2
 T

h
e

 R
TC

 G
ro

u
p

