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Abstract. Athletes in any sports can greatly benefit from feedback systems for improving the quality of their training. In this
paper, we present a golf swing training system which incorporates wearable motion sensors to obtain inertial information and
provide feedback on the quality of movements. The sensors are placed on a golf club and athlete’s body at positions which capture
the unique movements of a golf swing. We introduce a quantitative model which takes into consideration signal processing
techniques on the collected data and quantifies the correctness of the performed actions. We evaluate the effectiveness of our
framework on data obtained from four subjects and discuss ongoing research.

Keywords: Sport Training, Body Sensor Networks, Quantitative Analysis, Golf Swing

1. Introduction

Sport training represents the body’s adaptation to
conditions of certain exercises. One can achieve con-
siderable progress in a sport with the aid of appro-
priate exercises and training methods [39]. The qual-
ity and organization of the training typically influences
degree of final proficiency and the speed with which
this proficiency is achieved. Feedback becomes essen-
tial for training when new plans are structured in or-
der to make incremental progress by practicing sport
skills.

Sport-specific coaching systems have allocated in-
terest lately, leading to the development of frameworks
which are capable of acquiring and processing physio-
logical and behavioral variables for a given sport. Ad-
vancements in microelectronics and wireless commu-
nication have enabled the design of light-weight em-
bedded sensory devices [6]. Ability of wireless sen-
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sor platforms to perform computations, store neces-
sary data, and communicate within a short range make
them attractive for the development of wearable sys-
tems. In particular, sport training systems aim to in-
corporate either off-body devices placed in the envi-
ronment or a composition of embedded devices within
the sports equipment and on-body sensors. In this pa-
per, we investigate how such a coaching system can be
designed to provide feedback to novice golf players.

The popular sport of golf requires a complicated se-
quence of motions to swing the golf club properly with
the primary goal of propelling the golf ball a certain
distance in a desired direction. A proper golf swing can
make the difference between a long straight ball flight
and a shorter hook or slice as a result of an improper
swing. A repeatable and consistent golf swing can also
dramatically improve a golfer’s score. However, this
single movement which has such a major impact on
the player’s overall game is difficult to master and ex-
ecute consistently for players who are new to the sport
or have little experience.
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To make matters worse, certain variables, such as
which club is used, where the player wants to place
the ball on the golf course, and the current wind condi-
tions cause how the swing is executed from one swing
to the next. To resolve all of these complications, play-
ers who are serious about their game seek out instruc-
tors, golf instructional books, or other training aids to
help them to obtain the “perfect” golf swing. These
players can potentially benefit from wearable coaching
systems where information on the quality of the per-
formed swing can be provided in real-time. Such a sys-
tem must be mobile to be usable at the location where
the sport takes place.

In this paper, we describe a system that qualitatively
analyzes the golf driver swing using a body sensor net-
work (BSN). We describe the design requirements and
the information processing flow for a golf swing train-
ing system capable of detecting mistakes new play-
ers make in executing a good golf swing. Our sys-
tem is developed to assess the quality of a golf swing
with respect to incorrect movements. Wrist rotation is
among most common mistakes in golf, which causes
the ball to fly either to the right or left of the target
line. We place embedded sensor nodes on the player’s
upper body and the golf club to monitor the accelera-
tion and angular velocities of those points during the
swing. The system can be used to assist the player
in developing a correct swing in four major segments
of golf swing: takeaway, backswing, downswing and
follow-through. The sensor nodes collect data for the
sequence of actions in a swing which is then prepro-
cessed locally to facilitate subsequent in-network oper-
ations. The data is then sent to a base-station for further
analysis. At the base station, the quality of each seg-
ment is expressed as the amount of deviations from tar-
get line. Our experiments demonstrate that our system
is capable of quantifying a golf swing with respect to
wrist rotation. This information can then be provided
as feedback to the player to help them pinpoint which
parts of their swing may need practice. This informa-
tion can also help the player determine if any improve-
ment was achieved.

2. Preliminaries

In order to effectively analyze performance of a
golfer, a precise understanding of the complicated
movements involved in the golf swing is required. We
use a typical model of the golf swing which splits
a complete swing into several major parts [21], [40],

[17]. The model helps in determining significant fac-
tors of improper actions. In the following, we present
our model of the swing along with common mistakes
that lead to a bad swing.

2.1. Golf Swing Model

A full swing is a complex motion of the body aimed
at accelerating the club at great speed. The motion
starts at an initial position, referred to as the address
position, followed by the swing. A golf swing can be
divided into smaller segments. Our sport training sys-
tem is based on a golf swing model which consid-
ers a full swing composed of four major segments:
takeaway, backswing, downswing, and follow-through
[17]. Takeaway starts as the first movement after the
address position and ends when the club is approxi-
mately parallel to the target line and at waist level. The
backswing follows the takeaway and continues until
the golf club is lifted to its highest point behind the
player. Following this is the downswing in which the
club is brought back down to hit the ball. After im-
pact with the ball, the follow-through motion brings the
club to its stopping point in front of the player. These
segments are demonstrated in Fig. 1.

The choice of the aforementioned model simplifies
evaluation of the movement by breaking a complex
motion into less complicated actions. It further enables
more precise analysis of the actions by reporting the
quality of each individual part of the swing. Further-
more, the data obtained by our system verifies that
each segment can be specified by particular patterns in
the signal. We will provide the evidence later in this
paper.

2.2. Fundamental Guidelines

For a golf player to develop a sound swing, it is re-
quired to know principles that are essential to building
a prefect swing. Applying these fundamental guide-
lines helps individual golfers improve their proficiency
by learning how to establish positions as well as how
to adjust those parts of the swing that is not fundamen-
tally correct. The goal in achieving a perfect swing is
to hit the ball squarely and straight [36]. This would
also give the golfer maximum distance. Consequently,
it is important to investigate actions that prevent devel-
opment of a perfect swing. According to the literature,
there are two kinds of common mistakes new players
make resulting in a poor shot [8]: wrist rotation and
out-of-plane movements. In this study, we focus on
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Takeaway Backswing Downswing Follow-through

Fig. 1. Golf swing as a four phase motion

evaluating golf swing in terms of the angle of wrist ro-
tation. However, we make our experiments highly con-
trolled to prevent introducing effects of other mistakes,
e.g. out-of-plane movements, in our results. Wrist ro-
tation occurs when the player rotates the wrists clock-
wise or counterclockwise resulting in the golf club to
become “open” or “closed,” respectively. This can hap-
pen during any segment of the swing. The result is that
at impact, the golf ball will go either to the right or
the left of the target line. Hitting the ball with an open
clubface will cause the ball to fly to the right of the
target line (slice), while hitting the ball with a closed
clubface will cause the ball to fly to the left of the tar-
get line (hook). Both of these outcomes are highly un-
desirable when playing a game and result from the ro-
tation of the wrist.

Fig. 2. Swing plane 1

The second common swing mistake is out-of-plane
movement. The golf swing plane is defined by the
plane which contains the line created by the golf club
at address and the target line. This is demonstrated
in Fig. 2. A swing is considered an in-plane swing
if the swing, including takeaway, backswing, down-
swing, and follow-through, remains on a plane at the
address position [8]. Out-of-plane movements can hap-
pen during any segment of the swing. They can be due

1Swing plane image is courtesy of http://thebestpaintersintown.com

to several important movements and postures includ-
ing over-bending the elbows, raising the arms too high,
not raising the arms enough, and bending the wrists
among others. Each of these actions has a different
effect on the outcome of the swing. In general, out-
of-plane movements cause the ball to leave the target
line, but more importantly, they reduce strength of the
swing resulting in a weak impact and shorter driving
distance.

3. System Architecture

We use a BSN consisting of several sensor units
placed on the body and the golf club to capture the
physical movements of the golf swing. Each sensor
node, also called a mote, is equipped with a custom-
designed sensor board consisting of several inertial
sensors as shown in Fig. 3. We use the TelosB mote
which is commercially available from XBow R©. The
mote has a microcontroller for processing and storage,
and a radio for communication. Embedded with our
custom-designed sensor board, a tri-axial accelerom-
eter and a bi-axial gyroscope are interfaced with the
mote platform. The mote and the sensor board are
powered by a Li-Ion battery integrated with each node.

2.580 in.

1.267 in.

Fig. 3. Custom-designed sensor board attached to a mote

Our body-worn sensor nodes are placed on the up-
per body and arms to capture significant motions dur-
ing the swing [5]. The movements of the golf club are
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captured by the two nodes attached to the club. This
configuration ensures that the system captures inertial
information associated with the major parts of the body
involved in the golf swing. We placed two nodes on the
golf club (one near the club head and another near the
grip, as shown in Fig. 4), one on the right wrist, one on
the left arm, and one on the back at waist level. We will
demonstrate effectiveness of this sensor setup through
our experiments. The optimal sensor configuration, in-
cluding the best senor placement and smallest set of
sensors required for our system, is not investigated in
this paper.

1

2

4

5

3

Fig. 4. Experimental subject and processing nodes with motion sen-
sors

The processing unit of each node samples sensor
readings at 50Hz. This tentative sampling rate is exper-
imentally chosen to provide sufficient resolution while
compensating for bandwidth constraints of our sensor
platform. We will investigate more efficient rates later
in this paper. Each sensor node can perform local pro-
cessing on the inertial data and transmit the result wire-
lessly to a base-station. The base-station can be either
another mote or a PDA which collects local informa-
tion from all other nodes, performs final processing,
and provides the user with a feedback on the quality of
the swing.

4. Signal Processing

Our model for assessing quality of golf swings aims
to utilize processing capability of each sensor node
and combine local information obtained from all sen-
sor nodes to achieve a measure of quality. This pro-
cess consists of several steps as illustrated in Fig. 5 and
explained below.

The preprocessing consists of filtering and segmen-
tation to facilitate subsequent operations without los-
ing relevant information. The data collected at each
sensor node is locally filtered. We use a five-point
moving average filter to reduce the effect of noise.
The number of points used to average the signal is ex-
perimentally chosen to maintain sharp step response
while a smooth output signal can be obtained. For seg-
mentation, we determine parts of the signal that rep-
resent swing segments. That is, each signal segment
corresponds to one of takeaway, backswing, down-
swing and follow-through. Currently, we perform this
process manually to avoid introducing errors by auto-
matic segmentation. We take advantage of video which
captures experimental procedure to perform fine-grain
manual segmentation. This video is specifically used
in our prototype to isolate and identify segments of the
golf swing.

In feature extraction, an exhaustive set of features
is considered to ensure capturing as much useful in-
formation as possible for each movement segment. We
extract an exhaustive set of time-domain features in-
cluding statistical and morphological features. Each
statistical feature is a mathematical function taken over
a complete segment. Morphological features, however,
are calculated from m uniformly distributed samples
over a complete segment.

The quantitative model performs further analysis on
the features extracted from all sensor nodes in order to
obtain a quality metric. The quality of each segment of
a golf swing can be measured with respect to different
criteria. Examples of such criteria include the amount
of wrist rotation and how out of plane a swing is. We
develop our model for quantifying golf swings with
respect to several criteria. Our model employs feature
conditioning techniques to refine features contributing
to the quality of the swing. Although the exhaustive set
of features maintains relevant information on the qual-
ity the swing, it contains relatively large number of re-
dundant features. On the other hand, curse of dimen-
sionality [9] is an impediment for our system as our
sensor nodes are constrained in terms of computational
capabilities, communication bandwidth and memory.
A high dimensional feature space requires more band-
width for transmission and more computation for qual-
ity analysis. Furthermore, quality of a golf swing with
respect to each criterion can be expressed by certain
properties of the physical movement. Therefore, spe-
cific tools are required to extract such attributes from
the signal. We use several signal processing techniques
including PCA (Principal Component Analysis) and
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Fig. 5. Signal processing blocks for quality analysis of golf swings

LDA (Local Discriminant Analysis) to obtain signifi-
cant information with respect to each criterion.

5. Quantitative Model

Our technique of quality analysis takes advantage of
linear projection methods traditionally used in the field
of signal processing and pattern recognition [11]. The
intuition behind this model is that the quality of the
golf swing with respect to a specific criterion is pro-
portional to the quality of physical movement. That is,
the deviation of the swing should be linearly related
to our quality metric. When assessing the system with
respect to special criterion, e.g. wrist rotation, the de-
gree of improperness can be exclusively quantified by
a subset of features. Our technique aims to find fea-
tures that are unique for each particular target quality
metric and maintain linearity of that metric. Inspired
by linear methods of LDA and PCA, we build a quality
measure for every given criterion by further processing
of features as illustrated in Fig. 6.

The set of features extracted from observations
across the network are fed to the data fusion block to
form a higher dimensional feature space. Let F1, F2,
. . . , Fn be feature vectors of size N×m obtained from
sensor nodes {1, 2, . . . , n} where N denotes the num-
ber of observations and m represents the number of
features. The new feature vector F has a size of N×M
where M = n×m.

PCA [19], known as an effective dimension reduc-
tion techniques [41], aims to replace the original fea-
tures with a new set of variables that can be ranked
in the order of their importance. The first few princi-
pal components account for those projections of the
feature space that provide most of the information in

the data. This technique is widely used for dimension
reduction where a high-dimension dataset is replaced
with a new dataset with fewer features. The resulting
projections are given by C = [C1, . . . , CL] where each
new feature Ci , called a principal component, can be
expressed by a linear combination of original features
[f1, . . . , fM ]:

Ci = ai1f1 + ai2f2 + ... + aiMfM

∀i ∈ {1, ..., L}
(1)

where aij are determined by eigenvalue decomposition
on the original feature space.

LDA [11], used for both classification and dimen-
sion reduction, is characterized as trace optimiza-
tion on scatter matrices [27]. The technique aims to
maximize the between-class scatter while minimizing
within-class scatter. It selects the feature vectors given
by

D = arg max
D

trace

(
DT SbD

DT SwD

)
(2)

where Sb denotes the between-class scatter matrix and
Sw represents within-class scatter matrix. Classical
LDA suffers from Small Sample Size (SSS) [34] prob-
lem, that results in singularity of the within-class scat-
ter matrix. One way to overcome the singularity of Sw

is to use PCA to reduce the dimension of the original
dataset before applying LDA. The technique is known
as subspace LDA [42]. We use this method to refine the
feature space prior to using LDA. We set the number
of principal components, L, fed to the LDA block to
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Fig. 6. Building quantitative model

be equal to the rank of the between-class scatter matrix
Sw.

Let X be a given dataset of size N × M where N
is the number of observations and M is the number
of features. For every criterion for which our system
tends to build a qualitative model, we assume that the
dataset is divided into k groups g1, g2, . . . , gk each ac-
counts for a particular degree of quality with respect to
the given type of bad swing. The reduced feature space
C which has a size of N × L is applied to the LDA
module to obtain k − 1 projections. The projections
D = [D1, . . . , Dk−1] from LDA, also called discrim-
inant functions, give directions that maximize the dis-
tance between different groups and minimize distances
between trials within each group.

Di = bi1C1 + bi2C2 + ... + bik−1Ck−1

∀i ∈ {1, ..., k − 1}
(3)

Although the first projection obtained from LDA
provides maximum discrimination, the groups may
partially overlap if only this projection is considered
as our evaluation metric. To take maximum discrimi-
nation into consideration, we build a regression model
according to the LDA projections. This model is given
by (4).

yi = β0 +
k=1∑

j=1

(βjDij + αjD
2
ij) + εi

i = {1, ..., N}
(4)

where the dependent variable yj is a linear combina-
tion of parameters βij and αij , and dependent vari-
ables Dij refer to the discriminant function Dj associ-
ated with i− th observation.

The qualitative model can be tested by computing
various statistics that measure the difference between
the predicted values,

_
y i, and the expected values, yi.

The Root Mean Squared Error (RMSE) and Mean Ab-
solute Error (MAE) are among most common statis-

tics used to evaluate the overall quality of a regression
model. RMSE is the square root of the average squared
distance of data point from the fitted line and is given
by

RMSE =

√√√√ 1
N

N∑

j=1

(yi−
_
y i)2 (5)

where N denotes cardinality of the validation set. MAE
is the average of the absolute value of the residuals and
is given by

MAE =
1
N

N∑

j=1

|yi−
_
y i | (6)

6. Quantitative Analysis for Wrist Rotation

In this section, we investigate quality measure with
respect to the wrist rotation. We find a linear projection
of feature space that monotonically changes while the
angle of rotation varies. This projection is obtained by
LDA and is fed to a regression model to quantify the
degree of improperness of movement. The system re-
quires a dataset with trials obtained from several vari-
ations of the wrist rotation. Swings performed for each
variation are required to account for consistent physi-
cal movements. That is, within each group gi, the tri-
als should have the same degree of wrist rotation while
different groups exclusively differ with respect to the
rotation. This would imply the need for a highly con-
trolled experimental environment. Therefore, we use a
home swing trainer [31] [16] which helps to maintain
an in-plane swing. The device has a rigid rod with one
end mounted on the wall and the other end on which
the golf club slides as shown in Fig. 7. The rod and
the club are connected at one end as illustrated in Fig.
7.a where the club can rotate along its axis. We mod-
ified the club to ensure that it was fixed about its axis
during every trial. This makes our experiments even
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(a) (b)

Fig. 7. Experimental setup for wrist-rotation

more controlled because the amount of wrist rotation
remains consistent provided that the subject maintains
a steady grip throughout each trial. The club is marked
at both head and grip sides to depict the angle of rota-
tion. Hence, by placing sensor nodes at locations asso-
ciated with angles, a consistent angular wrist rotation
is maintained.

An extremely important requirement in building our
model is to restrict each trial to a specific type of bad
swing. The experimental setup for the wrist rotation,
as shown in Fig. 7.b, keeps all segments of a swing
within the same plane resulting in maintaining an in-
plane swing. This ensures that different trials can differ
only in the amount of the wrist rotation. The resulting
model then will be able to quantify incorrect swings in
terms of angular rotation. In reality, however, several
types of mistakes can be made independently by the
golfer, each of which must be quantified using indi-
vidual models. Integrating evaluation of mistakes other
than wrist rotation into our existing model is a problem
that we will investigate in the future.

To build the quantitative model for wrist rotation,
N number of observations associated with k dif-
ferent variations of wrist rotation are required. The
data collected for k angles form a dataset of groups
g1, g2, . . . , gk. The LDA projection can be derived as
described previously. Finally, the parameters of a lin-
ear regression are calculated based on N values of the
discriminant functions introduced by LDA.

7. Experimental Verification

In this section, we describe our methods of data
collection, model generation and validation to provide
feedback on the quality of movements with respect to
wrist rotation.

7.1. Experimental Procedure

We conducted our experiments to express the qual-
ity of the golf swing with respect to the wrist rotation.
The experiments were conducted on three male sub-
jects and one female subject all aged between 20 and
35. Each of the subjects wore three on-body sensors.
In addition, two sensor nodes were placed on the golf
club: one on the club head and one on the grip as shown
in Fig. 4. The subjects were asked to perform the golf
swing ten times for each of the variations listed in Ta-
ble 1.

Table 1
Experimental movements

No. Angle Description
1 0 Perfect Swing
2 +20 Twenty degrees clockwise
3 +40 Forty degrees clockwise
4 +60 Sixty degrees clockwise
5 +80 Eighty degrees clockwise
6 -20 Twenty degrees counter clockwise
7 -40 Forty degrees counter clockwise
8 -60 Sixty degrees counter clockwise
9 -80 Eighty degrees counter clockwise

Our subjects performed swings after first address-
ing the ball with 20◦, 40◦, 60◦ and 80◦ clockwise and
counter-clockwise rotation of the wrists. Each subject
also performed a perfect golf swing that has no wrist
rotation or out-of-plane movements. For each move-
ment, the amount of wrist rotation was controlled by
fixing the location of the nodes placed on the golf club.
The subjects must grip the club aligned with the nodes
on the club. They were asked to keep their wrist fixed
throughout the movements. This allows the system to
control the swing plane while achieving consistent an-
gles in different segments of the swing. All of the
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swings were performed in the absence of a golf ball.
The subjects were also asked to perform the swings at
a specified speed for experimental consistency.

Table 2
Statistical and morphological features

No. Symbol Description
1 Amp Different between maximum amplitude

and mean of signal segment
2 Med Median value of signal segment
3 Min Minimum value of signal segment
4 Max Maximum amplitude of signal segment
5 Mean Mean value of signal segment
6 P2P Peak-to-Peak amplitude of signal segment
7 Var Variance of signal segment
8 Std Standard deviation of signal segment
9 RMS Root Mean Square of signal segment
10 S2E Start-to-End value of signal segment
11 Slope First derivative of signal segment
12 V Value of morphological point
13 T Time of morphological point
14 dx First derivative
15 d2x Second derivative

An extra mote was connected to a laptop via USB
port to collect data from all sensor nodes. The data was
collected using our tool developed in MATLAB. We
followed the procedure for data collection, preprocess-
ing, feature extraction, model generation, and valida-
tion as described previously. We processed collected
data offline using our tools developed in MATLAB.

7.2. Quantification Results

For each trial, the data collected from four subjects
was first preprocessed using a five-point moving aver-
age filter to remove the effect of noise. Each trial was
divided into four major segments consisting of take-
away, backswing, downswing and follow-through. The
manual segmentation was performed with the help of
the video recorded during data collection. An exhaus-
tive set of features was extracted from each segment.
The features include statistical and morphological fea-
tures as shown in Table 2 in which the first eleven fea-
tures represent statistical features obtained from each
signal segment, and the next four features are morpho-
logical features extracted from ten evenly distributed
samples over each segment. We used 50% of the trials
for the training to build our quantitative model, and the
rest to evaluate performance of the model.

For each of the major segments, a separate quan-
titative model was built. The features extracted from
five sensors (x,y,z accelerometer, and x,y gyroscope)
formed a 215-dimensional feature space for each sen-
sor node. Data fusion was used to combine features
from all sensor nodes to form a 1075 dimensional fea-
ture space which was used for subsequent processing.
The features were fed to the PCA block for dimension
reduction. Only a small number of principal compo-
nents obtained from PCA were used to find LDA pro-
jections. The number of principal components was set
to the rank of the within-class scatter matrix.

Given nine different groups of wrist rotation, LDA
creates eight discriminant functions in the form of lin-
ear combinations of the input. In Fig. 8 we illustrate
projections of the training trials using the first two di-
mensions for takeaway, backswing, downswing and
follow-through. The group 1 indicated by green color
corresponds to perfect swings while red represented by
groups 2, 3 . . . 5 and magenta colors annotated by 6, 7
. . . 9 show clockwise and counter clockwise rotations
respectively. These figures demonstrate the effective-
ness of our technique in distinguishing different vari-
ations of the wrist rotation. Furthermore, the graphs
would clearly describe the angular rotation.

The projections obtained by applying LDA were
used to build a linear regression as described previ-
ously. We used the validation set to measure the de-
gree of wrist rotation based on the model acquired.
The values of error in terms of RMSE and MAE are
shown in Table 3 and Table 4 respectively. In overall,
the amount of root mean squared error was 15.5, 10.7,
8.9 and 9.1 for takeaway (TA), backswing (BS), down-
swing (DS) and follow-through (FT) respectively. The
overall value of absolute mean error was reported as
9.2, 7.7, 6.6 and 6.5 degrees for TA, BS, DS and FT
respectively which introduces an average error of less
than 10 degrees for all segments.

7.3. Frequency Adjustment

Throughout our experiments, we used a sampling
frequency of 50Hz which provides good resolution in
capturing motions of golf swing. Reducing the sam-
pling frequency can potentially reduce the complex-
ity of processing. However, over-reduction may elimi-
nate important details of the signal. In an effort to ad-
dress this issue, we further adjusted our sampling rate
with respect to the performance of our model. Recall
the performance of our model expressed in terms of
RMSE and MAE, our adjustment process tends to find
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Fig. 8. Projection of training trials for different swing segments using LDA

Table 3
RMSE values for different swing segments

Group TA BS DS FT
g1 8.3 6.1 5.0 7.4
g2 13.8 14.8 15.4 7.3
g3 30.9 8.1 5.8 6.4
g4 12.8 10.4 4.9 11.6
g5 19.5 15.0 9.8 11.6
g6 8.5 7.3 7.1 5.6
g7 13.5 8.6 7.9 11.4
g8 12.0 7.6 9.9 7.0
g9 5.6 13.6 9.7 10.9

Overall 15.5 10.7 8.9 9.1

a minimum sampling frequency that maintains approx-
imately similar performance to 50Hz.

For the purpose of frequency adjustment, we mea-
sured RMSE and MAE errors for different sampling
frequencies between 5Hz and 50Hz. The results are
illustrated in Fig. 9 and Fig. 10. For each segment,
the error remained almost constant beyond certain fre-
quency. This threshold varied from one segment to an-

Table 4
MAE values for different swing segments

Group TA BS DS FT
g1 5.7 5.0 4.5 7.0
g2 12.3 10.7 10.8 5.4
g3 14.3 5.8 4.6 5.0
g4 10.9 8.0 4.3 9.3
g5 16.3 12.1 8.0 8.3
g6 6.9 5.2 5.7 3.8
g7 9.9 7.0 6.9 6.8
g8 9.5 6.0 7.4 5.6
g9 4.5 9.6 7.3 8.3

Overall 9.2 7.7 6.6 6.5

other. The lowest threshold was obtained for takeaway
(10Hz) and the highest frequency belonged to down-
swing and follow-through (30Hz). The difference be-
tween minimum sampling frequencies is mainly a fac-
tor of changes in speed of swing motions from one
segment to another. According to the analysis per-
formed using high speed cine-films of tournament pro-
fessionals [8], the golf club can move four times faster
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Fig. 9. Root mean squared error vs. sampling frequency for different
segments
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Fig. 10. Mean absolute error vs. sampling frequency for different
swing segments

during downswing than it usually does during take-
away and backswing. As a result, faster motions re-
quire higher sampling frequencies to ensure the col-
lected data has acceptable resolution. Considering the
worst case (i.e. frequency required for downswing and
follow-through), our system allows a frequency of
30Hz while maintaining the same amount of error as
reported at 50Hz.

8. Related Work

Use of inertial sensors in BSNs is motivated by
biomedical applications such as fall detection, gait
analysis, sport medicine and balance assessment, and
has received much attention during recent years. Au-
thors in [18], [13], [12], and citeghasemzadeh2009eei

introduce a framework for human action recognition
using motion sensors. They integrate on-body sensors
including accelerometers and gyroscopes in a wireless
sensor network to classify physical movements. In [4],
Barnes et al. perform a preliminary study on the ef-
fectiveness of body sensor networks for locomotion
monitoring. Logan et al. report the results of a study
on activity recognition using different types of sensory
devices, including built-in wired sensors, RFID tags,
and wireless motion sensors [28]. Maithe et al. [29]
use a tri-axial accelerometer mounted on the waist to
recognize basic daily movements using a hierarchical
classification scheme. A pattern recognition technique
for evaluating the performance of the human postural
control system using inertial and EMG sensors is pre-
sented in [33].

Advances in technology has enabled design of
sports feedback systems which accelerate training by
providing students with information regarding mis-
takes made during practice. In [35], Spelmezan et al.
present an on-body wireless sensor platform for real-
time snowboard training. They deploy inertial sensor,
bend sensors and force-sensitive resistors along with
communication facilities in a wireless network to cap-
ture and analyze rider’s motion and posture on the
snowboard. Kwon et al. [25] develop a motion training
system by integrating on-body accelerometer and mo-
tion capture data to detect human action and provide
visual feedback in real-time. In [23], a motion cap-
ture system is used to design a virtual baseball batting
training system where batter swings the bat toward a
virtual ball rendered over a screen. The trajectory of
the swing is then used to provide qualitative results.
Golnalez et al. [15] and Alvarez et al. [1] study the
problem of step estimation which is an important is-
sue in designing coaching systems. Despite their suc-
cessful development of sports training systems, unique
complexities in the golf movements make the afore-
mentioned techniques inappropriate for a golf swing
trainer.

A variety of golf swing analysis aids have become
popular recently, making use of technologies such as
high-speed photography, inertial sensors, and motion
capture using magnetic, radio frequency, or ultrasonic
markers. These systems can incorporate either devices
placed in the sports environment [38] [20] or sen-
sors embedded within the sports equipment and human
body [40] [3]. In [38], Urtasun et al define a tempo-
ral motion model that allows them to accurately ex-
tract 3D golf swing motion from a single camera while
no markers are required to be placed on the subject.
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The model allows them to overcome the obstacles of
subject self-occlusion and movements which are per-
pendicular to the camera plane. This approach sim-
plifies the computational complexity typical in motion
capture by using only one camera instead of many. In
[7], Betzler et al describe the application and limita-
tions of 3D motion analysis in measuring golf swing
motion. Golf-specific limitations of 3D motion anal-
ysis include the high velocity of the hands, club and
ball; inaccuracies in determination of body segment
rotations; vibration of markers at impact; and marker
placement and occlusion. The authors designed a test
setup to minimize the effect of these errors by using
cameras and careful placement of several markers on
the golfer and golf club. Kiat et al. [37] present a dif-
ferent approach to measure golf-swing motion. They
place electrogoniometers along the left arm and uti-
lize dual Euler angles and dual Euler velocity analysis
to estimate the location and velocity of the club head.
This method is able to provide details on the individ-
ual segmental contributions of the left arm to the final
swing movement. The calculated club head path is ver-
ified by comparing those obtained through video anal-
ysis. In [22], inertial measurement units (IMU) were
placed at the grip end of a golf club to measure ac-
celeration and angular velocities with six degrees-of-
freedom for a golf putting training system. A putting
robot capable of performing highly repeatable putts
and independent measuring instruments as used to as-
sess the accuracy of the sensor system. By using mea-
surement theory, their system was able to provide the
position of the club head to within 3 mm and the ori-
entation of the clubface to within 0.5◦. Golf training
aids have also been proposed in [10], [24], and [26]
which target specific problems faced by novice golfers.
A swing guide is presented in [10] which aims to help
the golfer coordinate the movements performed during
a swing. The exercises the author recommends while
using the device target the coordinated movement of
the hips, shoulders, elbows, wrists, and the golf club. A
mechanical golf swing training device is presented in
[24] to help players perfect their backswing and down-
swing movements. The training device helps players
focus on the non-dominant arm and shoulder while
keeping the swing in the proper swing plane. The pro-
posed device helps players to develop muscle memory
in their upper body to produce a smooth, consistent,
and controllable swing. Another training device in [26]
helps players to maintain proper right leg positioning
during the backswing. Its purpose is to restrict the lat-
eral movement of the right leg away from the target

during the backswing while not hindering the forward
movement of the legs during downswing and follow-
through. In [2], the authors model the golf swing as a
double pendulum system. Wireless inertial sensors are
placed along the body and golf club to determine how
closely the movements of the body follow predeter-
mined motion rules. This is used as a quality measure
for the golf swing. The authors define a physical model
of the swing which accounts for the length of the back-
swing, the wrist-cock angle, energy transfer during the
swing, the swing plane, and club-head speed. Exam-
ples of other golf swing analysis systems can be found
in [30] and [32].

Though most of the above training systems are suc-
cessful in introducing methods for golf swing analysis,
the training aids can only be accessed at a specialized
facility making widespread deployment difficult. Prop-
erties such as mobility and wearability make BSNs
more promising for designing sport feedback systems.
We take advantage of pattern recognition techniques
in designing our training system to avoid the need for
per-joint and complementary sensor deployment as re-
quired for kinematic analysis techniques.

9. Discussion and Future Work

Our quantitative model functions based on feature
vectors from all sensor nodes across the network. With
an exhaustive set of features obtained from each seg-
ment, this may yield in large volume of data for signal
processing and communication. The amount of data re-
quired for signal processing, however, can be signif-
icantly reduced by the data reduction techniques de-
scribed earlier. Since each sensor node partially con-
tributes to the linear projections of PCA and LDA, it
can combine local features using pre-obtained eigen-
vectors and transmit a single value for each trial to the
base-station.

At this stage of our study, we process data offline.
This is convenient for rapid prototyping and algorithm
development. However, we have great suspicion that
our algorithms for signal processing can be imple-
mented and executed on the motes.

In this research, we focused on building our quanti-
tative model for non-ideal movements due to wrist ro-
tation. Evaluating this model for other types of incor-
rect swings requires controlling experiments for those
types of errors. We plan to investigate this in future.
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10. Conclusions

In this paper, we presented a system which uses
body sensor networks for the purpose of golf swing
training. We developed a quantitative model which can
provide feedback on quality of movements for the pur-
pose of training. The system architecture, signal pro-
cessing methods and experimental results of the sys-
tem were presented. The results demonstrate that our
model is able to provide information on the quality of
a golf swing with respect to the angle of the wrist rota-
tion.

Acknowledgments

The authors would like to thank Dr. Michael Motes
of Center for BrainHealth, UT-Dallas for his valuable
input concerning development of the experimental pro-
tocol. The authors would also like to thank Ville-Pekka
Seppa for his efforts in designing the sensor board.

References

[1] J.C. Alvarez, R.C. Gonzalez, D. Alvarez, A.M. Lopez, and
J. Rodriguez-Uria. Multisensor Approach to Walking Dis-
tance Estimation with Foot Inertial Sensing. In Engineering in
Medicine and Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE, pages 5719–5722, 2007.

[2] D. Arvind. The Speckled Golfer. 2008.
[3] A. Baca and P. Kornfeind. Rapid Feedback Systems for Elite

Sports Training. IEEE Pervasive Computing, pages 70–76,
2006.

[4] J. Barnes and R. Jafari. Locomotion monitoring using body
sensor networks. In Proceedings of the 1st ACM international
conference on PErvasive Technologies Related to Assistive En-
vironments. ACM New York, NY, USA, 2008.

[5] M.D. Bellagamba. Athletic swing practice apparatus, June 18
1991. US Patent 5,024,443.

[6] L. Benini, E. Farella, and C. Guiducci. Wireless sensor net-
works: Enabling technology for ambient intelligence. Micro-
electronics Journal, 37(12):1639–1649, 2006.

[7] N. Betzler, S. Kratzenstein, F. Schweizer, K. Witte, and
G. Shan. 3D Motion Analysis of Golf Swings. Poster at the
9 thInternational Symposium on the 3D Analysis of Human
Movement. Valenciennes, France, 2006.

[8] A.J. Cochran, J. Stobbs, and Golf Society of Great Britain.
Search for the Perfect Swing. Triumph Books, 1968.

[9] D.L. Donoho. High-dimensional data analysis: The curses and
blessings of dimensionality. Society Conference on Math Chal-
lenges of the 21st Century, 2000.

[10] J. Doss. Swing guide for golfer, July 3 2007. US Patent
7,238,117.

[11] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification
and scene analysis. Wiley New York, 1973.

[12] H. Ghasemzadeh, J. Barnes, E. Guenterberg, and R. Jafari. A
phonological expression for physical movement monitoring in
body sensor networks. In Mobile Ad Hoc and Sensor Sys-
tems, 2008. MASS 2008. 5th IEEE International Conference
on, pages 58–68, 2008.

[13] H. Ghasemzadeh, E. Guenterberg, K. Gilani, and R. Jafari. Ac-
tion coverage formulation for power optimization in body sen-
sor networks. In Design Automation Conference, 2008. ASP-
DAC 2008. Asia and South Pacific, pages 446–451, 2008.

[14] H. Ghasemzadeh, E. Guenterberg, and R. Jafari. Energy-
Efficient Information-Driven Coverage for Physical Movement
Monitoring in Body Sensor Networks. Selected Areas in Com-
munications, IEEE Journal on, 27(1):58–69, 2009.

[15] R.C. Gonzalez, D. Alvarez, A.M. Lopez, and J.C. Alvarez.
Modified Pendulum Model for Mean Step Length Estimation.
In Engineering in Medicine and Biology Society, 2007. EMBS
2007. 29th Annual International Conference of the IEEE,
pages 1371–1374, 2007.

[16] http://www.homeswingtrainer.com/. Home Swing Trainer.
[17] Patria A Hume, Justin Keogh, and Duncan Reid. The role

of biomechanics in maximising distance and accuracy of golf
shots. Sports Medicine, 35:429–449(21), 2005.

[18] R. Jafari, W. Li, R. Bajcsy, S. Glaser, and S. Sastry. Physical
Activity Monitoring for Assisted Living at Home. In IFMBE
Proceedings, volume 13, page 213. Springer, 2007.

[19] I.T. Jolliffe. Principal component analysis. Springer New
York, 2002.

[20] I. Karliga and J.N. Hwang. Analyzing Human Body 3-D Mo-
tion of Golf Swing From Single-Camera Video Sequences.
In Acoustics, Speech and Signal Processing, 2006. ICASSP
2006 Proceedings. 2006 IEEE International Conference on,
volume 5, 2006.

[21] D.H. Kim, P.J. Millett, J.J.P. Warner, and F.W. Jobe. Shoul-
der Injuries in Golf. American Journal of Sports Medicine,
32(5):1324, 2004.

[22] K. King, SW Yoon, NC Perkins, and K. Najafi. Wireless
MEMS inertial sensor system for golf swing dynamics. Sen-
sors & Actuators: A. Physical, 141(2):619–630, 2008.

[23] T. Komura, A. Kuroda, and Y. Shinagawa. NiceMeetVR: fac-
ing professional baseball pitchers in the virtual batting cage. In
Proceedings of the 2002 ACM symposium on Applied comput-
ing, pages 1060–1065. ACM New York, NY, USA, 2002.

[24] R.F. Kuster. Golf swing training device, November 20 2003.
US Patent App. 10/717,841.

[25] D.Y. Kwon and M. Gross. Combining body sensors and vi-
sual sensors for motion training. In Proceedings of the 2005
ACM SIGCHI International Conference on Advances in com-
puter entertainment technology, pages 94–101. ACM Press
New York, NY, USA, 2005.

[26] J. Lane. Golf swing training method, February 15 2000. US
Patent 6,024,656.

[27] Q. Li, J. Ye, and C. Kambhamettu. Linear Projection Meth-
ods in Face Recognition under Unconstrained Illuminations:
A Comparative Study. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, volume 2. IEEE
Computer Society; 1999, 2004.

[28] B. Logan, J. Healey, M. Philipose, E.M. Tapia, and S. Intille.
A Long-Term Evaluation of Sensing Modalities for Activity
Recognition. Lecture Notes in Computer Science, 4717:483,
2007.



Wearable Coach for Sport Training: A Quantitative Model to Evaluate Wrist-Rotation in Golf 13

[29] M.J. Mathie, B.G. Celler, N.H. Lovell, and A.C.F. Coster. Clas-
sification of basic daily movements using a triaxial accelerom-
eter. Medical and Biological Engineering and Computing,
42(5):679–687, 2004.

[30] S.M. Nesbit. A three dimensional kinematic and kinetic study
of the golf swing. Journal of Sports Science and Medicine,
4:499–519, 2005.

[31] P. Noel. Golf swing training device, February 22 1994. US
Patent 5,288,073.

[32] J.A. Paradiso, K. Hsiao, AY Benbasat, and Z. Teegarden. De-
sign and implementation of expressive footwear. IBM Systems
Journal, 39(3):511–529, 2000.

[33] R. Ramachandran, L. Ramanna, G. Hassan, G. Pradhan, R. Ja-
fari, and B. Prabhakaran. Body Sensor Networks to Evaluate
Standing Balance: Interpreting Muscular Activities Based on
Inertial Sensors, 2008.

[34] SJ Raudys and AK Jain. Small sample size effects in statistical
pattern recognition: recommendations for practitioners. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
13(3):252–264, 1991.

[35] D. Spelmezan and J. Borchers. Real-time snowboard training
system. 2008.

[36] J.J. Tartagni and P. Schmid. Putting stroke training aid, Jan-
uary 6 2004. US Patent 6,672,974.

[37] K.K. Teu and F.K. Fuss. Using dual number method for motion
analysis of left arm in a golf swing. In Proceedings of the 2004
ACM SIGGRAPH international conference on Virtual Reality
continuum and its applications in industry table of contents,
pages 217–220. ACM New York, NY, USA, 2004.

[38] R. Urtasun, DJ Fleet, and P. Fua. Monocular 3-D Tracking
of the Golf Swing. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 2, 2005.

[39] A. Viru and M. Viru. Biochemical Monitoring of Sport Train-
ing. Human Kinetics, 2001.

[40] K. Watanabe and M. Hokari. Kinematical analysis and mea-
surement of sports form. Systems, Man and Cybernetics, Part
A, IEEE Transactions on, 36(3):549–557, May 2006.

[41] J. Yu, Q. Tian, T. Rui, and T.S. Huang. Integrating Discrimi-
nant and Descriptive Information for Dimension Reduction and
Classification. IEEE Transactions on Circuits and Systems for
Video Technology, 17(3):372, 2007.

[42] W. Zhao, R. Chellappa, and A. Krishnaswamy. Discriminant
analysis of principal components for face recognition. In Auto-
matic Face and Gesture Recognition, 1998. Proceedings. Third
IEEE International Conference on, pages 336–341, 1998.


