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Abstract

This paper presents a computationally efficient method

for action recognition from depth video sequences. It em-

ploys the so called depth motion maps (DMMs) from three

projection views (front, side and top) to capture motion

cues and uses local binary patterns (LBPs) to gain a com-

pact feature representation. Two types of fusion consisting

of feature-level fusion and decision-level fusion are con-

sidered. In the feature-level fusion, LBP features from

three DMMs are merged before classification while in the

decision-level fusion, a soft decision-fusion rule is used

to combine the classification outcomes. The introduced

method is evaluated on two standard datasets and is also

compared with the existing methods. The results indicate

that it outperforms the existing methods and is able to pro-

cess depth video sequences in real-time.

1. Introduction

Human action recognition has a wide range of human

computer interaction applications including assisted living,

smart surveillance, and gaming. It is also part of fitness

training and health monitoring, e.g., [6, 5]. Research on hu-

man action recognition initially involved the use of video

sequences captured by traditional RGB video cameras, e.g.,

[11, 20]. Space-time based methods such as local spatio-

temporal features are popular techniques for video repre-

sentation and have been shown promising performance in

action recognition [20, 18]. However, intensity-based video

images are sensitive to lighting conditions and background

clutter which limit the robustness of action recognition.

Since the introduction of cost-effective depth cameras

(e.g.,Microsoft Kinect), more recent research works on hu-

man action recognition have been carried out using depth

images captured by such cameras, e.g., [12, 28, 7, 13].

Compared with video images, depth images generated by

a structured light or time-of-flight depth camera are insen-

sitive to changes in lighting conditions. Depth images also

provide 3D structural information to help distinguishing dif-

ferent poses. Moreover, human skeleton information can be

estimated from depth images [19]. For example, the Kinect

Windows SDK [1] is able to provide the estimated 3D po-

sitions and rotation angles of the body joints, which can

be utilized as additional information to enhance the perfor-

mance of action recognition.

In this paper, we present a computationally efficient

action recognition framework using depth motion maps

(DMMs)-based local binary patterns (LBPs) [14] and

kernel-based extreme learning machine (KELM) [8]. For

a depth video sequence, all the depth frames in the video

are first projected onto three orthogonal Cartesian planes

to form the projected images corresponding to three pro-

jection views [front (f ), side (s), and top (t) views] . The

absolute difference between two consecutive projected im-

ages is accumulated through the entire depth video creat-

ing three DMMs (DMMf , DMMs, and DMMt) from

the three projection views [7]. The DMMs are divided into

overlapped blocks and the LBP operator is applied to each

block to calculate an LBP histogram. The resulted LBP his-

tograms of the blocks in a DMM are represented as a fea-

ture vector. Since there are three DMMs for a depth video

sequence, both feature-level fusion and decision-level fu-

sion approaches are investigated using KELM. Specifically,

for the feature-level fusion, the LBP feature vector for each

DMM is concatenated or stacked as a single feature vector

before it is fed into a KELM classifier. Decision-level fu-

sion operates on probability outputs of each classifier and

combines individual decisions into a joint one. Here, three

classifiers that use the LBP features generated from the

three DMMs are considered and KELM is utilized to pro-

vide the probability outputs of each classification. A soft

decision fusion scheme, logarithmic opinion pool (LOGP)

rule [2], is employed to merge the probability outputs and

to assign the final class label. The introduced action recog-

nition pipeline is illustrated in Figure 1.

The contributions made in this paper are three-fold:
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Figure 1. Pipeline of the developed action recognition method.

1. A computationally efficient and effective feature de-

scriptor based on DMMs and LBPs is proposed. DMMs

are used to capture motion cues in a depth video sequence.

Then, the LBP operator, which is an effective measure of lo-

cal image texture, is applied to the overlapped blocks within

each DMM to represent it in a compact way in order to en-

hance the discriminatory power for action recognition.

2. Two levels of fusion (i.e., feature-level fusion and

decision-level fusion) are applied to the extracted LBP fea-

tures from the three DMMs. Feature-level fusion involves

feature concatenation of multiple features before classifica-

tion, while decision-level fusion involves merging the prob-

ability outputs of each classification via the soft decision-

fusion rule LOGP.

3. The developed action recognition pipeline is compu-

tationally efficient allowing it to run in real-time.

This paper is organized as follows. In Section 2, a brief

review of previous works is presented. In Section 3, the

details of the DMMs-based LBP features and the fusion

approaches are described. The results are reported in Sec-

tion 4. The conclusion appears in Section 5.

2. Previous Works

Many algorithms for action recognition from depth video

sequences are based on low-level features extracted from

depth images. In [12], the expandable graphical model was

employed to model the temporal dynamics of actions and a

bag of 3D points was used to model the postures. In [28],

depth images were projected onto three orthogonal planes

and accumulated to generate DMMs. The histograms of

the oriented gradients (HOG) computed from DMMs were

used as feature descriptors. The concept of DMMs was

also considered in [7] with some modifications and a col-

laborative representation classifier was developed for ac-

tion recognition. In [26], depth cuboid similarity features

(DCSF) were built around the local spatio-temporal interest

points (STIPs) extracted from depth video sequences to de-

scribe local 3D depth cuboids. In [24], random occupancy

pattern (ROP) features were extracted from depth video se-

quences and a sparse coding approach was utilized to en-

code these features. The results demonstrated robustness to

occlusion. In [15], a histogram of oriented 4D surface nor-

mals (HON4D) was constructed to capture complex joint

shape-motion cues at pixel-level.

Skeleton based approaches utilize the high-level skeleton

information extracted from depth video sequences. In [27],

skeleton joint locations were placed into 3D spatial bins to

build histograms of 3D joint locations (HOJ3D) as features

for action recognition. In [3], an evolutionary algorithmwas

used to select the optimal subset of skeleton joints based on

the topological structure of a skeleton leading to improved

recognition rates. In [25], a new feature called local occu-

pancy pattern feature was used for action recognition. An

actionlet ensemble model was learnt to capture intra-class

variations and to deal with noises and errors in depth images

and joint positions. In [4], human actions were modeled by

a spatio-temporal hierarchy of bio-inspired 3D skeletal fea-

tures. Linear dynamical systems were employed to learn

the dynamics of these features. In [22], a body part-based

skeleton representation was proposed to model the relative

geometry between body parts. Then, human actions were

modeled as curves using a Lie group. Although some of the

skeleton-based approaches achieved high recognition per-

formance, skeleton-based methods are not applicable for

applications where skeleton information is not available.

3. Introduced Recognition Method

3.1. DMMs calculation

DMMs were initially introduced in [28]. The concept

of DMMs was also considered in [7] where the procedure

for generating DMMs was modified to reduce the compu-

tational complexity. In this paper, we adopt the method of

generating DMMs described in [7] due to its computational



efficiency. Specifically, given a depth video sequence with

N frames, each frame in the video is projected onto three or-

thogonal Cartesian planes to form three 2D projected maps,

denoted by mapf , maps, and mapt. DMMs are then gen-

erated as follows:

DMM{f,s,t} =
N−1
∑

j=1

|mapj+1

{f,s,t} −mapj{f,s,t}|, (1)

where j is the frame index. A bounding box is set to ex-

tract the non-zero region (region of interest) in each DMM.

Here, the foreground extracted DMMs are considered as the

final DMMs. An example of the three DMMs for a tennis

swing depth sequence is shown in Figure 1. The motion

characteristics can be effectively captured by DMMs.

3.2. DMMsbased LBP features

The LBP operator [14] is a simple yet effective gray scale

and rotation invariant texture operator that has been used in

various applications. It labels pixels in an image with deci-

mal numbers that encode local texture information. Given a

pixel (scalar value) gc in an image, its neighbor set contains

pixels that are equally spaced on a circle of radius r (r > 0)
with the center at gc. If the coordinates of gc are (0, 0)
and m neighbors {gi}

m−1

i=0
are considered, the coordinates

of gi are (−rsin(2πi/m), rcos(2πi/m)). The gray values

of circular neighbors that do not fall in the image grids are

estimated by bilinear interpolation [14]. Figure 2 illustrates

an example of a neighbor set for (m = 8, r = 1) (the values
form and r may change in practice). The LBP is created by

thresholding the neighbors {gi}
m−1

i=0
with the center pixel

gc to generate an m-bit binary number. The resulting LBP

for gc can be expressed in decimal form as follows:

LBPm,r(gc) =
m−1
∑

i=0

U(gi − gc)2
i, (2)

where U(gi − gc) = 1 if gi ≥ gc and U(gi − gc) = 0 if

gi < gc. Although the LBP operator in Eq.(2) produces 2m

different binary patterns, a subset of these patterns, named

uniform patterns, is able to describe image texture [14]. Af-

ter obtaining the LBP codes for pixels in an image, an oc-

currence histogram is computed over an image or a region

to represent the texture information.

In Figure 3, the LBP-coded image corresponding to the

DMMf of a two hand wave depth sequence is shown. It

can be observed that the edges in the LBP-coded image are

more enhanced compared with the DMMf . Therefore, the

DMMs are first generated for a depth sequence, then the

LBP operator is applied to overlapped blocks of the DMMs.

The LBP histograms of the blocks for each DMM are con-

catenated to form the feature vector denoted by h
f
LBP ,

hs
LBP , and h

t
LBP . The feature extraction procedure is illus-

Figure 2. Center pixel gc and its 8 circular neighbors {gi}
7

i=0 with

radius r = 1.

trated in Figure 1. The resulted DMMs-based LBP features

provide a compact representation of the DMMs.

Figure 3. LBP-coded image (right) corresponding to the DMMf

(left) of a two hand wave depth sequence. The pixel values of the

LBP-coded image are LBPs in decimal form.

3.3. KELM Classification

Extreme learning machine (ELM) was developed for

single-hidden-layer feed-forward neural networks (SLFNs)

[9]. Unlike traditional feed-forward neural networks that

require all the parameters to be tuned, the hidden node pa-

rameters in ELM are randomly generated leading to a much

faster learning rate.

For C classes, let us define class labels to be yk ∈
{0, 1}(1 ≤ k ≤ C). Thus, a row vector y =
[y1, . . . , yk, . . . , yC ] indicates the class to which a sample

belongs. For example, if yk = 1, then the sample belongs to

the kth class. Given n training samples {xi,yi}
n
i=1, where

xi ∈ R
M and yi ∈ R

C , the model of a single hidden layer

neural network having L hidden nodes can be expressed as

L
∑

j=1

βjh(wj · xi + ej) = yi, i = 1, ..., n, (3)

where h(·) is a nonlinear activation function (e.g., Sigmoid

function), βj ∈ R
C denotes the weight vector connecting

the jth hidden node to the output nodes, wj ∈ R
M denotes

the weight vector connecting the jth hidden node to the in-

put nodes, and ej is the bias of the jth hidden node. The

term wj · xi denotes the inner product of wj and xi. For n



equations, (3) can be written in this compact form

Hβ = Y, (4)

where β = [βT
1 ...β

T
n ]

T ∈ R
L×C , Y = [yT

1 ...y
T
n ]

T ∈
R

n×C , andH is the hidden layer output matrix of the neural

network expressed as

H =







h(x1)
...

h(xn)






=







h(w1 · x1 + e1) · · · h(wL · x1 + eL)
...

. . .
...

h(w1 · xn + e1) · · · h(wL · xn + eL)






.

(5)

h(xi) = [h(w1 ·xi+e1), ..., h(wL ·xi+eL)] is the output of
the hidden nodes in response to the input xi. Since in most

cases, L ≪ n, the smallest norm least-squares solution of

(4) described in [9] can be used. That is

β′ = H†Y, (6)

where H† is the Moore-Penrose generalized inverse of ma-

trix H, H† = HT (HHT )−1. A positive value 1

ρ
is nor-

mally added to the diagonal elements ofHHT as a regular-

ization term. As a result, the output function of the ELM

classifier can be expressed as

fL(xi) = h(xi)β = h(xi)H
T

(

I

ρ
+HHT

)−1

Y. (7)

If the feature mapping h(xi) is unknown, a kernel matrix

for ELM can be considered as follows:

ΩELM = HHT : ΩELMi,j
= h(xi) · h(xj) = K(xi,xj).

(8)

Hence, the output function of KELM is given by

fL(xi) =







K(xi,x1)
...

K(xi,xn)







T
(

I

ρ
+ΩELM

)−1

Y. (9)

The label of a test sample xl is assigned to the index of the

output node with the largest value, i.e.,

yl = argmax
k=1,...,C

fL(xl)k, (10)

where fL(xl)k denotes the kth output of fL(xl) =
[fL(xl)1, . . . , fL(xl)C ]

T . Compared with ELM, KELM

provides a better generalization performance and is more

stable.

3.4. Classification fusion

The common feature-level fusion is first considered. The

LBP features from three DMMs, h
f
LBP , h

s
LBP , and h

t
LBP ,

are simply stacked into a composite feature vector for clas-

sification. Note that h
f
LBP , h

s
LBP , and ht

LBP are normal-

ized to have the unit length before concatenation.

Although the feature-level fusion is straightforward, it

has the disadvantages of incompatibility of multiple feature

sets and large dimensionality. Thus, the decision-level fu-

sion is also considered to merge the results from a classifier

ensemble as shown in Figure 1. Specifically, h
f
LBP , h

s
LBP ,

and ht
LBP are treated as three different features. Each of

them is used as the input to a KELM classifier. The soft

decision fusion rule LOGP is employed here to combine

the outcomes from the three classifiers to produce the final

result. Since the output function (i.e., Eq. (9)) of KELM es-

timates the accuracy of the output label, the posterior prob-

abilities are estimated using the decision function. As noted

by Platt [16], the probability should be higher for a larger

value of the decision function. Therefore, fL(x) is scaled to
[0, 1] and Platt’s empirical analysis using a sigmoid function

is adopted to approximate the posterior probabilities,

p(yk|x) =
1

1 + exp(AfL(x)k +B)
. (11)

For simplicity, A and B parameters are set to A = −1 and

B = 0.

In LOGP, the posterior probability pq(yk|x) associated
with each classifier is used to estimate a global membership

function,

P (yk|x) =

Q
∏

q=1

pq(yk|x)
αq , (12)

or

logP (yk|x) =

Q
∑

q=1

αqpq(yk|x), (13)

where Q is the number of classifiers (Q = 3 in our case)

and {αq}
Q
q=1 are uniformly distributed classifier weights.

The final class label y∗ is obtained according to

y∗ = argmax
k=1,...,C

P (yk|x). (14)

.

4. Experimental Results

Our action recognition method was tested on two stan-

dard public domain datasets: MSRAction3D dataset [12]

and MSRGesture3D dataset [10]. These datasets were cap-

tured by commercial depth cameras. Figure 4 shows sample

depth images of different actions from these two datasets.

Let us label our feature-level fusion approach as DMM-

LBP-FF and decision-level fusion approach as DMM-LBP-

DF. In our experiments, the radial basis function (RBF) ker-

nel was employed in KELM. The MATLAB code used for

our experiments is available on our website 1.

1https://sites.google.com/site/chenresearchsite/



Figure 4. Sample depth images of different actions from the

datasets MSRAction3D and MSRGesture3D.

4.1. MSRAction3D dataset

The MSRAction3D dataset [12] includes 20 actions per-

formed by 10 subjects. The 20 actions are: high wave,

horizontal wave, hammer, hand catch, forward punch, high

throw, draw x, draw tick, draw circle, hand clap, two hand

wave, side boxing, bend, forward kick, side kick, jogging,

tennis swing, tennis serve, golf swing, and pickup throw.

Each subject performed each action 2 or 3 times. This

dataset includes 557 action sequences with 240 × 320 res-

olution and is a challenging dataset due to similarity of ac-

tions, e.g., draw x and draw tick. Two different experimental

settings were used to test our method.

Experiment setting 1 - The same experimental setting

reported in [12] was followed. Specifically, the actions were

divided into three subsets (AS1, AS2 and AS3) as listed in
Table 1. For each action subset (8 actions), three different

tests were performed. In test one, 1/3 of the samples were

used for training and the rest for testing; in test two, 2/3 of

the samples were used for training and the rest for testing;

in the cross subject test, one half of the subjects (1, 3, 5, 7,

9) were used for training and the rest for testing.

Experiment setting 2 - The same experimental setup in

[24] was used. A total of 20 actions were employed and

one half of the subjects (1, 3, 5, 7, 9) were used for training

and the remaining subjects were used for testing. Setting 2

is considered more challenging than setting 1 because there

are more action classes involved.

AS1 AS2 AS3

Horizontal wave High wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup throw Side boxing Pickup throw

Table 1. Three action subsets of MSRAction3D dataset.

For our feature extraction, the DMMs of different ac-

tion sequences were resized to have the same size for the

purpose of reducing the intra-class variation. To have fixed

sizes for DMMf , DMMs and DMMt, the sizes of these

maps for all the action samples in the dataset were found.

The fixed size of each DMM was set to 1/2 of the mean

value of all of the sizes. This made the sizes of DMMf ,

DMMs andDMMt to be 102×54, 102×75 and 75×54,
respectively. The block sizes of the DMMs were considered

to be 25×27, 25×25 and 25×27 corresponding toDMMf ,

DMMs andDMMt. The overlap between two blocks was

taken to be one half of the block size. This resulted in 21

blocks for DMMf , 35 blocks for DMMs and 15 blocks

for DMMt.

Appropriate values for the parameter set (m, r) of the

LBP features were also assigned. The feature-level fusion

approach (DMM-LBP-FF) with setting 2 was considered

for this purpose. The recognition results with various pa-

rameter sets are shown in Table 2. Note that the dimen-

sionality of the LBP histogram feature based on uniform

patterns is m(m − 1) + 3 [14], making the computational

complexity of the LBP feature extraction dependent on the

number of neighbors (m). Here, the LBP features for the

depth sequences in the MSRAction3D dataset were calcu-

lated using r = 1 and various values of m. The average

processing times associated with different parameter sets

are shown in Figure 5. In our experiments, m = 4 and

r = 1 were chosen in terms of recognition accuracy and

computational complexity, making the dimensionalities of

the LBP features h
f
LBP , h

s
LBP , and ht

LBP 315, 525 and

225, respectively. To gain computational efficiency for the

feature-level fusion, Principal Component Analysis (PCA)

was applied to the concatenated feature vector to reduce the

dimensionality. The PCA transform matrix was calculated

using the features of the training data and the principal com-

ponents that accounted for 95% of the total variation of the

training features were considered. In all the experiments,

the parameters for KELM (RBF kernel parameters) were

chosen as the ones that maximized the training accuracy by

means of a 5-fold cross-validation test.

MSRAction3D dataset

r 1 2 3 4 5 6

m = 4 91.94 89.74 90.11 88.64 89.01 87.55

m = 6 91.94 90.11 90.48 90.11 89.01 90.11

m = 8 89.74 89.74 90.11 90.11 89.74 87.18

m = 10 91.94 90.11 90.11 89.74 88.64 88.28

Table 2. Recognition accuracy (%) of DMM-LBP-FF with differ-

ent parameters (m, r) of LBP operator on MSRAction3D dataset

(setting 2).

A comparison of our method with the existing methods

was also carried out. The outcome of the comparison for

setting 1 is listed in Table 3. As can be seen from this ta-

ble, our method achieved superior recognition accuracy in

most cases. In test two, our method even reached 100%

recognition accuracy for all the three action subsets. In the



Method
Test one Test two Cross subject

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average

Li et al. [12] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 72.9 71.9 79.2 74.7

DMM-HOG [28] 97.3 92.2 98.0 95.8 98.7 94.7 98.7 97.4 96.2 84.1 94.6 91.6

Chen et al. [7] 97.3 96.1 98.7 97.4 98.6 98.7 100 99.1 96.2 83.2 92.0 90.5

HOJ3D [27] 98.5 96.7 93.5 96.2 98.6 97.2 94.9 97.2 88.0 85.5 63.6 79.0

Chaaraoui et al. [3] - - - - - - - - 91.6 90.8 97.3 93.2

Vemulapalli et al. [22] - - - - - - - - 95.3 83.9 98.2 92.5

Space-Time Occupancy Patterns [23] 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3 91.7 72.2 98.6 87.5

Ours
DMM-LBP-FF 96.7 100 99.3 98.7 100 100 100 100 98.1 92.0 94.6 94.9

DMM-LBP-DF 98.0 97.4 99.3 98.2 100 100 100 100 99.1 92.9 92.0 94.7

Table 3. Comparison of recognition accuracies (%) of our method and other existing methods on MSRAction3D dataset using setting 1.
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Figure 5. Average processing times (ms) of LBP feature extraction

on MSRAction3D dataset with r = 1 and various values of m.

cross subject test, our method also achieved superior perfor-

mance.

The outcome using setting 2 is listed in Table 4. Again,

it can be seen that our method outperformed the other meth-

ods. Although DMM-HOG [28] is a DMM-based method,

the recognition accuracies of our method were more than

6% higher than that of DMM-HOG [28]. This indicated

the DMM-based LBP features exhibit higher discrimina-

tory power. This is because the overlapped block based

feature extraction generates dense features, with LBP pro-

viding an effective representation of texture information. In

addition, the recognition accuracy of the fusion-level fusion

approach (DMM-LBP-FF) was found to be close to that of

the decision-level fusion approach (DMM-LBP-DF). Fig-

ure 6 (a) shows the confusion matrix of DMM-LBP-DF for

the MSRAction3D dataset, reflecting the overlaps among

similar actions, for example, hand catch and high throw,

and draw x and draw tick, due to the similarities of their

DMMs.

To show that our method was not tuned to any spe-

cific training data, a cross validation experiment was con-

ducted by considering all 252 combinations corresponding

to choosing 5 subjects out 10 subjects for training and using

the rest for testing. The results of our method (mean accu-

Method Accuracy (%)

DMM-HOG [28] 85.5

Random Occupancy Patterns [24] 86.5

HON4D [15] 88.9

Actionlet Ensemble [25] 88.2

Depth Cuboid [26] 89.3

Tran et al. [21] 91.9

Rahmani et al. [17] 88.8

Vemulapalli et al. [22] 89.5

Ours
DMM-LBP-FF 91.9

DMM-LBP-DF 93.0

Table 4. Comparison of recognition accuracy (%) on MSRAc-

tion3D dataset using setting 2.

racy ± standard deviation (STD)) with the previously pub-

lished results are provided in Table 5. Our method achieved

superior performance compared with the other methods.

Method Mean accuracy (%) ± STD

HON4D [15] 82.2 ± 4.2

Rahmani et al. [17] 82.7 ± 3.3

Tran et al. [21] 84.5 ± 3.8

Ours
DMM-LBP-FF 87.9 ± 2.9

DMM-LBP-DF 87.3 ± 2.7

Table 5. Comparison of recognition accuracy (%) on MSRAc-

tion3D dataset using cross validation.

4.2. MSRGesture3D dataset

MSRGesture3D dataset [10] is a hand gesture dataset of

depth sequences captured by a depth camera. This dataset

contains a subset of gestures defined by American Sign Lan-

guage (ASL). There are 12 gestures in the dataset: bath-

room, blue, finish, green, hungry, milk, past, pig, store,

where, j, z. The dataset contains 333 depth sequences, and

is considered challenging because of self-occlusions. For

this dataset, the leave-one-subject-out cross-validation test

[24] was performed.

The fixed sizes for DMMs were determined using the

same method for the MSRAction3D dataset. The sizes for

DMMf , DMMs and DMMt were 118 × 133, 118 × 29
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Figure 6. Confusion matrices of our decision-level fusion method (DMM-LBP-DF) for (a) MSRAction3D dataset (experiment setting 2)

and (b) MSRGesture3D dataset.

and 29 × 133, respectively. The block sizes of the DMMs

were 30 × 27, 30 × 15 and 15 × 27. m = 10 and r = 1
were used for LBP according to the recognition accuracies

stated in Table 6.

MSRGesture3D dataset

r 1 2 3 4 5 6

m = 4 92.49 92.49 91.89 91.29 91.89 91.89

m = 6 92.49 91.89 91.89 90.99 90.99 91.29

m = 8 91.59 90.99 90.69 91.89 91.29 90.99

m = 10 93.39 92.49 90.99 91.59 91.59 89.49

Table 6. Recognition accuracy (%) of DMM-LBP-FF with differ-

ent parameters (m, r) of LBP operator onMSRGesture3D dataset.

Table 7 shows the recognition outcome of our method as

well as seven existing methods. From Table 7, our decision-

level fusion approach (DMM-LBP-DF) achieved the high-

est recognition accuracy. Note that three accuracies corre-

sponding to three settings were reported in [17] and the ac-

curacy 93.61% which was obtained using all 333 sequences

is stated here. The confusion matrix of DMM-LBP-DF for

MSRGesture3D dataset is shown in Figure 6 (b).

4.3. Computational efficiency

Finally, the computational efficiency or real-time aspect

of our solution is presented here for the feature-level fusion

approach as it is more computationally demanding. For a

depth sequence, the DMMs calculation is performed frame

by frame and the LBP features are extracted from the final

DMMs. Therefore, there are four major processing compo-

nents involved: DMMs calculation, LBP feature extraction,

dimensionality reduction (PCA), and classification (KELM

classifier). The average processing time of each compo-

nent for the MSRAction3D dataset and the MSRGesture3D

dataset is listed in Table 8. All experiments were carried

Method Accuracy (%)

Random Occupancy Patterns [24] 88.5

HON4D [15] 92.5

Rahmani et al. [17] 93.6

Tran et al. [21] 93.3

DMM-HOG [28] 89.2

Edge Enhanced DMM [29] 90.5

Kurakin et al. [10] 87.7

Ours
DMM-LBP-FF 93.4

DMM-LBP-DF 94.6

Table 7. Comparison of recognition accuracy (%) on MSRGes-

ture3D dataset.

out using MATLAB on an Intel i7 Quadcore 3.4 GHz desk-

top computer with 8GB of RAM. As noted in this table, our

method met a real-time video processing rate of 30 frames

per second.

Component
Time (ms)

MSRAction3D MSRGesture3D

DMMs calculation 3.98±0.32/frame 4.77±1.42/frame

LBP feature extraction 10.39±1.08/sequence 19.20±0.83/sequence

PCA 0.36±0.05/sequence 0.52±0.04/sequence

Classification (KELM) 1.21±0.24/sequence 1.45±0.13/sequence

Table 8. Processing times (mean± STD) associated with the com-

ponents of our method.

5. Conclusion

In this paper, a computationally efficient and effective

feature descriptor for action recognition was introduced.

This feature descriptor was derived from depth motion maps

(DMMs) and local binary patterns (LBPs) of a depth video

sequence. DMMs were employed to capture the motion



cues of actions, whereas LBP histogram features were used

to achieve a compact representation of DMMs. Both fusion-

level fusion and decision-level fusion approaches were con-

sidered which involved kernel-based extreme learning ma-

chine (KELM) classification. The experimental results on

two standard datasets demonstrated improvements over the

recognition performances of the existing methods.
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