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Inertial Measurement Unit-Based Wearable  
Computers for Assisted Living Applications
A signal processing perspective

There has been a very rapid growth in wearable computers over the past few years. 
Assisted living applications leveraging wearable computers will enable a healthier 
lifestyle and independence in a variety of target populations, including those suffer-

ing from neurological disorders, patients in need of rehabilitation after surgical proce-
dures or injury, the elderly, individuals who might be at high risk of 

emotional stress, and those who are looking for a healthier life-
style. Application paradigms for assisted living include 

activities of daily living (ADLs) monitoring, indoor 
localization, emergency and fall detection, and reha-

bilitation. All of these applications require moni-
toring of movements and physical activities for 

individuals. Wearable inertial measurement 
unit (IMU)-based sensors can offer low-
cost and ubiquitous monitoring solutions 
for physical activities. Signal processing 
techniques with a focus on enhancing 
accuracy, lowering computational com-
plexity, reducing power consumption, 
and improving the unobtrusiveness of 
the wearable computers are of interest in 
this article, which constitutes the first 
attempt made at reviewing the literature 
of wearable IMU-based signal processing 

techniques for assisted living applications. 
Various signal processing techniques with 

the aforementioned performance metrics in 
mind are reviewed here.

Introduction
Cisco predicts the number of wearable devices will 

increase from 22 million in 2013 to 177 million in 2018 [1]. 
Many innovative applications are under development for wearable 

devices. Assisted living is one of the application areas with major potential 
impact. There are two common approaches to implementing these monitoring systems: 
using vision or wearable sensors. Vision-based approaches are considered to be invasive 
to a user’s privacy and suffer from line-of-sight issues for cameras. They may not be avail-
able everywhere, and signal processing techniques associated with vision sensors are typi-
cally computationally intensive, even though they may provide rich information for 
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certain applications. Wearable IMU-
based sensors, however, can offer low-cost 
and ubiquitous monitoring solutions. Typi-
cal IMUs consist of a three-axis acceler-
ometer  that  measures dynamic 
accelerations caused by motion and gravi-
ty and a three-axis gyroscope that mea-
sures angular velocities about the three 
axes. Some IMU sensors also include 
magnetometers that measure the Earth’s 
magnetic field. These sensors are avail-
able as long as the user is wearing them. 
However, wearable sensors face their own 
challenges, such as reliability issues asso-
ciated with wearing the sensors improper-
ly. Moreover, users would only wear a few 
sensors, and, therefore the systems cannot sense the movements 
of every joint and limb. Power consumption is another challenge 
related to wearable sensors. Small form factor, long battery life, 
comfort, and wearability require low power consumption. Effi-
cient signal processing techniques deliver solutions to address 
these challenges. Signal processing techniques with a focus on 
enhanced accuracy, lower computational complexity, and 
reduced power consumption of the wearable computers are of 
interest. Our survey article constitutes the first attempt at 
reviewing the literature of wearable IMU-based signal process-
ing techniques for assisted living applications and reviews vari-
ous signal processing techniques based on the given 
performance metrics. 

A review of assisted living applications
As mentioned previously, assisted living applications can include 
ADLs, indoor localization, emergency and fall detection, and 
rehabilitation. Figure 1 shows the flow for IMU-based assisted 
living applications and topics. The following are applications 
that use IMU sensors to make an impact on everyday life.

Activities of daily living
Monitoring and classifying daily activities are keys to assess-
ing the quality of life of various target populations. In this 
article, the ADLs tracked using IMUs are categorized into 
postural transitions (e.g., sit-to-stand and stand-to-sit), period-
ic movements (e.g., walking and running), eating, and sleep-
ing habits. As people get older, performing daily tasks can 
become challenging. Due to the high cost of health-care cen-
ters and the need for the elderly to live independently in their 
homes, developing IMU-based monitoring systems for ADLs 
is becoming more important [2], [3]. This is not limited to 
assisting the aging population, it can also help many others. 
IMU-based wearables allow workers to function more effi-
ciently and without distractions by providing information 
based on their current activity [4]. People can track their sleep 
patterns by wearing an IMU-based sensor on their wrist to 
detect and log the duration of their sleep/awake time [5]. 
Users are also able to automatically track their dietary activi-
ties by detecting the arm and trunk intake gestures, chewing, 

and swallowing of food [6]. IMU-based wearables are a part 
of smart environments that monitor and recognize human 
gestures so that robots can assist them or the users can control 
things based on their hand gestures [7], [8]. These types of 
applications can influence the quality of life for those with 
disabilities. Several challenges need to be considered for 
monitoring and classifying ADLs using IMUs. These include 
sensor displacement, variations in the movements and envi-
ronments, and the form factor of the sensors.

Indoor localization
People spend a considerable amount of their time indoors, so it 
can be very useful to have indoor localization systems. Human 
localization plays an important role in creating context-aware 
smart environments. IMU-based localization has been used in 
many applications such as location-aware computing [9], estimat-
ing energy expenditure in human walking [10], military opera-
tions [11], and finding specific locations in a building [12]. 
Assisted living technology can greatly benefit from IMU-based 
indoor localization. Some applications include locating users and 
providing directions to a desired place in a building and reducing 
the time necessary for first responders to find people in an emer-
gency situation. It is necessary for such a system to be reliable 
and report the position accurately. A global positioning system 
(GPS) is mainly used for outdoor localization; due to obstacles 
and materials used in the buildings, it may not be available for 
indoor localization. A local positioning system (LPS) uses 
modalities such as received signal strength (RSS), vision, ultra-
sound, and inertial data to provide the location information with-
in a specific coverage area. RSS and ultrasound approaches 
suffer from signal attenuation, while vision systems have line-of-
sight issues. Pedestrian dead reckoning (PDR) is an alternative 
approach that estimates the user’s movement by detecting steps, 
estimating stride lengths, and the direction of motion based on 
inertial data collected from body-worn sensors [13].

Emergency and fall detection
Elderly people are prone to falls, which may cause injury. This 
is a major area of concern in assisted living because these inju-
ries can result in long-term hospitalization and medical costs. 
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figure 1. Data flow for IMU-based assisted living applications. (Wearable image copyright: Askold 
Romanov, elderly women copyright: KatarzynaBialasiewicz, fallen man copyright: AnnBaldwin, 
rehabilitation image copyright: Wavebreakmedia.)
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Therefore, a fall detection system is necessary in assisted liv-
ing. There are two major considerations for this application: 
1) speed of detection and 2) accuracy of detection. The first is 
important because the nature of this application is to prevent 
injuries caused by falling if possible. For example, having a sys-
tem that can detect falls before the user hits the ground 
becomes very promising if the system can activate a protective 
device (e.g., air bags attached to the user’s hip). If no protective 
device is available, it is critical to get help to the user as soon as 
possible. The second consideration is necessary to ensure that 
falling events are properly detected and there are no false or 
missed detections. Several methods have been proposed using 
IMU sensors to detect falls before the target hits the ground 
[14], [15]. In these methodologies, detection speed is very 
important and challenging. Another approach reliably detects 
falls while also finding other common human activities that 
may share similar attributes (e.g., standing to lying in bed) [16]. 
Many elderly people cannot stand after falling due to injuries 
sustained, and an emergency message is needed to inform the 
hospital or care center [8].

Rehabilitation
There are many cases in which clinicians do not need to keep 
patients in the hospital to observe the recovery process after 
an operation or treatment. IMU-based systems can play an 
important role here and can allow patients to live indepen-
dently in their homes while being monitored remotely by cli-
nicians. The idea behind such systems is to provide general 
information about the effect of certain behavioral recommen-
dations without having the patient admitted to a rehabilitation 
center or a laboratory for observation [17]. IMU sensors are 
able to measure the muscle strength and power by detecting 
high-frequency body sway [18] and the speed with which 
muscular forces produce movement of body segments [19]. 
Estimating knee joint flexion or extension angles can be used 
to infer activity type or intensity, muscle activity, and gait 
events [20]. Monitoring ADLs is also a key for evaluating 
changes in physical and behavioral profiles of the elderly and 
other patients, including obese people [21]. For example, 
increasing activity levels after surgery can be used to indicate 
overall improvement as well as efficacy of therapeutic proce-
dures [22].

Signal processing techniques
Signal processing techniques translate the physical signals 
sensed from wearable IMU sensors into useful information 
required by target applications. In this article, our goal is to 
review the signal processing techniques from various per-
spectives, including preprocessing, feature extraction, feature 
selection, classification, and measurement models. 

Preprocessing
For IMU-based assisted living applications, the raw sensor 
data usually gets preprocessed to remove noise from the sig-
nal and to determine the segments of interest. These tasks are 
called filtering and segmentation. Filtering techniques retain 

the useful information in a signal while rejecting unwanted 
information based on the application. Segmentation tech-
niques are used to determine the duration of the movements 
or events of interest. 

Three different types of filters are used: low-pass filters, high-
pass filters, and band-pass filters. A low-pass filter is used to 
remove high-frequency noise for a recognition task of five hand 
gestures [7] and for physical activity monitoring for assisted liv-
ing [16]. A 17-Hz low-pass filter is used to reject electronic noise 
in gyroscope data for sit-to-stand and stand-to-sit measurements 
[8]. Based on the walking frequency of test subjects, a 3-Hz low-
pass filter is applied to remove noise from walking signals [12]. 
A 6-Hz low-pass filter is applied for balance control measure-
ments during sit-to-stand movements [18], while a low-pass filter 
with a cut-off frequency of 3 Hz is used to preprocess raw data 
for sit-to-stand parameter measurement [19]. The accelerometer 
measurement consists of gravitational acceleration and dynamic 
acceleration caused by motion. In some applications, only one 
part of the acceleration is used, and filtering techniques are 
applied to reject the other one. A 1-Hz low-pass filter is used to 
remove the dynamic acceleration, and thus the direction of the 
gravity vector is found during quasi-static activities [15]. A 1-Hz 
high-pass filter is used to reject the gravitational acceleration, 
which, in turn, removes the effect of the gross changes in the ori-
entation of the body segment where the sensor is placed [23]. 
Some applications may only look at signals within a certain fre-
quency range, and the band-pass filter can be used to preprocess 
the data. A 3–11-Hz band-pass filter is used to clean the acceler-
ometer signal for detecting sleep and awakening phases [5]. For 
motor fluctuation monitoring in Parkinson’s disease patients, a 
3–8-Hz band-pass filter is used for the analysis of tremors, and a 
1–3-Hz filter is applied for analysis of bradykinesia and dyskine-
sia [23]. The sliding window segmentation technique is simple 
and effective and is often used in the reviewed literature for seg-
mentation [6], [7], [14], [17], [24], [25].

Feature extraction
Features are normally extracted from the sensor data depending 
on their effectiveness in a particular application. Feature extrac-
tion starts with the preprocessed sensor data and generates 
derived values that are intended to be informative and nonre-
dundant while enabling subsequent learning and generalizing 
the data, which will lead to better human interpretation. The 
features are divided here into four categories: time domain fea-
tures, frequency domain features, time–frequency domain fea-
tures, and others. The time domain features are the general 
statistical measurements that can represent the generalization 
of the data. The frequency domain features analyze the fre-
quency performance of the sensor signals, which is usually 
the periodicity of the signal over a long duration (i.e., period-
icity of the walking). The time–frequency domain features 
refer to features that contain both time and frequency infor-
mation simultaneously with different time–frequency repre-
sentations (e.g., short-time Fourier transform, wavelets) that 
are useful for nonstationary signals (e.g., postural transitions). 
The other features refer to the features that have specific 
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meanings to specific applications (e.g., posture transition 
duration for fall detection and step length for gait analysis). 
Table 1 lists commonly used features of IMU sensors in 
assisted living applications.

The time domain features listed in Table 1 are primarily 
the general statistical features of a signal. Among those, sig-
nal vector magnitude and root mean square (RMS) look at 
the magnitude of the three-axis signal and do not contain 
directional information from the IMU sensor. These features 
usually play an essential role in movement classification and 
detection tasks if the most discriminative feature is not 
known. The frequency domain features are good at analyzing 
stationary signals that contain certain frequency patterns. For 
example, the fast Fourier transform (FFT) features for a cer-
tain long duration can be used to distinguish between walk-
ing, falling, and sitting down activities [2] and to distinguish 
between walking, running, standing, and going up stairs [27]. 
The principal frequency component can be considered to 
monitor the motor fluctuation of patients with Parkinson’s 
disease [23]. The time–frequency domain feature listed cap-
tures the frequency features as well as the time at which the 
frequency component occurs. This information is important 
for analyzing nonstationary signals in which the frequency 
components change over time. This is true for all the transi-
tional movements (e.g., sit-to-stand and sit-to-lie). This fea-
ture has been proven powerful for detecting daily activities of 
elderly subjects, which primarily consist of transitional 
movements [22]. It is also used to detect the postural transi-
tion time, which helps evaluate the fall risk of the elderly [8]. 
A comparison work shows that frequency domain features 
(FFT-based features) perform better than wavelet transform 
features in distinguishing continuously dynamic activities 
such as walking, walking upstairs, walking downstairs, run-
ning, and jogging [26]. 

The first three categories in the table generalize the signal 
based on statistics. The fourth category includes the features 
that are useful for certain applications. To extract these fea-
tures, users are required to be knowledgeable about the appli-
cation so that they know which features will best serve their 
purpose. Posture transition duration [3], [18], trunk tilt [3], 
and vertical velocity [15], [28] are among the features that can 
be used to detect and evaluate the sit-to-stand motion. Step 

and stride length, velocity, cadence, swing, and stance are 
important in gait analysis [21]. Step length and heading are 
commonly used features for indoor localization [9], [11], [13].

Feature selection
In the previous section, we covered the extraction of various 
features from the IMU sensor data. Feature selection provides 
a way to select the most suitable feature subset for certain 
tasks from the available features. For example, to reduce over 
fitting and information redundancy, feature selection tech-
niques can be applied to select the best feature subset for clas-
sification and detection tasks. It is useful when users do not 
know which features are useful and want to pick the best sub-
set from a broad of set of existing features. Here, feature 
selection also refers to the investigation that analyzes the sen-
sitivity of different features for applications. 

There are three different methods of feature selection: wrap-
per, filter, and embedded. Wrapper methods use a predictive 
model to score feature subsets. Each new subset is used to train 
a model that will be tested on the rest of the data set. Based on 
the prediction performance, each subset is assigned a score and 
the best subset will be chosen. Filter methods use general mea-
surement metrics of a data set to score a feature subset instead 
of using the error rate of a predictive model. Some common 
measures are mutual information and inter/intra class distance. 
The embedded methods perform the feature subset selection 
in conjunction with the model construction. One example is 
the recursive feature elimination algorithm, which is com-
monly used with a support vector machine (SVM) to repeat-
edly construct a model and remove the features with low 
weights. The different feature selection techniques are stated 
next for assisted living applications.

A large set of features are extracted and a wrapper-based 
feature selection technique is applied to determine the best 
subset of the feature space in a preimpact fall detection appli-
cation [14]. Each individual feature is assigned a ranking score 
based on its discriminative performance, and the best ranked 
features are selected to form a final feature vector and fit it to 
the classification algorithm. A framework is proposed to deter-
mine the best sensor locations and the most relevant sensor 
features for discriminating ADLs that can be important to 
assess physical and behavioral changes over time for the 

Table 1. A list of features.

Feature Category Feature List
Time domain Mean, variance, signal vector magnitude, correlation coefficient, RMS, skewness, maximum magnitude change, slope of the fit-

ting line, standard deviation of fitting error, standard deviation of difference, trapezoidal numerical integration, signal entropy, 
maximal acceleration, maximal jerk, maximal velocity, peak power, range of cross covariance between each of two axes [2], 
[3], [14], [16], [19], [22], [23], [26]

Frequency domain FFT coefficients, principal frequency components, energy of 0.2-Hz window centered on the main frequency over the total FFT 
energy, logarithm of the magnitude-squared discrete Fourier transform coefficients [2], [23], [26], [27]  

Time–frequency domain Wavelet transform [8], [22]

Others Posture transition duration, trunk tilt, vertical velocity, step length, step frequency, heading information, local energy of the trunk 
dynamics, postural transition smoothness, postural orientation, singular value decomposition, cadence, swing, stance [3], [9], 
[11], [12], [15], [16], [18], [21], [28]
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elderly and patients with chronic diseases [24]. Three differ-
ent feature selection algorithms are tested for 13 different fea-
tures for five different groups of ADLs. Accelerometer based 
balance parameters are determined and compared during the 
sit-to-stand movement and the results show the area under the 
curve (AUC) and RMS are useful features and AUC appeared 
to be more sensitive than RMS [18].

Classification
Classification is widely used in applications of assisted living. 
Classification can be used to detect falls and prefalls, to dis-
tinguish between healthy and unhealthy motor function, and 
to detect ADLs. A variety of machine-learning and pattern 
recognition algorithms are explored in the area of the IMU-
based assisted living. Table 2 shows some of the commonly 
used classification algorithms.

Thresholding-based decision making is 
a popular classification scheme in assisted 
living applications. This approach is 
straightforward to use and is often used for 
binary classification tasks. When the value 
of a feature is above a threshold, it is clas-
sified as one of the two states and when the 
value is below a threshold, it is recognized 
as the other. When the designer finds a fea-
ture that can discriminate between two possible states, the 
thresholding technique is a good candidate due to its simplici-
ty and because it can be easily interpreted. The thresholding 
technique is applied to classify walking versus running [10]. 
If the variance of the accelerometer is below a defined thresh-
old, the activity is recognized as walking, and recognized as 
running if the accelerometer variance is larger than a defined 
threshold. Based on this decision, an adaptive step length esti-
mation algorithm is derived. A thresholding technique is 
applied to the inertial frame’s vertical velocity magnitude to 
detect the occurrence of falls before impact [28]. To deter-
mine the posture transition time for sit-to-stand, a threshold is 
applied to determine the beginning and ending of the transi-
tion movement [8]. A threshold based on the maximum mea-
sured vertical velocity from ADLs and the minimum 
measured vertical velocity from falls is used to distinguish 
falls and normal activities [15]. Thresholding is used to distin-
guish tremor motions from nontremor motions in a movement 

from the action research arm test, which is designed to test 
recovery of upper-limb function [29].

Instance-based learning methods classify an instance 
based on the similarity between the instance under test, and 
the labeled instances in the training data set. This method 
does not need to train a model in the training phase. However, 
it is computationally expensive in the testing phase because it 
needs to calculate the similarity between each testing instance 
and all of the instances in the training set. The k-nearest  
neighbors (kNN) algorithm is one example of an instance-
based classification algorithm. It performs well in activity rec-
ognition tasks, and it is used to determine the different types 
of the ADLs [16], [24]. 

Neural networks are a family of statistical algorithms 
inspired by biological neural networks (i.e., the human 
brain). It consists of a large number of nodes acting as neu-

rons in a network and the weighted con-
nections between different neurons. With 
a large enough set of training data and 
parameter tuning, it can provide high 
classification performance. A very large 
data set is often required for training, and 
this is not usually available for IMU-
based applications. Moreover, the trained 
model is not interpretable for users. In 

IMU-based assisted living applications, the training data is 
usually small, and, in most cases, the user wants to under-
stand the models. These two factors make neural networks 
less attractive in this area. The authors explored the classifi-
cation performance of a neural network while varying the 
size of the training data set for a physical movement moni-
toring application [16]. Four transition movements were 
detected using the neural networks and kNN for an average 
accuracy of 84%.

SVM is one of the most popular discriminative classifica-
tion algorithms in different areas in recent years. SVM tries to 
find the margins that will maximize the separation between 
different classes. In the training phase, the margins are deter-
mined and it is computationally efficient in the testing phase 
based on the trained model. It is similar to neural networks in 
that it will be difficult to interpret by users. However, it does 
not require a very thorough training or a very large training 
data set. A preimpact fall detection system is discussed based 
on the SVM classifier [14]. A SVM is applied for monitoring 
motor fluctuations in patients with Parkinson’s disease and the 
optimal kernel is analyzed [23].

The HMM is a statistical Markov model in which the sys-
tem is assumed to be a Markov process with unobserved 
states. HMM is well studied and is often used in temporal 
pattern recognition such as speech recognition and gesture 
recognition. It is widely used to recognize different activities 
based on IMU time series sensor data and is also good at rec-
ognizing a sequence of movements. Human intention recogni-
tion in smart assisted living systems is presented using a 
hierarchical HMM [7]. The HMM is first used to recognize 
the low-level hand gestures with a finger-worn inertial sensor 

Table 2. Classification algorithms.

Classification Type Classifier

Thresholding [6], [8], [10], [15], [28], [29]

Instance based KNN [16], [24]

Neural networks Multilayer perceptron [16]  

SVM Linear kernel SVM [14], polynomial kernel 
SVM [23]

Hidden Markov models 
(HMMs)

Hierarchical HMM [7], continuous HMM [27], 
HMM [4], [17]

feature selection provides 
a way to select the most 
suitable feature subset 
for certain tasks from the 
available features.
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and, after that, a hierarchical HMM is applied to model the 
correlation and constraints between commands. A continuous 
HMM is proposed to jointly classify the pedestrian activity 
and gait phases with the assumption that state-conditional 
output density functions of the HMM to be a Gaussian mix-
ture model [27]. This approach is robust to subject variability. 
It will still perform well when new subject data is tested with-
out any training for this subject. In-home assembly task rec-
ognition is performed using a HMM on accelerometer data 
with fusion of the linear discriminant analysis (LDA) decision 
from sound data [4]. A method for spotting sporadically 
occurring gestures (e.g., handshake, drink, pick up the phone, 
etc.) in a continuous data stream from body-worn inertial sen-
sors was designed using a HMM [17]. The method contains 
two stages. In the first stage, signal sections likely to contain 
specific motion events are selected using a similarity search-
ing algorithm; and in the second stage, the HMM is applied to 
classify the activities. 

Measurement models
In addition to classification algorithms, advanced measure-
ment models are applied to fuse different modalities of IMU 
sensors (e.g., accelerometer, gyroscope, and magnetometer) to 
compensate for errors and drifts. This leads 
to robust measurements for different tasks 
in assisted living. Kalman filters and parti-
cle filters are among the most popular 
fusion techniques. The Kalman filter is an 
algorithm that uses a model and a series of 
noisy and possibly inaccurate measure-
ments observed over time to produce esti-
mates of unknown variables that tend to be 
more precise than those based on a single 
measurement alone. It is widely used in the navigation and 
control systems. A conventional Kalman filter is used to 
reduce the drift from inertial sensors in an indoor navigation 
system with foot-mounted strap-down inertial sensors [11]. 
The inertial navigation system calculates the position change 
at a high frequency rate, and the integration error from the 
inertial sensor will accumulate over time. The GPS is also a 
part of the system and when GPS data is available, the GPS 
derived positions are compared with the positions derived 
from the inertial navigation system. The differences are fed 
into a Kalman filter that estimates the errors from the inertial 
navigation system and compensates the measurements so that 
the errors remain small. A Kalman filter is used to combine 
the acceleration, angular velocity and biomechanical con-
straints to generate robust estimation of the knee joint flexion/
extension angles [20]. The gyroscope noise and the acceler-
ometer noise are modeled by the Kalman filter. The proposed 
system works effectively for both walking and running for 
five minutes when compared to a camera-based motion track-
ing system. 

Unlike the Kalman filter, the adaptive filter is a system 
with a linear filter that has a transfer function controlled by 
variable parameters that are adaptively updated according to 

certain optimization criterion. An adaptive filter is designed to 
fuse all of the sensor information and pseudo-measurements 
to provide a self-contained pedestrian tracking system during 
normal walking [9]. In the cases that the systems are nonlinear 
and the noise is non-Gaussian, a particle filter, which is more 
complex, will usually perform better than a Kalman filter. A 
particle filter is used to fuse the step length and heading infor-
mation from inertial sensors to provide an indoor localization 
system [12].

Performance analysis
The performance and efficiency of assisted living technolo-
gies can be evaluated using many metrics. The goal for this 
section is to compare recent signal processing advances with 
respect to accuracy, power consumption, and computational 
complexity of the sensors and algorithms.

Accuracy
The accuracy of IMU-based signal processing techniques is a 
key aspect for assisted living applications. The cost of faults 
can be significant, especially when the techniques are used to 
assist the elderly, individuals who are vulnerable, and those 
that are in need of care. 

Signal processing techniques are pro-
posed to reliably detect the human postural 
transition and ADLs, recognize gestures, 
and track the users’ sleeping patterns and 
diet. FFT was used to extract information 
from IMU sensor data to recognize and dis-
tinguish falling, sitting, and walking activi-
ties [2]. Using FFT on data from a 
wrist-worn sensor with a 10-Hz sampling 
rate was unable to accurately discern 

between falling and sitting down. A method of physical activity 
monitoring to detect activities such as sitting, standing, and 
lying has sensitivities and specificities of 90.2% and 93.4% for 
sitting, 92.2% and 92.1% for standing+walking, and, 98.4% and 
99.7% for lying with a sternum-mounted sensor sampling at 
40 Hz [22]. Overall, the detection errors were 3.9% for standing + 
walking, 4.1% for sitting, and 0.3% for lying. Finally, the over-
all symmetric mean average errors were 12% for standing + 
walking 8.2% for sitting, and 1.3% for lying. A model to fuse 
data from hand movements and audio sampled at 2 kHz from a 
wood workshop to recognize workers’ activities is presented 
[4]. Different methods were used to improve the classification 
and it is shown that in isolation, the accuracy of activity detec-
tion is 98%, 87%, and 95% for the user-dependent, user-inde-
pendent, and user-adapted detection, respectively. A data set 
was created from a wrist-worn IMU sensor, and a method to 
detect sleep and wake states was proposed [5]. The algorithm 
was compared with traditional algorithms using total sleep time 
(TST) and sleep efficiency (SE) as the comparison parameter. 
The proposed method achieves an overall median accuracy of 
79% for detecting sleep and wake intervals.

Several accurate human localization techniques are pro-
posed, leveraging IMU-based wearable solutions. An adaptive 

Classification can be used 
to detect falls and prefalls, 
to distinguish between 
healthy and unhealthy 
motor function, and to 
detect ADLs.
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step-length estimation algorithm for the pedestrian navigation 
system (PNS) has an accuracy of 95% in the worst case [10]. 
Two PDF algorithms including Weiberg and zero velocity 
updates (ZVU) for stride-length estimation are tested at three 
different walking speeds (slow, normal, and fast) [13]. The 
authors show that the Weiberg algorithm performs better than 
ZVU at all walking speeds. An IMU-based self-contained 
pedestrian tracking method is proposed that uses ZVU and the 
step length estimation as a control variable to correct the 
acceleration drift. This method improves the tracking accura-
cy by decreasing the final position error for different scenarios 
such as short and long distance walking and reduces the final 
position error up to 66% when compared to other algorithms 
[9]. A method using IMU sensors attached on soldiers’ boots 
is compared to the implementation of ZVU with and without 
magnetic heading information [11]. Using ZVUs along with 
magnetic heading information can be accurate for the soldiers 
when they are operating an attack in a building. This method 
stayed within 2 m of the true path over a path of more than 90 m. 
A method using phone inertial sensors with a default rate of 
50 Hz is proposed, i.e., infrastructure-free, phone position 
independent, user adaptive, and easy to deploy [12]. The step-
length estimation is used as a personal model for a user and 
this model is updated each time the system collects data. The 
users are put into different groups based on their personal 
models. The step-detection error for the cellphone in hand and 
in pocket cases for different algorithms were compared and 
error rates from 1.6% to 24.5% (in hand) and 1.1% to 25.6% 
(in pocket) were reported. An investigation using IMU sensors 
sampling at 1 kHz detects preimpact falls using trunk vertical 
velocity [15]. Falls can be distinguished from normal ADLs, 
with 100% accuracy and with an average detection speed of 
323 millesconds prior to trunk impact and 140 milliseconds 
prior to knee impact, in their subject group. Sensor locations 

and sampling can impact accuracy. This information for the 
reviewed papers is given in Table 3.

Power consumption/computational complexity
Power-aware IMU-based sensors can potentially reduce the 
size of batteries, enhance sensor lifetime, and enable long-term 
monitoring. Signal processing algorithms with lower computa-
tional complexity make it possible to analyze the collected data 
more quickly and provide faster feedback. Exploring the lowest 
sampling rate for activity detection using FFT features can save 
power [2]. The results show that 10 Hz is able to distinguish 
between walking and sitting, but does not do well distinguish-
ing falling with a wrist-worn accelerometer. A granular deci-
sion-making module is proposed to reduce the power 
consumption significantly for a wearable IMU-based move-
ment monitoring system [30]. Movements that are of no interest 
are removed as early as possible from the signal processing 
chain, deactivating all of the remaining modules in the signal 
processing chain as well as the microprocessor. The bit resolu-
tion, the key factor that affects the system power consumption, 
is only increased as the target movement is detected. Similarly, 
a low-power programmable signal processing architecture for 
dynamic and periodic activity monitoring applications saves 
power by performing signal processing in a tiered fashion by 
removing irrelevant data as soon as possible [25]. Using wavelet 
decomposition 75.7% power savings are achieved while main-
taining 96.9% sensitivity detection of target actions.

Conclusions
The growth of wearable IMU sensors has created many 
opportunities to improve people’s health and lives through the 
development of innovative applications. This article has pro-
vided an overview of signal processing techniques and their 
performance for assisted living applications. Many of the 
applications reviewed are the subject of ongoing research and 
there many opportunities for improvement still remain. A 
variety of signal processing techniques are being used, but for 
an actual working system, the accuracy and power concerns 
must be taken into consideration on a case by case basis not-
ing that applications and related hardware have different 
needs. Applications using wearable IMU sensors will contin-
ue to improve and provide valuable information to help peo-
ple to have healthier lifestyles with greater independence.
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Table 3. Sensor sampling rate and location.

Sensor Sampling Rates Sensor Locations

100 Hz [4]–[6], [9]–[11], 
[13], [17], [20],  
[23]

Wrist/Hand [2], [4]–[7], [12], [17], 
[23], [24], [26], [29]

50 Hz [7], [12], [19],  
[24], [29]

Hip/Waist [14], [19], [24],  
[25], [28]

40 Hz [3], [8], [22] Thigh [14], [20], [21], [23], 
[26]

Below  
40 Hz

10 Hz [2], 25 Hz 
[25], 32Hz [21]

Sternum/
Trunk

[3], [7], [8], [15],  
[16], [18], [21],  
[22], [24], [27]

47 Hz [14] Lower Leg/
Calf

[20], [23]

57 Hz [28] Ankle/Foot [7], [9]–[11], [13], 
[21], [25], [26]

64 Hz [26] Upper Arm [4], [6], [17],  
[24], [29]

Above  
100 Hz

128 Hz [18], 250 Hz 
[27], 1 kHz [15]

Other Ear [24], pocket [12], 
knees [25]
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