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Abstract— Miniaturization and form factor reduction in 

wearable computers leads to enhanced wearability. Power 

optimization typically translates to form factor reduction, hence 

of paramount importance. This paper demonstrates power 

consumption analysis obtained for various operating modes in 

circuits suitable for wearable computers which are typically 

equipped with sensors that provide time series data (e.g., 

acceleration, ECG). Dynamic time warping (DTW) is considered 

a suitable signal processing technique for wearable computers, 

particularly due to its lower computational complexity 

requirement and the robustness to speed variations (acceleration 

and de-acceleration) in time series data. Wearable computers 

usually have very low computational performance requirements, 

which is explored in this work to minimize the system level energy 

consumption. We provide a comparison among three modes of 

operations, namely minimum energy operating point (MEOP), 

minimum voltage operation point (MVOP) and nominal voltage 

operating point (NVOP) all leveraging sleep transistors when 

circuits are inactive.  The results show that the MVOP, in 

conjunction with sleep transistors, provides the least energy 

budget and leads to a reduction in energy consumption compared 

to the MEO, which is known as a suitable operating mode for 

ultra-low power circuits.  

Keywords—Minimum energy operating point; Movement 

monitoring; Dynamic time warping, Low Performance application 

I. INTRODUCTION  

Wearable computers offer enormous opportunities for 
monitoring human, activities of daily living and pervasive 
computing thanks to recent advances in technology 
miniaturization. However, still several challenges must be 
addressed before wearable computers are seamlessly integrated 
into our daily life. The form factor and size of wearable 
computers impact their wearability. Power optimization not only 
leads to smaller batteries and smaller systems, but also provides 
opportunities to leverage new sources of energy harvesting, such 
as body heat and movement, leading to batteryless units. Energy 
harvesting from human body is known to provide small power 
budgets (approximately 10’s of µW) [1].  

Wearable computers are typically composed of sensors, 
processing units and wireless transceivers. Despite the wireless 
transceivers appear to require higher power budgets, duty 
cycling and activating the wireless transceivers less frequently 
can reduce their power budget significantly. There are also 
numerous efforts in reducing the power budget for sensors [2]. 

The objective of our study is to focus on the processing units and 
determine the feasible operating mode for circuits that execute 
signal processing algorithms. There are numerous circuit level 
techniques that investigate power and performance trade-offs for 
ultra-low power digital systems [3-5]. Near-threshold operation 
has shown to mitigate some of the challenges of scaling and 
steadily increasing of the number of transistors [6]. It is expected 
that the lower performance applications, in particular in 
wearable computers, show different energy consumption 
behaviors in term of optimal operating point. Sub-threshold and 
near-threshold operations appear to have merits, despite the 
challenges concerning large delay variations in the presence of 
process, voltage, and temperature (PVT) variations [7]. 
Operating at near threshold voltage (NTV), offer a 1-2 orders of 
magnitude reduction in power [8-10]. The minimum energy 
operating point mostly occurs in sub-threshold region [6]. 
Similar investigations have also been carried out for memory 
modules [11]. 

Several operating modes for circuits have been offered, each 
offering advantages and disadvantages in terms of the power, 
delay and robustness. Nominal voltage operating point (NVOP), 
operating with a voltage of 1V has been used extensively. 
Typically, NVOP-based circuits perform the computations as 
fast as possible and enter the sleep mode  , when the circuits are 
not in operation. NVOP offers several advantages including 
robustness to PVT variations, and the ability to implement 
frequency scaling. Minimum energy operating point (MEOP) is 
another alternative operating at near/sub-threshold region. It has 
been shown that the total energy consumption including 
dynamic and leakage for MEOP is minimized; however, the 
circuits are expected to be operational at all times. If sleep modes 
are also taken into account, it is not clear if the total energy 
consumption is still minimum. The third least explored 
alternative is minimum voltage operation point (MVOP) which 
reduces the operating voltage aggressively to the smallest 
possible choice. This paper provides thorough analyses on the 
effectiveness of each operating mode, in particular targeting 
applications of wearable computers. Finally, the paper proposes 
the use of the minimum voltage operation point (MVOP) for 
several applications of wearable computers instead of the 
minimum energy operating point (MEOP) which is commonly 
believed to be the most power efficient operating condition.  
Dynamic time warping (DTW) is a commonly used algorithm 
that measures similarity between two vectors or time-series. 
DTW has been used in various applications including 



handwritten signature, speech, and video recognition. It has also 
been used for human movement monitoring for the applications 
of health-care and wellness using wearable computers. Several 
investigations have focused on system level power optimization 
in DTW-based architectures [12, 13]. In this paper, we consider 
a system level view and attempt  to make a connection between 
system-level and circuit-level power optimization based on the 
fact that the performance requirement is relatively low for 
wearable computers. We study several operating modes and 
show their effectiveness in circuits that are targeted towards 
DTW-based architectures. This investigation provides cues for 
design techniques aimed at creating the future hardware 
accelerators for wearable computers.  

The rest of the paper is structured as follows: In Section II , 
we present an overview for human movement monitoring and 
the details of DTW algorithms. In Section III, we present a 
minimum energy operating point concept. We present the 
experimental results on the trade-offs between various operating 
modes in Section V.   

II. BACKGROUND 

A. Human Movement monitoring 

Human movement monitoring using wearable computers has 

been used for gait analysis, rehabilitation, fall prevention, sport 

medicine and recovery monitoring [14]. Wearable computers, 

equipped with motion sensors, namely accelerometers, 

gyroscopes, magnetometers, pressure and flex sensors offer 

novel paradigms to monitor human movements and extract 

relevant information about the speed, stability and control when 

performing the movements. Movement monitoring is 

performed by observing time-series data generated by sensors, 

potentially placed at different parts of body (e.g., glasses, 

watches, and straps placed on ankle). Dynamic time warping 

has proved to be a very effective technique in processing time-

series data and identifying movements of interest. 

B. Review of Dynamic Time Warping 

Dynamic time warping (DTW) is an algorithm for measuring 

similarity between two sequences which may vary in time or 

amplitude. We call one time-series sensor input, that is data 

obtained from motion sensors, and the other time-series 

templates, that is the pattern of the movement of interest. 

Assume the sensor input and the template are defined by � ���, ��, ⋯ , ��  and 	 � 
�, 
�, ⋯ , 
� respectively. The objective 

of DTW is measuring the distance �
�, 	� between the two 

sequences, �  and 	 . This is accomplished by finding the 

optimal warping path in the � � � cost matrix �
�, �� where 0 � � � �		,0 � � � �. The cost matrix is calculated as follows 

[15]: 

�
�, �� � ���
��� , 
�� � min	"�
� # 1, � # 1��
�, � # 1��
� # 1, ��  

 

Fig. 1. DTW hardware block diagram 

The optimal warping path essentially finds the best alignment 

between the two sequences, such that their distance is 

minimized, while allowing acceleration or de-acceleration in 

sequences. This feature in particular is very useful as 

movements might be performed slower or faster, and the DTW 

automatically accounts for that. This operation can be 

accomplished by a series of adders in approach similar to 

dynamic programming. The hardware block diagram of DTW 

is shown in Fig. 1. Typically, software based DTW approaches 

used Euclidean distance; however we opted for Manhattan 

distance due to its hardware friendliness, not requiring 

multiplications and square root. 

  As the optimal warping path is calculated, eventually the final 

distance cost of the warping path is compared to a threshold. If 

the distance costs appears to be smaller than the threshold; that 

indicates that the two time-series are similar to each other, 

leading to the identification of the movement of interest. 

 

III.  MINIMUM ENERGY OPERATING POINT 

A. Dynamic and leakage energy 

Power dissipation and circuit delays are two factors that vary 

when changing the supply voltage  %&&. The total energy can 

be divided to dynamic energy and leakage energy. Dynamic 

energy is represented with: 

'&(� � ) � * � + � %&&�  

Where )  is switching frequency, N is the number of clock 

cycles required to complete an operation, C is the total 

switching capacity, and %&&is the supply voltage. The dynamic 

energy decreases when supply voltage is reduced. The leakage 

energy is modeled using: 

',-./ � %&& � 01 � 23456378�39 � :1 # 263;539 < � 	 

Where 01  is technology dependent, %=1  is the gate to source 

voltage, %>?  is threshold voltage, %@  is Thermal voltage, n is 

sub threshold parameter, and 	 is the delay of circuit [16]. The 

delay or the latency of the circuits increases when reducing the 

voltage, leading to increased leakage energy. The total energy 

is characterized by the summation of the dynamic and leakage 

energy. We will later show the trade-offs between the leakage 

and the dynamic energy and their contribution to the total 

energy when the supply voltage is varied. 



B. Sleep transistors 

Sleep modes, also known as power gating techniques, are 

utilized to deactivate cells that are idle. Sleep transistors also 

show similar trade-offs in terms of the delay and the leakage. 

The key factor is the width of sleep transistors. While larger 

transistors provide higher leakage, the delay decreases. The 

product of delay and leakage affect the total leakage energy. 

Sleeps transistors can be added using various configurations 

such as footer, header or both [17]. An earlier investigation 

presents challenges in using sleep transistors [18]. We are using 

both of header and footer sleep transistors in our architecture. 

Fig. 2 shows how the sleep transistors are incorporate. 

 

 

Fig. 2. Notion of sleep transistor 

IV. VARIOUS OPERATING POINTS 

A directed acyclic graph (DAG), G(V,E) is used to model our 

signal processing algorithm, namely, DTW. Each node, V, 

defines a computation and each edge, E, defines the data 

dependency and the communication between two nodes. The 

computation starts when all corresponding inputs are available 

and it takes a specific amount of time to finish. Each node has 

an intrinsic delay D. The critical path defines as the longest path 

from the input to the final output. The critical path delay limits 

the application throughput and the maximum frequency of 

operation, )�.A. For example, if the critical path delay tends to 

be 10µS, the maximum operation frequency )�.A  , will be 

100kHz. The application delay, Dapp, as defined in [19], is 

determined by the application, in particular how frequently the 

inputs are available and how fast the final results must be 

computed. For example, in case of wearable computers, if 

specific sensors are sampled at 20Hz,  the output of the DAG 

or the final results must be determined before the next sample 

arrives. Therefore, the application delay, Dapp, will be 50ms. As 

seen from this example, there is often a mismatch between the 

application delay, Dapp, and the critical path or circuit delay, Dcir 

(in this example, 50ms vs. 10µS). If the application delay, 

which would be often fixed, appears to be orders of magnitude 

larger than the critical path delay, the circuits will complete the 

computation early and will either have to go to the sleep mode 

or remain active leaking until the next set of inputs (and 

computations) are available. This introduces an interesting 

trade-off to select the operating supply voltage and the critical 

path delay such that the leakage current, especially for the 

applications of wearable computers, is minimized. If the circuit 

operates at the NVOP mode with a small critical path delay 

(VDD at approximately 1V), while the application delay is a 

few orders of magnitude larger, the circuit consumes 

significantly larger leakage energy than the MEOP (VDD at 

around 300-400mV). If the operating voltage is pushed down 

to the MVOP (VDD at around 200mV), the critical path delay 

increases while the leakage current decreases, Please note that 

for all these scenarios, the application delay remain constant. 

For example, assume the application delay dictates an adder to 

operate at 10 kHz (Dapp = 100 µs). The adder is synthesized and 

the critical path delay is determined to be 0.2 µs, 50 µs, and 200 

µs for NVOP, MEOP and, MVOP, respectively. Therefore, the 

operating point should be selected somewhere between NVOP 

and MEOP to meet the requirements of the application, that is 

Dcir = Dapp = 100 µs. If the application requires the adder to 

operate at 1 kHz, the application delay would be 1ms which can 

be accommodated by all three operating modes (NVOP, MEOP 

and MVOP). In this case, the optimal operating point could be 

MVOP since a higher supply voltage leads to increased leakage 

energy consumption. This will be later shown in this paper. 

Since the low performance signal processing algorithms for 

wearable computers typically require long sleep time, larger 

margins or guard-bands in the clock can be included to 

compensate for PVT variation. This will not impact the 

correctness of the signal processing, nor the power analysis. 

Power reduction is extremely important for wearable 

computers. If a watch-like wearable computer is expected to 

operate as a pedometer, a 2X power reduction reduces the 

number of battery recharges in half. On the other hand, 

wearable computers typically do not require highly complex 

signal processing or computations. These two characteristics 

suggest that MEOP and MVOP could be ideal modes for 

computation in wearable computers.  

We illustrate our case study focusing on dynamic time warping 

(DTW) which is commonly used for many wearable computing 

applications. The critical path delay varies by changing the 

operating point voltage. Fig. 3 shows the application delay, 

Dapp, along with  
BC 	, �C� ,	
BD 	, �D� , and 
BE	, �E� the active   

power-delay pairs for MVOP, MEOP , and NVOP modes, 

respectively. The power includes both the leakage and dynamic 

power when the computation is being executed. Following the 

completion of the computation, the circuit goes to sleep for the 

remaining duration of Dapp until the next computation is 

required. Nominal voltage operating point (NVOP) has the 

highest power consumption since the leakage and dynamic 

power both increase by the supply voltage. Minimum voltage 

operating point (MVOP) has the largest delay since the delay is 

inverse proportional to the voltage. Minimum energy operating 

point (MEOP) provides a trade-off between the performance 

and the delay.  

Please note that for all these scenarios, although the leakage 

power is reduced close to zero during sleep mode, the amount 

of leakage is still a function of the supply voltage and increases 

for higher voltages. We illustrate the total energy for each 

operating mode by '>F>.G . Dynamic current, 0H(�, and leakage 

current, 0G-./ , are both extracted. The total energy is the 



summation of the energy during the computation (dynamic and 

leakage) and during the sleep. 

 BG-./ � 	 0G-./ �	%&& 

 B&(� � 	 0&(� �	%&& 

P � BG-./ �	B&(�	 
'>F>.G � P � �J�K � BG-./ � 
�.LL # �J�K� 

 

 

Fig. 3. Power versus delay for different operating mode 

With higher performance applications where DNOO≈DPQR, the 

circuit never goes to sleep and therefore PS×dS	is the dominant 

term, making MEOP a suitable solution. In lower performance 

applications however where DNOO ≫ DPQR , PS × 
DNOO # DPQR� 

becomes dominant, hence the need to reduce the leakage 

current as much as possible. 

TABLE I.  shows several application configurations for DTW 

algorithm. DTW algorithm is expected to operate on a 3-axis 

accelerometer, where sampling frequency can vary from 4 to 

100Hz. Each sample can have 4, 6 or 12 bits. Four target 

movements are expected to be detected each having duration of 

approximately one second. As each sample is acquired, 6 

additions and 3 inversions are required per sample. Although 

the application configurations may vary, our proposed 

application configurations will facilitate investigating the 

power consumption for the three operating modes, namely, 

NVOP, MEOP and MVOP. This analysis can be easily scaled 

to other application configurations. The notion of minimum 

voltage operation point is applicable to many low performance 

configurations in which the application frequency DNOO is much 

smaller than the circuit frequency DPQR. 

TABLE I.   DTW APPLICATION CONFIGURATIONS 

Bit resolution 4,6,12 bit 

Input sampling frequency 4 ,10,100Hz 

Sensor  3-axis accelerometer  

Movement Duration 1 Second 

Number of Movements 4 

Operations per sample 6 Additions + 3 Inversions 

 

V. RESULTS 

A. Accuracy Analysis 

We create a set of experiments to measure the accuracy of DTW 

algorithms for various bit resolutions and sampling frequencies 

when a 3-axis accelerometers is used. Five subjects wear a 

sensor node on the right thigh and perform two movements 

thirty times. The target movements are approximately one-

second and include sit-to-stand and kneeling. The samples are 

acquired from the 3-axes accelerometer with 16-bit resolution. 

We convert the 16bit input data to 12bit, 6bit, and 4bit data. The 

sampling frequency for the experiments was set at 100 Hz. To 

create 10Hz and 4Hz sampling frequencies, the original data 

were down sampled. In order to show the accuracy of DTW-

based movement recognition algorithm for various bit 

resolution and sampling frequencies, we report the precision 

and recall as two significant accuracy metrics. We assume tp as 

the true positive, that is number of correct target movements 

detected, tn as the number true negatives, fn as the number of 

false negatives and fp as the number of false positives. The 

precision and recall are defined as: 

BV2W���X� � 
L
L � 
� 

Y2WZ[[ � 
L
L � )� 

As the bit resolution and sampling frequency are decreased, it 

is expected that the precision and recall decrease. It is also 

expected that the power consumption would decrease. TABLE 

II.  and TABLE III. show the precision and recall for various bit 

resolution and input frequency for sit-to-stand and kneeling 

movements. 

TABLE II.  DETECTION OF SIT-TO-STAND (PRECISION AND RECALL) 

 12Bit 6Bit 4Bit 

 Precision Recall Precision Recall Precision Recall 

100Hz 96.77 96.77 96.77 96.77 96.77 96.77 

10Hz 96.77 96.77 93.75 96.77 90.90 96.77 

4Hz 93.77 96.77 90.90 96.77 90.90 96.77 

 



TABLE III.   DETECTION OF KNEELING (PRECISION AND RECALL) 

 12Bit 6Bit 4Bit 

 Precision Recall Precision Recall Precision Recall 

100Hz 100 100 100 100 90.47 100 

10Hz 86.36 100 79.16 100 72.72 84.21 

4Hz 68.00 89.47 65.38 89.47 52.00 68.42 

 

B. Energy Analysis 

 

We create the behavioral code for DTW in Verilog. The logic 

blocks are also verified by the Hspice. The DTW core was 

synthesized using the TI 45nm technology process. In order to 

extract leakage energy, we calculate the leakage current in idle 

time. We extracted the longest path using statistical timing 

analysis which is done by the Synopsys Prime-time tool. 

Statistical timing analysis calculates the delay of each internal 

logic unit and computes the expected timing of the entire 

circuit. Next, we identified the critical path. All paths from 

primary input to primary output are used in worst-case delay 

extraction.  We use the same net-list for all operating modes 

since there is no considerable difference in area when 

implement circuits with different very low frequency 

specifications. Fig. 4 shows the critical path delay DPQR  for 

various bit resolution and operating modes. The sub-threshold 

region leads to longer delays, almost 3 or 4 order of magnitudes 

larger than nominal voltage delay. Please note that the delays 

are shown on a logarithmic scale. We assumed the clock 

frequency would be twice as much as the critical path delay. 

Under this assumption, we calculated the leakage current, 0G-./ , 

by averaging the current in idle periods. We also calculate the 

total current, 0>F>.G , when the circuit was operational, and the 

dynamic current, 0&(�.��J, was determined by subtracting the 

leakage current from the total current. We applied several 

random test signals and measured both the dynamic and leakage 

currents by averaging the current over all test signals. 

Fig. 5 shows energy consumption for supply voltages ranging 

from 200 to 800mV. We observe that the minimum energy 

point occurs at 350mV and the corresponding energy per DTW 

operation is 43.8fJ. The leakage energy is increased for sub-

threshold voltages, as the supply voltage decreases, as 

expected. Please note that these measurements do not include 

sleep modes. In other words, Fig. 5 shows the total energy 

consumption versus supply voltage with the assumption that the 

circuit delay and the application delay are equal (Dcir = Dapp). In 

this case, total energy consumption at 0.2 V and 0.6 V are the 

same. Please note that the leakage energy will be higher at 0.6V 

compared to 0.2 V. Therefore, operating at 0.6 V does not lead 

to better results at lower frequencies especially when Dapp >> 

Dcir. 

We calculate the total energy in three different operating 

modes: NVOP+Sleep, MEOP+Sleep and MVOP+Sleep. We 

repeat simulations for different sampling frequencies and 

different bit resolutions. We considere 4Hz, 10Hz, and 100Hz 

for data sampling frequency, which was subsequently used to 

determine Dapp (250ms, 100ms and 10ms, respectively). 

 

 
 

Fig. 4. Critical path delay for variouse operating modes  

 
Fig. 5. Total, dynamic, and leakage energy of DTW 

 

Fig. 6. Energy consumption for 4-bit  DTW in various operating modes 

 

Fig. 7. Energy consumption for 6-bit  DTW in various operating modes 

 
Fig. 8. Energy consumption for 12-bit  DTW in various operating modes 



Fig. 6,  Fig. 7 and  Fig. 8 show the total energy consumption for 

various operating mode for 4bit and 6bit and 12 bit DTW 

modules for detecting one target movement, respectively. The 

energy consumption is shown in logarithmic scale. Decreasing 

the sampling frequency does not significantly impact the energy 

consumption as the idle time (Dapp – Dcir) appears to be the 

dominating factor. There is almost two orders of magnitude 

difference in energy consumption between NVOP and MEOP. 

Operating in MEOP or MVOP depends on the application delay 

requirements. The results shows that for 4Hz and 10Hz 

sampling frequencies which are both relative slow DTW, 

MVOP appears to be more suitable with an average of 50% 

improvement while as the sampling frequency increases to 

100Hz, MEOP wins showing 10% energy reduction compared 

to MVOP .   

VI. CONCLOSION 

Wearable computers introduce an interesting class of 

computing where the computational requirements are modest 

and the power optimization is of significant importance. In this 

paper, we consider a popular signal processing algorithm for 

wearable computers called dynamic time warping. We 

investigate several operating modes namely nominal voltage 

operating point (NVOP), where the VDD is approximately 1V, 

minimum energy operating point (MEOP), where the VDD is 

approximately 300-400mV, and minimum voltage operating 

point (MVOP), where the VDD is approximately 200mV. We 

synthesize a hardware module core for DTW and showed that 

MVOP appears to be most suitable where the leakage (and the 

total power consumption) is reduced compared to the MEOP. 

The total power consumption corresponding to the NVOP 

appears to be two to three orders of magnitude higher than the 

MEOP and MVOP, making it a less appealing alternative. 

NVOP is the current practice in state-of-the-art low-power 

microcontrollers, which leads to completing the computations 

as fast as possible and going into the sleep. 

VII. ACKNOWLEDGMENT 

This work was supported in part by the National Science 

Foundation, under grant CNS-1150079. Any opinions, 

findings, conclusions, or recommendations expressed in this 

material are those of the authors and do not necessarily reflect 

the views of the funding organizations. 

REFERENCES 

[1] J. Olivo, D. Brunelli, and L. Benini, “A kinetic energy harvester with fast 

start-up for wearable body-monitoring sensors,” in Pervasive Computing 

Technologies for Healthcare (PervasiveHealth), 2010 4th International 

Conference on-NO PERMISSIONS, pp. 1–7, March 2010. 

[2] H. Ghasemzadeh, E. Guenterberg, K. Gilani, and R. Jafari, “Action 

coverage formulation for power optimization in body sensor networks,” in 

Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific, 

pp. 446–451, March 2008. 

[3] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital 

design,” Solid-State Circuits, IEEE Journal of, vol. 27, pp. 473–484, Apr 1992. 

[4] R. W. Brodersen, Low power digital CMOS design. Springer, 1995. 

[5] A. Tajalli and Y. Leblebici, “Design trade-offs in ultra-low-power digital 

nanoscale cmos,” Circuits and Systems I: Regular Papers, IEEE Transactions 

on, vol. 58, no. 9, pp. 2189–2200, 2011. 

[6] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and 

T. Mudge, “Near-threshold computing: Reclaiming moore’s law through 

energy efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2, 

pp. 253–266, 2010. 

[7] D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey, 

“Ultralow-power design in near-threshold region,” Proceedings of the IEEE, 

vol. 98, no. 2, pp. 237–252, 2010. 

[8] S. Hanson, M. Seok, Y.-S. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu, 

D. Sylvester, and D. Blaauw, “A low-voltage processor for sensing applications 

with picowatt standby mode,” Solid-State Circuits, IEEE Journal of, vol. 44, 

no. 4, pp. 1145–1155, 2009. 

[9] M. Pons, J.-L. Nagel, D. Severac, M. Morgan, D. Sigg, P.-F. Ruedi, and 

C. Piguet, “Ultra low-power standard cell design using planar bulk cmos in 

subthreshold operation,” in Power and Timing Modeling, Optimization and 

Simulation (PATMOS), 2013 23rd International Workshop on, pp. 9–15, IEEE, 

2013. 

[10] B. Zhai, L. Nazhandali, J. Olson, A. Reeves, M. Minuth, R. Helfand, 

S. Pant, D. Blaauw, and T. Austin, “A 2.60 pj/inst subthreshold sensor 

processor for optimal energy efficiency,” in VLSI Circuits, 2006. Digest of 

Technical Papers. 2006 Symposium on, pp. 154–155, IEEE, 2006. 

[11] Y. Chen, Z. Yu, H. Nan, and K. Choi, “Ultralow power sram design in 

near threshold region using 45nm cmos technology,” in Electro/Information 

Technology (EIT), 2011 IEEE International Conference on, pp. 1–4, IEEE, 

2011. 

[12] R. Jafari and R. Lotfian, “A low power wake-up circuitry based on 

dynamic time warping for body sensor networks,” in Body Sensor Networks 

(BSN), 2011 International Conference on, pp. 83–88, IEEE, 2011. 

[13] R. Lotfian and R. Jafari, “An ultra-low power hardware accelerator 

architecture for wearable computers using dynamic time warping,” in 

Proceedings of the Conference on Design, Automation and Test in Europe, 

pp. 913–916, EDA Consortium, 2013. 

[14] L. Atallah, G. G. Jones, R. Ali, J. J. Leong, B. Lo, and G.-Z. Yang, 

“Observing recovery from knee-replacement surgery by using wearable 

sensors,” in Body Sensor Networks (BSN), 2011 International Conference on, 

pp. 29–34, IEEE, 2011. 

[15] M. Muller, “Dynamic Time Warping,” in Information retrieval for music 

and motion, Springer, 69-84, 2007 

[16] A. Wang and A. Chandrakasan, “A 180-mv subthreshold fft processor 

using a minimum energy design methodology,” Solid-State Circuits, IEEE 

Journal of, vol. 40, no. 1, pp. 310–319, 2005. 

[17] K. Agarwal, K. Nowka, H. Deogun, and D. Sylvester, “Power gating with 

multiple sleep modes,” in Proceedings of the 7th International Symposium on 

Quality Electronic Design, pp. 633–637, IEEE Computer Society, 2006. 

[18] K. Shi and D. Howard, “Challenges in sleep transistor design and 

implementation in low-power designs,” in Proceedings of the 43rd annual 

Design Automation Conference, pp. 113–116, ACM, 2006. 

[19] D. Markovic and R. W. Brodersen, DSP Architecture Design Essentials. 

Springer, 2012. 


