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ABSTRACT

Recent years have seen a large influx of applications in the
field of Body Sensor Networks (BSN). BSN, and in general
wearable computers with sensors, can give researchers, users
or clinicians access to tremendously valuable information ex-
tracted from data that were collected in users’ natural envi-
ronment. With this information, one can monitor the pro-
gression of a disease, identify its early onset or simply assess
user’s wellness. One major obstacle is managing repositories
that store large amounts of BSN data. To address this is-
sue, we propose a data mining approach for large BSN data
repositories. We represent sensor readings with motion tran-
scripts that maintain structural properties of the signal. To
further take advantage of the signal’s structure, we define
a data mining technique using n-grams. We reduce over-
whelmingly large number of n-grams via information gain
(IG) feature selection. We report the effectiveness of our
approach in terms of the speed of mining while maintaining
an acceptable accuracy in terms of precision and recall. We
demonstrate that the system can achieve average 99% preci-
sion with an average 100% recall on our pilot data with the
help of only one transition for each movement.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining

General Terms

Design, Algorithms, Experimentation
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1. INTRODUCTION

Body Sensor Networks are becoming an increasingly pop-
ular field of research for a variety of applications from fall
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and posture detection [22, 40], and tele-medicine to rehabil-
itation and sports training [3, 19]. These systems are based
on tiny sensor nodes with different sensors selected based
on the application. BSN systems are desirable because they
provide a relatively inexpensive way to collect realistic and
more importantly quantitative data about the subjects with-
out constraints of the lab environment. A problem that has
not received much attention is storing and tracking all of
the collected data. BSN data is valuable especially in the
cases of medical observations. The ability to search and
compare BSN observations can potentially shed light on dis-
eases such as Parkinson’s Disease [38], which does not have
a cure or even a quantitative, objective diagnostic process
[10]. The following example demonstrates the usefulness of
the idea. A person can be observed for an extended pe-
riod of time, for example multiple years, with the help of
a few sensor nodes. All of the data is simply collected and
stored in the data repository. After some time a person is
diagnosed with a disease that affects walking. It would be
beneficial to analyze old data and extract gait parameters
for disease evaluation. A data mining approach would be
able to identify movements of interest, in this case walking,
so that the raw data of movements can be used to extract the
required gait parameters. When comparing the signals we
rely on the idea that similar movements have inherently sim-
ilar structure, while different movements have fundamental
differences, which is also an assumption of structural pattern
recognition [5]. For structural techniques to be effective it is
essential to design an effective data representation approach
that simplifies the multidimensional BSN data yet captures
the structure of the signal.

The system can extract structural and relational infor-
mation from the data [31] by representing body states as
a set of basic motions called primitives. The idea of mo-
tion primitives has been explored in both computer vision
and sensor networks. For example, facial expressions can be
split into ‘atomic’ motions [4] and then later appropriately
combined to improve smoothness of the 3D models. A more
advanced study focuses on defining a Human Activity Lan-
guage (HAL) by splitting movements into primitives based
on the video data [13]. A similar idea of representing hu-
man movements in terms of string sentences generated by
identifying atomic body poses with a multi-view video of
the experiment [14]. Fewer works use the notion of motion
primitives based on the inertial sensor readings. These ap-
proaches normally involve clustering training data and gen-
erating class labels for each point of the signal. Supervised



clustering can be used to identify important events of the
signal, and look only for those events during the system ex-
ecution leaving the rest of the input unlabeled [25]. Unsu-
pervised clustering can be used to map each complete action
into a motion primitive and then use the acquired primitives
for classification [11]. Overall, these approaches suggest that
structural pattern recognition excels in recognizing individ-
ual primitives and sequences of primitives. This property
can potentially be applied to such data mining problems as
discovering similar movements, finding similar portions of
movements, and finding similar abnormalities in movements.

Based on the idea of structural pattern recognition we
present a data mining model for a large BSN data repository.
We first handle the problem of the BSN data representation.
To achieve it, we define a technique for movement primitive
construction for multidimensional BSN data using cluster-
ing. We explore ways to preserve the original structure of
the signal, even if the movement trials have timing incon-
sistencies. Unlike other works, we consider multiple cluster-
ing techniques for primitive construction using a small and
computationally simple feature set. We use the constructed
primitives to generate string transcripts to capture the rela-
tional information from the signal. We then define a novel
data mining model that explores structural and relational
properties of the string transcripts via n-grams computation
and selection. We use information gain to select the n-grams
that can best differentiate between movement, and then de-
fine a Patricia tree for data indexing and mining. We verify
the quality of our model by applying it to a pilot movement
data set. While other works focus on achieving the highest
possible accuracy of classification, the key objective of our
work is to define a data mining approach that can be ap-
plied to a very large data set, which results in decisions that
favor speed and simplicity of computation. To the best of
our knowledge this has not been applied to multidimensional
data like the one collected by BSN sensor nodes.

2. RELATED WORK

During data collection researchers aim to minimize the
number of nodes used on a subject to improve system wear-
bility. This results in a particular choice of sensor types,
node count, and node placement. In a practical deploy-
ment scenario, a subject’s preferences may also cause some
changes in the way sensors are placed. For example, a cell
phone on the belt of one subject and a sports watch on an-
other can be collecting accelerometer data about walking.
These differences seem to deem the information not compa-
rable and possibly not useful. This problem can be resolved
with a larger BSN repository, where similarities in portions
of the data can link multiple data sets together, thus pro-
viding user with more data or even a new perspective of the
data with a sensor not immediately available to that user. It
is not practical to use the metadata about the experiment,
such as movement type or speed, to combine observations,
because two variations of the same movement might be per-
formed very differently. In other words the system should
be able to recognize not only the movement itself, but also
the specific way the movement is performed. For example,
when the system is searched for occurrences of limping in the
right foot of the subject, it should not return every instance
of walking, even though limping is observed during a walking
trial. To avoid this, the structure of the compared movement
needs to be investigated. Structural pattern recognition can
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help create an accurate and lightweight approach for data
manipulation in the BSN data bank.

An approach for structural data representation and recog-
nition is proposed in [12]. This approach has a major weak-
ness. The comparison evaluation is based on the value of
Levenstein distance (or edit distance) [20]. Edit distance cal-
culation assigns the same weight to deletion, insertion, and
substitution operation. It is not a problem when the com-
pared strings have similar size. However, BSNs can observe
the same movement at different speeds, which may mean
that the speed of movement execution can start dominating
the edit distance value. It is possible to manually manage
the weights of each one of the three edit distance operations,
however that would generate a heuristic type of approach
[18]. Another way to deal with this issue is to normalize the
length of each primitive in motion transcripts [26]. While
this approach might work in some specific applications, in
general it is very hard to predict how to scale parts of move-
ments depending on the overall execution speed. A possible
solution to this problem is to identify significant transitions
in the motion transcripts and base the transcript compari-
son on variations in these transitions. In the field of speech
processing, a similar function is often performed by n-gram
features. n-grams are substrings of length N, they were first
introduced by Shannon [37] as means to analyze vulnerabil-
ity of ciphers but since have been extensively used in the
field of speech and text recognition.

N-grams [8] proved to be useful in structural parameter
extraction when used for spoken language recognition [2].
N-grams can be used to capture phoneme, in the case of
spoken language, and grammatic constructs, in case of writ-
ten language, to identify bodies of speech or text. Simi-
larly, n-grams can be used to analyze text summaries [21]
or translation quality[8] with respect to co-occurrence statis-
tics. While good at recognizing major structural differences,
n-grams can also be used in the case of fine tune spelling er-
ror correction [17]. In addition to maintaining structural
information of the considered string, n-grams can also sig-
nificantly reduce the amount of information that needs to be
stored and verified. Instead of storing a large body of text,
the system can identify important transitions and improve
both memory usage as well as execution speed of the search.
This idea is applied in malicious code detection software [27,
1]. Instead of keeping a database of viruses, authors extract
n-grams that characterize each malicious code, and search
files for presence of only those n-grams. These important n-
grams can be better organized with a suffix tree [24], which
would increase the speed of identifying language constructs
[32]. In fact suffix trees are often used to index a large data
store in natural language processing and other fields. For ex-
ample in molecular biology, DNA sequences can be indexed
with the help of suffix trees [6]. Authors in [35] discuss an
efficient query algorithm on a large compressed body of text
using suffix trees. The general effectiveness of the suffix trees
is discussed in the work trying to identify local patterns in
a event sequence database [16, 7).

At first glance, the above examples have little in com-
mon with data collected from BSNs. Suffix tree approaches
normally index a unidimensional data set, while BSNs nor-
mally have a set of multiple sensors with multiple dimensions
of sensing. This problem can be resolved by combining all
of the data readings and representing them with unidimen-
sional primitives [12]. While this simple approach seems to



resolve the issue, it fails to recognize that each one of the
sensing axis can observe variations such as varying speed and
amplitude of the signal. In a text data set the variations are
one dimensional, just like the data itself; this is not the case
in multidimensional sensor readings of BSNs. Furthermore,
it is not clear how variations occurring in multiple sensing
dimensions should be handled in the context of a one dimen-
sional primitive. It is possible that different combination of
signal variations may hinder the structural consistency of
the combined primitive representation.

3. PROBLEM DESCRIPTION

In this paper, we try to address the problem of data min-
ing for the BSN data repository. The system takes raw sen-
sor readings as an input and searches the repository for the
signals similar to the input. Due to a potentially large size of
the repository, the approach has to be fast yet reliable. As a
result, we focus on the speed and simplicity of the approach.
When a raw sensor reading of an observation is given as an
input, the approach should be able to identify a movement
the observation belongs to, so it can be stored in the appro-
priate place in the repository. It should be able to compare
signals of two movements and find possible similarities. Fur-
thermore, it should be able to identify similar portions of the
signals, which can be useful if a subject exhibits a consistent
abnormality in performing multiple movements. Finally, it
should be able to identify movements that contain certain
signal instances. For example, identify all of the movements
where the torso moves forward.

Table 1: Pilot Application Movements
Description
Stand to Sit
Sit to Stand
Stand to Sit to Stand
Kneeling, right leg first
Turn counter clockwise 90 degrees
Look back clockwise
Move forward (1 step)
Move to the left (1 step)
Move to the right (1 step)
Jumping

- Z
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3.1 Pilot Application

While we are designing an approach for data mining in
a large BSN repository, a data set that large is not avail-
able to us. Instead, we apply the proposed approach to a
classification problem. Classification accuracy is similar to
the indexing and searching accuracy, which means that a
classification application can assess the precision of the pro-
posed technique. Furthermore, as the approach is designed
for a large data set we aim to make it lightweight and as
fast as possible. For the experiment we collected data of ten
movements from three subjects. The details of the experi-
mental movements can be found in Table 1. Every subject
repeated each movement ten times to increase the size of the
data set. Each subject was equipped with nine sensor nodes
positioned as demonstrated in Figure 1.

3.2 Hardware
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(4) Right-arm ' (2) Left-arm

(3) Right-wrist (1) Left-wrist
(6) Right-thigh (8) Left-thigh
(5) Right-ankle (7) Left-ankle

Figure 1: Subject with motes equipped

During the data collection subjects were equipped with
several TelosB sensor nodes with custom-designed sensor
boards. Each sensor board has a tri-axial accelerometer and
a bi-axial gyroscope. Sensors were sampled at 50H z, which
is a fairly standard data collection frequency for movement
applications [33, 28] that satisfies Nyquist criterion [39]. Af-
ter collecting the data, each node sent its readings to the
basestation. In our case, the basestation is a node without
a sensor board, which forwards all of the received data to
the PC via a USB connection for further processing.

2.580 in.

Figure 2: Sensor Node

4. DATA REPRESENTATION

A physical movement can normally be represented as a
sequence of shorter motions. Capturing the structure of the
movement involves capturing these shorter motions and tim-
ing relationships between them. This can be done by identi-
fying motion primitives. This task is not trivial as it has to
be done without any prior knowledge of the movement itself
but with respect to the observed signal. A common way
for unsupervised data grouping is clustering. We follow the
idea introduced in [12] and use a clustering technique for
primitive generation. We extract features from the signal
and cluster the resultant feature set, which means that the
clustering outcome is dependent on the perspective that the
features can provide. This adds flexibility to the system be-
cause different feature sets can characterize the signal from
different perspectives.

4.1 Primitive Construction

Before applying a clustering technique, it is necessary to
decide what data set the clustering is applied to. One way
to handle this issue is to combine all of the sensory axis of



one node and use all of the available to the node data to
define primitives. This approach is flawed because, when
the multidimensional data is merged into a unidimensional
primitive, combining variations of each of the sensing axis
could modify the structure of the primitives. Each one of
the sensory axis can produce slightly different readings due
to a minor alteration in the movement performance. An
example of such an alternation can be a slight delay of the
movement. This alternation does not modify the structure of
the individual sensory axis signals, but, since alternations on
all of the axis are independent of each other, aligning them
with respect to time can significantly change the structure
of the primitives. Figure 3 demonstrates an example where
a slight variation in one of the axis’ signals, which does not
violate the signal structure for that axis, introduces changes
to final primitives. In the figure, individual axis of sensing
have consistent structure for both trials. If the sensing axis
were to be combined they would be combined with respect
to time. However, since the primitive transitions are not
aligned in the original signals, the time aligned result of axis
combining will not have consistent structure for both trials.
We also expect to have noise in the inertial data our sensor
nodes collect, which will introduce another source of error.

Acc Z Gyro X
I I
400 ! |
200| | ! 380 w
0 0
20 40! 60 80 20 40 60 8

Figure 3: Signal Alignment Issue

To avoid the issue with alignment, we treat the reading
of each sensing axis separately. Primitives are created for
each one of the axis. In effect, we treat each sensing axis as
a separate mote. This approach has an additional benefit
by increasing the flexibility of the system. The system does
not require all of the sensing axis used in one experiment to
be present in other experiments, which means that it does
not force users into a particular hardware configuration.

4.1.1 Data Clustering

Clustering is a very effective method of grouping simi-
lar data points, and distinguishing between different data
points. When trying to cluster BSN data, a clustering ap-
proach is normally applied to feature vectors extracted from
the original signal. There is a variety of features that can be
extracted from inertial data. Different approaches rely on
first and second derivatives, signal mean, amplitude, vari-
ance, standard deviation, peak detection, morphological fea-
tures and more. During our study we tried to identify a
small and simple data set that would produce good results.
Our primitive generation experiment concluded that first
and second derivatives are sufficient to describe the struc-
ture of our data set. To minimize the effect of the inter-
subject differences in features, the system normalizes fea-
tures with respect to each subject using standard score (or
z-score) [30]. While we used these features for our experi-
ment, the proposed approach is independent of the feature
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selection and only requires that selected features would rep-
resent the structure of the input signal.

There is a wide array of clustering techniques that includes
hierarchical, partitional, conceptual, and density based ap-
proaches. For our analyses we considered two clustering
approaches. First, we considered a k-means clustering ap-
proach [23]. k-Means is a hierarchical approach that at-
tempts to partition the data in a way that every point is
assigned to a cluster with the closest mean, or cluster cen-
ter. In its spirit this approach is similar to expectation max-
imization in Gaussian Mixture Models (GMM) [9], which is
the second clustering approach that we consider. The ap-
proaches are similar, because both of them try to identify
the centers of natural clusters of the data. GMM clustering
computes the probability that any given point is assigned
to every individual cluster and makes an assignment that
maximizes its likelihood. We selected the above approaches
because of their computational simplicity, and the property
that they are trying to identify natural cluster centers of the
data set without any prior knowledge of the data. Both ap-
proaches start with random cluster centers and re-evaluate
them after each round of computation. Once the cluster
centers stay constant within a predefined threshold, both
algorithms assume to have converged to the natural cluster
centers of the data and return the result.

A major problem to consider during unsupervised cluster-
ing is the number of clusters k that produces the best results.
To find the best solution we varied k from 2 to the length of
the shortest observation in the training set, while evaluat-
ing parameters of the both k-Means and GMM models. In
case of k-Means, we made the decision based on cluster Sil-
houette [34]. Silhouette is calculated based on the tightness
of each cluster and its separation from other clusters. For
every point i the silhouette is defined as

b(i) — a(i)
maz(a(i),b(7))

where a(i) is the average distance of point i to all other
points in its cluster, b;(7) is the average distance of point @
to all the points in cluster j, and b(i) = min(b;(7)), V7.
Silhouette s(7) describes how well the point 4 is mixed with
the similar data points and is separated from the different
data points. As a result, the quality of a clustering model
with £ clusters and d training points can be evaluated as

s(i) = (1)

>4 s(0)
I @

The larger the average silhouette value, the better is the
model. Therefor, the best value of £ can be selected by
finding the largest Quality(k) [34].

In case of the GMM we used Expectation Maximization
(EM) [29] to find the best mixing parameters for GMM. The
mixing parameters, such as the mean and covariance matri-
ces depend on the number of clusters k. Once the GMM
parameters are selected there are multiple ways to evaluate
the quality of clustering that include log likelihood, Akaike’s
information criterion (AIC) [41], and Bayesian information
criterion (BIC) [36]. Table 2 demonstrates the difference be-
tween quality estimation models for a GMM with £ clusters,
maximum likelihood of the estimated model L, and n points
in the training set.

Quality(k) =



Table 2: GMM Quality estimation
Log Likelihood AIC BIC
In(L) —In(L)+2xk | —In(L) + k xIn(n)

Log likelihood just reports the likelihood of the model,
AIC and BIC attempt to penalize the system for the number
of clusters. We found the penalty of the BIC to be too harsh
on our data set, which led to an extremely small number of
clusters. As a result we selected AIC as the GMM model
evaluation tool. We evaluated the value of AIC based on dif-
ferent values of k and selected k that produced the smallest
AIC result.

Once the optimal number of clusters is selected for both
k-Means and GMM, it is necessary to evaluate the differ-
ence between the clustering approaches, and see which one
is more suitable in the context of a data mining approach
we are proposing. Figure 4 shows that GMM clusters are
not convex, which means that some of the structural infor-
mation of the data can be lost. For example, it is possible
to have a signal where data with both positive and negative
first derivative are clustered together, while points with first
derivative equal zero are assigned to another class. From the
perspective of preserving structure some information is lost.
In Section 8 we will demonstrate how this difference in the
clustering approach affects the overall data mining accuracy.

Second Derivative

First Derivative

GMM Clustering K-Means Clustering

Figure 4: Clustering of the Training Set into 19 com-
ponents

4.2 Motion Transcripts

Each movement can be described as a series of primitives.
When an unlabeled movement comes into a system. The
system can extract features from each point, and, based on
the clustering technique, assign motion primitives to them.
Motion transcripts are sequences of primitives over a cer-
tain alphabet assigned to movement trials. Since the data
from different motes are not comparable, the system has to
make sure to differentiate between individual motes by us-
ing a unique alphabet for each one. Figure 5 demonstrates a
sample transcript generated by the ankle node for a ‘Lie to
Sit’ movement. Each one of the sensing axis uses a separate
alphabet, so while they are displayed with the same color
the values of different transcripts are not related.

5. COMPARISON METRIC

Once the BSN data is converted to motion transcripts the
system requires an efficient way to classify and search them.
In Section 2 we discussed edit distance, a common approach
to compare strings. However, edit distance does not perform
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Figure 5: Sample Transcripts

well when the input data has noise and varies in length. Ad-
ditionally, edit distance calculation is very slow with order
of O(n?), where n is th length of the string. While it may
be an acceptable solution for a small application, its speed
performance is not at all acceptable for a large data repos-
itory potentially containing terabytes of data. To resolve
the issue of edit distance, the system can use the idea of
n-grams that can track transitions in motion primitives in
linear time with respect to the trial length. The goal of the
n-grams is to track important transitions between movement
primitives in string transcripts. However, the task of iden-
tifying n-grams that represent important transitions is not
trivial. The difficulty of the task is increased since over-
lapping n-grams are extracted to improve the quality of the
recognition. This means that potentially there is a very large
number of n-grams that can be selected from any given tran-
script. Furthermore, we expect the data to noisy; and it is
important to train the system only on the characteristic n-
grams and not on the n-grams that represent noise. This
task is achieved via n-gram selection.

5.1 N-gram Selection

The objective of this operation is to identify a small num-
ber of n-grams that can uniquely characterize the movement
of interest, and provide means of distinguishing that move-
ment from others in the repository. There is a variety of
ways to select proper n-grams, once n-grams are extracted
from all of the training data. Information gain has proven to
be effective in the field of natural language processing [42].
Information gain becomes complicated to compute and less
effective when each evaluated feature can take a large num-
ber of values. However, in our experiment each n-gram has
two possible values. A specific n-gram can be present in a
motion trial and the value of ’1’ is assigned to it, or the n-
gram can be absent so a value of ‘0’ is assigned. While IG
proved effective on our data set, the proposed approach is
not dependent on this particular n-gram selection technique
and can be modified based on the specific user demands.

IG can assess the effectiveness of a feature by tracking
changes in the entropy after consideration of that feature.
IG of an feature f on the collection of movements m is de-
fined as

Gain(m, f) = H(m) — H(m|f) (3)

where H(m) defines entropy of the movement set, and H(m|f)
defines conditional entropy of the movement set with respect
to feature f. We use a slightly modified approach, because
when the system is looking for a target movement all the
other movements can be treated the same way. It is possible
that a feature might be a good at identifying one movement
while being unable to differentiate between the rest of the
movements. That feature would have a bad general infor-
mation gain, however if we compute information gain with
respect to each movement, we can identify good features for

20 40 60 80



each movement. Practically, this means that while comput-
ing information gain of a feature with respect to particular
movement m;, the movement set is split into subsets of {m;}
and {‘not’ m;} or {m — m;}. In this case H(m;|f) can be
different for each m; and need to be calculated individually.
Which means that we can redefine the gain information as

Gain(ms, f) = H(mi) — H(mi|f) (4)

H (m;) represents the amount of expected information that
set m carries itself with respect to movement m; and can be
defined as

H(m;) = — prob(m;) * loga [prob(m)] (5)
— prob(m — m;) = loga [prob(m — m;)]

Conditional entropy H(m;|f) defines the expected amount
of information the set m carries with respect to feature f
and movement m;.

Himilp) = - 3 -countli) (6)

total_count

ve{0,1}
pM(fo) oo PM(fo)  pNM(fo) ,  pNM(f.)
count(fy) 92 count(fy)  count(fy) 92 count(fy)

where count(f,) represents the number of training trials
where f has value of a specific v, pM(f,) corresponds to
the number of trials of the movement m; where f has value
of a specific v, and pNM(f,) corresponds to the number of
trials not of the movement m; where f has value of a specific
v, and total_count is the total number of training samples.

Once all the n-grams have an IG assigned to them for
each movement, we can sort the list of IGs and select ¢ n-
grams that have the best IG. This is a very simple approach
because it does not consider correlation between features,
meaning that some of the features can be redundant. How-
ever, even this simple approach can generate good results
[27] and is selected for simplicity.

6. CLASSIFIER

Once the set of good n-grams is selected, an approach
needs to be defined for fast movement classification and
search. This approach also should not rely on the knowledge
of the complete structure of the data, and be able to finish
classification and search based on partial information. These
properties are exhibited by suffix trees [15]; more specifi-
cally, we used Patricia tree in our implementation. Patricia
trees are used to represent sets of string by splitting them
into substrings and assigning substrings to the edges. This
idea fits naturally with n-grams that are substrings. Once
all of the n-grams are selected for each movement, we com-
bine them and assign the combined set to the edges of a
Patricia tree. The paths from the root to all of the leafs cor-
responds to all the possible permutations of the combined
n-gram set. Once the Patricia tree is created, we traverse
it for each training trial, and assign movements to the final
node of the trial’s traversal, which means that at the end of
the training, each leaf of the Patricia tree corresponds to a
subset of the movements. It may be an empty set or it may
contain one or more movements.
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7. DATA MINING MODEL

Based on the construct defined earlier we propose a data
mining approach. The approach has two distinct parts:
Training and Query Processing.

7.1 Training

During the training phase of the execution the system
acquires parameters that can be used during the query pro-
cessing. The training starts with selecting a portion of the
available data trials for training. First and second deriva-
tives are then extracted from each one of the trials for every
sensing axis of the motes. Features are then normalized with
respect to each subject using standard score (or z-score) [30]
in order to remove inter-subject variations of the same move-
ments. Then normalized features are used to define data
clusters as described in Section 4.1.1. Once the data clus-
ters are defined, primitives are extracted for the data points
in each training trial, and then combined to define motion
transcripts as described in Section 4.2. The next step is to
extract n-grams from each one of the transcripts generated
for the training samples. Since the number of n-grams is
very large, the system then selects a small number of ¢ n-
grams using information gain as described in Section 5.1.
Finally, the system constructs a Patricia tree with selected
n-grams on the edges and movement classes on the leafs as
described in Section 6. The overall process is demonstrated
in Figure 6. The parameters defined during the training are
data clusters for each sensing axis of the motes, important
n-grams selected with respect to the information gain crite-
ria, and Patricia trees for classification are defined for each
mote. Clusters are represented by the cluster center coor-
dinates, while important features selected for each sensing
axis of each motes are then combined and stored.

7.2  Query Processing

When a system needs to classify or query for a movement
it receives input in the form of the sensor readings. First
and second derivatives are extracted from the sensor read-
ings of each of the sensing axis. Based on these features
and clusters, defined during the training of the system, each
data point of the trial is labeled with a primitive and mo-
tion transcripts are created. The system then traverses the
transcript of the trial and verifies if it contains important n-
grams selected during the training. Using this information
the system traverses the Patricia tree defined for this sensing
axis during the training and returns the set of movements
assigned to the leaf the traversal terminated at. Since all of
those operations are defined in terms of individual sensing
axis, an approach is required to combine the local decisions.
In order to avoid enforcing a certain structure on the hard-
ware, we aim to define a flexible approach that can make a
decision with only a subset of sensing axis available. When
this idea is combined with the need for speed and simplicity,
a simple majority voting approach is applied. This approach
performs well in our pilot application, however, the system is
not constrained to this approach and can be modified. The
flow of the query processing is demonstrated in the Figure
7.

Because the system initially processes each sensing axis
individually, it is possible to query only for a subset of axis
available in the system. This can be useful when a specific
sensor is not available to all users. For example, one user
can use a three-dimensional gyroscope, while another may



Data Collection
Sensor

Data Representation

N-gram Generation Classifier Creation

- ” Feature lusf Primitive
.| "1 Extraction & Dcf‘-h-[e-r Construction
MY Normalization chinition _

Transcript |_t N-gram
Generation Generation

N-gram i,| Suffix Tree
Selection Definition

Sensor
Feature s
r sl Extraction & Cluster Primitive
Normalization Definition Construction

Transcript  |_| N-gram
Generation Generation

N-gram | Suffix Tree
Selection Definition

Sensor

Feature
Extraction &
Normalization

Cluster
Definition

Primitive
Construction

Transcript N-gram
Generation Generation

N-gram ;,| Suffix Tree
Selection Definition

i S s

Figure 6: System Training Flow

use only a two-dimensional gyroscope. Additionally, since
the system uses a voting scheme it is possible to make clas-
sification decisions based on the local view of only a subset
of nodes.

7.3 Complexity Analyses

Since the system training can be done off line with no par-
ticular time constraints we consider only the complexity of
the query processing. Complexity of individual components
is described in Table 3, where [ is the length of the trial, k is
the number of clusters, ¢ is the number of selected features,
and m is the number of movements. Note that the total com-
plexity combines complexity of all the sensing axis, however
that number is constant (in our case 5) and does not affect
the Big-O analyses. The total complexity is O(l*xk+t*m).
Both k and t are parameters and do not need to be large
for good classification results. Which means that the run-
ning time of the approach is defined either by the length of
each classified trial, or by the number of movements in the
system. Simple human movements normally do not exceed
2 — 3 seconds, which means that the length of a trial sam-
pled at 50H z would be around 100 — 150 samples long. For
a repository with a small number of movements the com-
putation would be almost linear with respect to the trial
time. For a repository with a large number of movement,
exceeding 150, the running time would be almost linear with
respect to the number of movements in the repository. It is
potentially possible for the repository to contain a very large
number of movements, which would make our approach in-
efficient. The current work does not provide a solution to
this problem, however it is going to be a part of our future
investigation.

Table 3: Component Complexity

Component Complexity
Feature Extraction Oo(1)
Feature Clustering O(1*k)
Extracting n-grams o(1)
Selecting n-grams o(l)
Tree traversal O(t*m)
Total O(I*k + t*m)
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8. EXPERIMENTAL RESULTS

To verify the performance of our approach we apply it to a
pilot application discussed in Section 3.1. We first compare
the results of the system when k-Means clustering is used to
the results when GMM clustering is used. We then consider
accuracy of the approach with respect to the length of the
n-gram n, and number of features selected ¢. For small num-
bers of n and ¢, which would allow us to consider those as
constants in the complexity analyses, the approach achieves
nearly linear time. Finally, we demonstrate the accuracy
trade-off with respect to n and t¢.

8.1 k-Means or GMM?

In this section we apply our approach to movement tran-
script generated based on the k-Means and GMM clustering.
We compare the two approaches for a 3-gram with the num-
ber of selected n-grams varying from 1 to 6 per sensing axis
in Table 5, and with {1..6}-gram with only 1 n-gram selected
from each sensing axis in Table 4. Both tables indicate that
an increase in t or n would increase the precision and re-
call for both approaches till the over fitting point is reached.
It is also clear that the GMM approach outperforms the k-
Means approach with respect to varying both n and k, and
therefore is a better candidate for our application.

Table 4: 3-gram average performance of k-Means vs
GMM with {1..6} n-grams selected

t GMM k-Means
Precision | Recall | Precision | Recall

1 .93 .97 .75 .86
2 .96 .98 .88 .94
3 .96 .98 .89 .95
4 .95 .96 .90 .94
5 .94 .96 91 .96
6 .94 .96 .85 .92

8.2 C(lassification Accuracy

To evaluate classification accuracy of the model we eval-
uate precision and recall of movement classification using
the n-gram size of n = 3, and select number of features
t = {1,2...5} with GMM clustering model. We tested our
model by splitting the data into two parts. Half of the data
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Table 5: {3-T}-gram average performance of k-
Means vs GMM with 1 n-gram selected

n GMM k-Means

Precision | Recall | Precision | Recall

3 .93 .98 .75 .86

4 .99 1 .76 .84

5 .99 1 .83 .89

6 1 1 .89 .93

7 .95 .99 91 .93

was used to train the system, while the other half was used
to test it. The results of the classification are demonstrated
in Figure 6 for the precision, and Figure 7 for the recall.
These tables confirm that adding more n-grams would im-
prove both average precision and average recall until an
over fitting point is reached. Note that individual values
for movements sometimes decrease when an additional fea-
ture is selected. This is due to the fact that the data set
we have has a considerable amount of noise, and while an
n-gram improves the overall classification accuracy it may
cause confusion in classification of some trials where it ap-
pears as noise and not an important transition. Tables 6
7 display the number of n-grams extracted from each sens-
ing axis, so the total number of the n-grams extracted by a
sensor node should be multiplied by 5. However, even after
that the classification accuracy is fairly high for the number
of considered features.

8.3 Parameter Trade-off

The system we define has two parameters that classifica-
tion accuracy depends on. We can select the length of the
substring n and the number of n-grams ¢ selected for clas-
sification. As t is increasing so does the accuracy until the
over-fitting point is reached. After the over-fitting point is
reached the accuracy of the approach will no longer improve
with additional features. It is clear that a large n inherently
is able to capture more structural information. However,
since we use a moving window n-gram extraction, a single
erroneous primitive affects more n-grams for large values of
n, which means that the over fitting problem or training
on the trial but not model specific n-grams should happen
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Table 6: Classification Precision
Movement Features per sensing axis
1 2 3 4 5
Stand to Sit 1 1 1.92|.92|.75
Sit to Stand 1 1 1 1 1
Stand to Sit to Stand 1 1 1 1 1
Kneeling, right leg first | .67 | .75 | .83 | .83 | .92
Turn 90 degrees 1 1 1 ].92| .92
Look back clockwise 1 1 1 1 1
Move forward 1 1 1 1 1
Move to the left 92| 1 1 1 1
Move to the right 75| .83 | .83 | .83 | .83
Jumping 1 1 1 1 1
Average 93 1.96 | .96 | .95 | .94

sooner. We expect the system to converge to the best accu-
racy faster for large points of n but it also means that the
over fitting point will happen faster as well. Table 8 and
Table 9 demonstrate precision and recall of accuracy vs the
number of n-grams ¢ for different values of n.

From the tables it is clear that higher values of n are de-
sirable before over fitting, which means that n should be
determined based on the expected amount of noise in the
original signal. For the lower amount of noise a higher value
of n would work better, while when the amount of noise is
large, low values of n will provide a safer solution with less
risk of over fitting. In this example, the quality of the preci-
sion is improving from n = 3 to n = 5, it is fairly stationary
from n = 5 ton = 7, and finally n = 9 has decreasing re-
sults. The fact that large n-grams take more time to locate
in the training trials should also be considered. The system
can evaluate multiple possibilities during the training and
generate the curves to identify the best operational point
from the perspective of the application.

9. FUTURE WORK

In this work we explored possibility of a fast search me-
chanic on a large data set of BSN data with acceptable ac-
curacy based on a pilot study. While we achieved promising
results there are a few issues that have to be addressed be-



Table 7: Classification Recall
Movement Features per sensing axis
1 2 3 4 5
Stand to Sit 1 1 1 1 1
Sit to Stand 1 1 1.92].92| .86
Stand to Sit to Stand 1 1 1 1 1.92
Kneeling, right leg first | 1 1 1 1 1
Turn 90 degrees 86| 1 .92 1 1
Look back clockwise 921 .8 | 1 |.92 (.92
Move forward 1 1 1 1 1
Move to the left 1 1 1 1 1
Move to the right 1 191 1 |.83].91
Jumping 1 1 1 1 1
Average 98 | .98 | .98 | .97 | .96

Table 8: Precision with respect to n-gram size, and
number of n-grams selected

n | Features per sensing axis
1 2 3 4 5
931 .96 | .96 | .95 | .94
99| .97 | .96 | .98 | .97
991991991 .98 | 1
96| .94 | .94 | .95 | .93
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fore this approach can be practically deployed on the real
data. In this approach we assumed that the compared phys-
ical axis of the sensors are perfectly aligned, which may not
be the case during a real experiment where misplacement
is possible. Addressing the misplacement issues is the next
step in the development of our model. Additionally, the
current n-gram selection approach assumes that all of the
possible movements are available during the system training
and n-gram selection. Before the observation of new move-
ments can be made available, the system has to retrain itself,
which is an acceptable temporary solution. It is desirable to
define an n-gram selection approach that can dynamically
adjusts with respect to new data without the need for a
complete system re-training. Finally, for a database with
a very large number of movements, the performance of our
approach might start degrading. We would like to consider
an approach to group movements together and perhaps first
locate the group of movements in question, and then select
the movement in that group that best matches the input
signal.

10. CONCLUSION

We generated motion primitives based on instantaneous
simple features and unsupervised clustering. We showed
how the signal primitives can be combined into motion tran-
scripts, which are unidimensional representations of the mul-
tidimensional BSN data. Inspired by the techniques of nat-
ural language processing, we applied the concept of n-grams

retrieval for tracking transitions in the movement transcripts.

Due to the large number of n-grams extracted from a move-
ment trial, we apply a simple information gain approach to
the features to select k features that provide the most in-
formation about each sensing axis. Based on the selected
n-grams we build a suffix tree for fast query and identifi-
cation of movements in the database. We evaluated two
different clustering approaches with respect to classification
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Table 9: Recall with respect to n-gram size, and
number of n-grams selected

n | Features per sensing axis
1 2 3 4 5
98 | .98 | .98 | .97 | .96
1 ].97|.98 .99 | .98
99199199 .98 | 1
1 1 1.99|.99 | .99
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quality of our model and demonstrated that a GMM based
clustering outperforms k-Means in the context of our pilot
application. We demonstrate that the system can achieve
average 99% precision with average 100% recall on our pilot
data with the help of only 1 characteristic for each moeve-
ment transition. We also explored the trade off between the
length of the extracted n-grams and the required number of
features for the best classification results.
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