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ABSTRACT 
This paper presents a reconfiguration methodology to digitally 
assist a reconfigurable analog front-end (AFE), with the objective 
of reducing the power consumption of an ECG-based cardiac 
activity monitoring system, while maintaining an acceptable 
performance for the desired signal processing. In this study, we 
focus on the performance of ECG-based heart rate estimation as 
an example to demonstrate our proposed strategy. Utilizing the 
consistency and quasi-periodicity of the ECG waveform, two 
regions are pre-defined based on the prediction of the R peak by a 
normalized least mean square (NLMS) adaptive filter. The power 
consumption and performance of the AFE is dynamically 
reconfigured accordingly. Experimental evaluations show the 
system can measure heart rate variability (HRV) with an error of 
0.5-4 beats/min with the sampling rate reduced from 488 sps to 
100 sps and 40 sps for the two regions respectively, bit resolution 
reduced from 10-bit to 6-bit and noise tolerance substantially 
relaxed, offering an estimated 62% total power saving.      
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1. INTRODUCTION 
The demand for enabling new applications to manage health-care 
and wellness has substantially increased in recent years. Among 
physiological signals, cardiac activity monitoring is one of the 
most important aspects of health monitoring systems because 
heart diseases can severely and suddenly threaten human life. 
Furthermore, the unpredictable nature of heart malfunctions 
requires long-lasting, uninterrupted monitoring, necessitating 
power efficient and wearable heart activity monitoring devices. 

For the purpose of heart disease monitoring and analysis, 
monitoring heart rate, and in particular heart rate variability 
(HRV), has shown to be an important predictor for several heart 
diseases in the early stage [1]. Among existing methods for heart 
rate monitoring, the electrocardiogram (ECG), which involves 
capturing the electrical activities of the heart, is considered 
superior to other candidates due to its well-defined and 
informative waveforms [2]. 

Fig. 1 shows the architecture of the proposed bio-signal 
acquisition system. Generally, the parameters associated with an 
AFE, such as the sampling rate, ADC resolution, and noise 
performance are fixed and set for the worst case scenario at the 

design stage. Hence such designs are not optimal in terms of 
power efficiency. However, the recent advent of various 
reconfigurable analog circuitry [3, 4] suggest that sensor interface 
circuitry can be developed where one could reconfigure various 
circuit functionality and performance parameters based on the 
application requirements. Further, utilizing the well-established 
notion of digital assistance for analog circuits [5], a DSP back-end 
could provide appropriate feedback to a reconfigurable AFE in 
order to switch into any desired operation mode. In other words, 
with the usage of digital assistance for reconfigurable analog 
circuits, one can leverage the fact that the signal acquisition 
quality can be compromised to lower the power consumption of 
the AFE while maintaining satisfactory performance of the signal 
processing algorithms. This will be demonstrated and established 
through the results presented in this paper. 

Some of the relevant existing techniques have explored various 
sampling techniques [6-8]. A state-of-the-art ECG front-end [6] 
employed derivative-based adaptive sampling where based on a 
switched capacitor differentiator different sampling rates were 
applied to high and low activity ECG regions respectively. A 
level-crossing sampling for ECG acquisition was adopted in [7]. 
However, such sampling techniques are potentially susceptible to 
noise, interference, artifacts, etc. Compressive sensing based 
AFEs generally perform well when the incoming signals are 
sparse [8], however, our approach does not require the sparsity on 
the incoming signals and can realize signal processing in 
conjunction with adaptive sensing (e.g.,  heart rate  detection  in  
our  case  study)  while  the compressive sensing will only 
compress the incoming signals. In this work, two activity based 
regions are robustly defined as in [6] using an alternative 
proposed DSP technique based on prediction of the next 
upcoming R peak. The precise digital feedback using our 
proposed strategy would allow a dynamic reconfiguration to 
accurately capture only the QRS region on-the-fly. Further, since 
this technique is not driven by analog circuitry, the window width 
can also be adjusted to cover extra margin around the high-
activity QRS region, if required.  

The paper was presented at APRES 2015. Copyright retained by the 
authors. 

 

 

Figure. 1. A digitally-assisted reconfigurable ECG acquisition system. 



2. SIGNAL PROCESSING  
It is well known that the QRS complex is the most distinguishable 
component of the ECG waveform for reliable heart rate 
estimation. Therefore, configuring the AFE in a higher power and 
sensitivity mode only for the region that contains QRS complex 
while ignoring the remaining area will effectively lower the power 
consumption of the AFE. Particularly, if an assumption is made 
that the heart rate itself or its changing trend remains largely 
consistent over a short-time window, a predictor could be applied 
to forecast the position of upcoming QRS complex based on the 
previous detected positions. Generally, cardiac activity has a 
finite, but small, HRV. To account for which, a corresponding 
small time margin could be added around the predicted position to 
capture the so-called R-peak region and perform an accurate 
search for R peak. This three phase strategy involving an 
upcoming R peak prediction, window definition to capture the R-
peak region and the actual R peak identification has been 
illustrated in Fig. 2.  

However, to account for large and sudden HRV, the above 
strategy would require a larger time margin, or equivalently an 
enlarged R-peak region, implying using the higher power mode 
for longer duration, diminishing the low-power benefits of 
prediction. Therefore, to maintain the power efficiency and 
acceptable performance, instead of brutally enlarging R-peak 
region, we limited the range of R-peak region based on the 
presumed HRV constraints and apply a relatively less accurate, 
but also less sample-intensive, autocorrelation method to operate 
upon the downsampled data from the R-peak region and scanty 
data from the remaining non-R-peak region. 

2.1 R-peak Prediction 
In order to predict the R-peak and non-R-peak regions, a 
normalized least mean square (NLMS) based adaptive filter is 
implemented as shown in (1-4), 
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where )(nX  is the column vector of previous N R-R intervals at 

time n (R peak is detected by the CWT-based algorithm presented 
below), )(nW is the column vector of N coefficients for the 

prediction model at time n, and N is the order of the adaptive 
filter, here N is chosen to be 5 with an assumption that the most 
recent 5 R-R intervals contribute mostly to the prediction for the 
upcoming one. The error )(ne  between the predicted value )(ny  

and true value )(nd  is then used along with the normalized 

updating step size )(n  to update the coefficients vector from 

)(nW  to )1( nW . It may be noted that this R-R interval 

prediction process needs to be repeated iteratively. In this work, 
all initial adaptive filter coefficients )(nW  are set to 1/N and 

eventually converge after a few heart beats. Further, at start-up, 
the AFE may be deployed at the highest sensitivity (and power 
consumption) mode to guarantee error-free initial inputs to this 
predictor. 

2.2 Heart Rate Estimation Algorithm 
2.2.1 R-peak region – wavelet based R peak 
detection: The continuous wavelet transform (CWT) constructs 
a time-frequency representation of the ECG signal and transforms 
the time-domain into the wavelet-domain, as indicated in (5). 
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The scale factor a  is selected to allow establishing correlations 

between the mother wavelet )(t  and the R peak of the ECG 

signal )(tx , and used together with the thresholding method in the 

wavelet domain to determine the R peaks [9]. The performance of 
this method is accurate and robust and the degradation mostly 
only results from introducing extra noise/artifacts with much 
higher amplitude or an R peak-like impulse signal. Therefore, 
being highly resistant to quantization noise and input-referred 
noise, the adoption of CWT algorithm not only yields an accurate 
R peak detection but also could relax the requirement of the 
resolution of ADC and input-referred noise of amplifier in the 
AFE, which makes itself a suitable candidate for the estimation of 
heart rate in the R-peak region. 

2.2.2 Non-R-peak region – autocorrelation based 
estimation: Another alternative method for heart rate estimation 
is based on the autocorrelation function (ACF) to search for the 
fundamental frequency of heart rate. Compared with wavelet-
based algorithms, this method does not rely solely on capturing a 
predefined segment of the signal (e.g., R peak) with high 
sensitivity but potentially on the entire period of the signal 
captured with lower sensitivity. Therefore, the use of this 
algorithm theoretically will require less power consumption for 
the ECG front-end in comparison to the wavelet-based algorithm 
and can provide coarse heart rate estimation, which is validated in 
the next section. Particularly when the actual HRV exceeds the 
presumed constraint, i.e., the R peak lies outside the R-peak 
region, this ACF based estimation could still provide acceptable 
heart rate tracking performance. 

3. EVALUATION AND DISCUSSION 
3.1 Tradeoff between Performance & Power 
The ECG data used in this paper was collected using a customized 
bio-signal acquisition board [10], which includes a TI ADS1299 
analog front end and an MSP430 microcontroller. 

By fixing the sampling rate at 488 sps, which is around the 
suggested rate for ECG sensing [2], we evaluated the impact of 
varying ADC resolution on the wavelet-based heart rate 
estimation performance for different noise tolerance levels. In our 
simulations, the noise tolerance level was measured by calculating 
the signal-to-noise ratio (SNR) after artificially introducing white 
Gaussian noise to the captured data.  Referring to [6], we selected 
the input dynamic range for the ADC to be ±5mV and assumed 
appropriate gain to satisfy the same by applying proper scaling to 
the ADS1299 data. Our results in Fig. 3 show the performance of 

 

Figure 2.   Dynamic region definition based on R peak prediction 
shown over captured ECG 



the wavelet-based heart rate estimation remains highly accurate 
(error ≈ 0.1 beats/min) when the resolution is equal to or larger 
than 6-bit while degrading sharply lower than 6-bit. Therefore, for 
the wavelet-based algorithm, the lower bound of the resolution is 
set to be 6-bit as the starting point to continue to evaluate the 
impact of sampling rate. In Fig. 4, we gradually reduced the 
sampling rate to test its impact on the wavelet-based performance 
for various SNR values. The results show that the heart rate 
tracking error remains fairly small (error < 0.5 beats/min) for 
sampling rate larger than or equal to 100 sps, but increases sharply 
with sampling rate below this boundary, which may be due to the 
fact that the power of the most distinguishable frequencies for R 
peak is largely reduced [9].  

In Fig. 5 and 6, we performed the similar test on the impact of 

sampling rate, ADC resolution, and noise tolerance for the 
autocorrelation-based heart rate estimation. The results show that 
the best performance (around ±2 beats/min) is worse than that of 
the wavelet-based algorithm (around ±0.1 beats/min), but the 
performance degradation over the tunable parameters, especially 
for sampling rate, has a much lower slope than that of the wavelet-
based algorithm. This phenomenon experimentally confirms our 
choice of the autocorrelation-based estimation method over the 
wavelet-based algorithm for the non-R-peak region, since the 
wavelet-based algorithm is not able to provide acceptable 
performance in an ultra-low power configuration when the tunable 
parameters are aggressively adjusted as the autocorrelation-based 
algorithm does. 

3.2 Power Management: Analysis & Estimate 
The proposed power management scheme involves dynamic 
reconfiguration between three different power modes while 
simultaneously maintaining acceptable heart rate estimation 
performance. Our results have indicated that three AFE 
parameters viz. resolution, sampling rate and noise performance 
can be significantly relaxed to allow power savings via dynamic 
reconfiguration. Table I summarizes these AFE parameters 
corresponding to the modes indicated in Fig. 7, which constitutes 
our dynamic AFE reconfiguration strategy. The reconfigured 
parameters corresponding to Mode-b and Mode-c have been 
defined based on sample application acceptable heart-rate error 
and using experimental results with trade-off analyses presented 
in previous sections. The performance error constraints are set to 
0.5 and 4 beats/min for wavelet and autocorrelation-based 
approaches, respectively. 

3.2.1 Power Estimate: The two major components in a 
typical AFE are the ADC and the amplifier. Preliminary 
SPECTRE simulations of a reconfigurable rate/resolution SAR 
ADC have indicated satisfactory power scaling achievable as 
indicated in Table-I. Simulations of a current tunable chopper-
stabilized biopotential amplifier consuming power of 87.1nW and 

44.5nW exhibit noise levels of HznV /110 and 

HznV /235 respecively indicating that noise can also be 

satisfactorily traded with power. The power-consuming 
components in DSP are the CWT and ACF blocks, which 
primarily comprise multiply-accumulate operations (MAC). On 
one hand, the power consumption of CWT equals to: 

MACCWT PWSNP *** 11                    (6) 

Where N, 
1S , 

1W  and 
MACP are number of wavelet scales, 

sampling rate, width of mother wavelet function in unit of samples 
and power of one MAC operation. When the Mexican hat wavelet 
is chosen and wavelet center frequency set to 16Hz and 17Hz as 

 

Figure 3. Wavelet-based heart rate estimation error over different 
resolution and SNR, with sampling rate = 488 sps. 

 

Figure 4. Wavelet-based heart rate estimation error over different 
sampling rate and SNR, with resolution = 6-bit 

 

Figure 5. Autocorrelation-based heart rate estimation error over 
different resolution and SNR, with sampling rate = 488 sps. 

 

Figure 6. Autocorrelation-based heart rate estimation error over 
different sampling rate and SNR, with resolution = 6-bit. 

 

Figure 7. Reconfigurable modes illustrated over captured ECG. 



suggested in [9], 
1W  equals to 17/4 1S . On the other hand, the 

power of ACF equals to: 

MACACF P
T

laglagST
P *
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where
2S , T  and lag  corresponds to the sampling rate, window 

length in seconds and time lag range in samples for the 
autocorrelation in each window. To account for the heart rate 
between 40 and 180 beats/min, lag is set to 6/7 2S and T is set 

to 3 seconds. One thing to note is the autocorrelation needs to be 
running continuously in both Mode-b (after downsampling) and 
Mode-c. The estimate energy are 75pJ and 33pJ for 10-bit and 6-
bit MAC operations through the PrimeTime simulation with 
TSMC 0.18µm technology, Vdd=1.1V and clock 
frequency=10kHz. Therefore, with 

1S  set to 488 sps and 100 sps 

for Mode-a and Mode-b respectively and
2S set to 40 sps for 

Mode-c as indicated in Table I, the estimate of DSP power for 
Mode-a (CWT), Mode-b (CWT+ACF) and Mode-c (ACF) are 
8.40µW, 205.9nW and 50.7nW, respectively. 

3.2.2 Power Savings Analysis: The total power of AFE 
and DSP for our proposed scheme could be estimated by: 
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where
aP , 

bP , 
cP  are the total AFE plus DSP power for three 

modes as indicated in Table I, and 
at , 

bt , 
ct  are obtained from 

the predictor to represent the time duration for the three modes. 
We performed a simulation on the 10-min ECG data. With time 
margin around predicted R peak equal to 0.4 second, the estimated 
power saving switching from Mode-a to our proposed scheme is 
more than 95% due to the dominance of DSP power in Mode-a, 
with the error increased from 0.1 bpm to 1.5 bpm. Practically, 
downsampling the signal in Mode-a to the same sampling rate as 
Mode-b before applying CWT would largely reduce the DSP 
power for Mode-a, which still yields a potential 62% power 
saving when proposed scheme is applied. The overhead 
introduced by this power management strategy is the prediction 
scheme which requires a simple logic circuit to check for the 
transitioning conditions from one mode to another using two 

simple counters. This incurs a negligible overhead compared to 
the power consumption of the signal acquisition and processing. 

4. CONCLUSIONS 
In this paper, a signal processing centered control strategy for 
AFE reconfiguration was presented. A prominent advantage of the 
proposed strategy includes creation of predictive cues on when the 
AFE must be activated or sent to the low power modes (e.g., 
lowering the sampling frequency or ADC resolution). This is 
achieved by predicting future R-peak regions using an NLMS 
adaptive filter. Another important feature of the proposed strategy 
lies within the algorithmic aspect of robust heart rate estimation, 
which is achieved by employing two different rate estimation 
algorithms. The effectiveness of these two algorithms has been 
established through preliminary experimental evaluations. In 
addition, potential power saving is also discussed and analyzed 
along with the simulation-based power estimate.  
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Table I.  AFE Dynamic Reconfigurability 

MODE (a) (b) (c) 

Sampling rate 
High 

488 sps 

Moderate 

100 sps 

Low 

40 sps 

Resolution 
High 

10-bit 

Low 

6-bit 

Low 

6-bit 

Noise Tolerance Low 
High High 

SNR  3 dB SNR  3 dB 

Error 0.1 bpm 0.5 bpm 4 bpm 

Estimated ADC 
power 

32.3nW 3.41nW 2.74nW 

Estimated 
Amplifier Power 

87.1nW 44.5nW 44.5nW 

Estimated DSP 
power 

8.40µW 205.9nW 50.7nW 

 


