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ABSTRACT

Activity monitoring using Body Sensor Networks(BSN) has
gained much attention from the scientific community due to
its recreational and medical applications. Suggested tech-
niques for activity monitoring face two major problem. First,
systems have to be trained for the individual subjects due
to the heterogeneity of the BSN data. While most solu-
tions can address this problem on a small data set, they
have no mechanics for automatic scaling of the solution as
the data set increases. Second, the battery limitations of
the BSN severely limit the maximum deployment time for
the continuous monitoring. This problem is often solved by
shifting some processing to the local sensor nodes to avoid
a very heavy communication cost. However, little work has
been done to optimize the sensing and processing cost of
the action recognition. In this paper, we propose an ac-
tion recognition approach based on the BSN repository. We
show how the information of a large repository can be auto-
matically used to customize the processing on sensor nodes
based on a limited and automated training process. We also
investigate the power cost of such a repository mining ap-
proach on the sensor nodes based on our implementation.
To assess the power requirement, we define an energy model
for data sensing and processing. We demonstrate the rela-
tionship between the activity recognition precision and the
power consumption of the system during continuous action
monitoring. We demonstrate the energy effectiveness of our
approach with a classification accuracy constraint based on
limited data repository.
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1. INTRODUCTION

Some phenomenons, which we could observe only approx-
imately, now can be observed quantitatively with the help of
sensors and sensor networks. Body Sensor Networks (BSNs)
are a particularly interesting field in the sensor network
study. They allow quantitative observations of human body,
ranging from the muscle activity monitoring to reading the
brain patterns. An ability to collect such readings itself is
not revolutionary. However, in the past such observations
have been tied to constrained lab conditions and expan-
sive hardware, and generally were associated with the well
funded industries such as medicine and military research.
BSN are revolutionary due to their portability and a remark-
ably low cost, which makes precise sensor measurements of
the human activity widely accessible not only in medicine
but also sports training and games. While not providing
a conceptually new functionality in medicine, BSNs make
existing functionalities affordable to a larger population.

The portability requirement suggests that BSN nodes must
exhibit a certain level of autonomy, as a trained operator
may not be available at all times. It also implies that BSNs
may be deployed in unexpected environments, so the sensor
nodes should be able to evaluate the deployment scenario
and adjust their operation. In the context of the inertial
sensor monitoring, this requires an ability to perform action
recognition and adjust the processing based on the move-
ment the subject is performing. While a great body of liter-
ature is available on action recognition, the task is not trivial
and faces serious challenges that are not well addressed. Hu-
man movements are not precise, which means that different
subjects may perform the same movement very differently.
This, in turn, means that a general action recognition sys-
tem has to be trained on individual subjects to obtain a high
performance level. Such individual attention is not practi-
cal, especially in a portable system with numerous users.
Additionally, this setup is not scalable, as even if the system
is individually trained for a specific subject, an extensive
training process has to be repeated in case the set of target
movements changes. The training process, if present, has to
be automated. The nodes should collect the training data,
interface with an external system, and load the configuration
parameters.



The second challenge is the life time of the BSN nodes.
For a continuous monitoring system to be effective, it has
to be able to operate for an extended period of time. There
are three sources of energy use in the BSN nodes. Energy is
spent on sampling sensors, processing sampled data on the
microcontroller, and forwarding the data out via a wireless
link. While in general the communication accounts for the
majority of the energy expenditure in BSNs, it may not be
the case in a distributed action recognition system where
the amount of data to be communicated over the wireless
is greatly reduced. Human actions are relatively slow, for
example, a sit to stand action normally takes about a second.
Additionally, during a normal day, we do not perform the
sit to stand action very often. In the case of distributed
activity monitoring, only a label has to be communicated
when the action is detected. Taking into account the speed
and frequency of performing different actions, such as sit to
stand, this will significantly reduce the amount of data to
be communicated compared to forwarding the raw sensor
readings. It is necessary to evaluate the energy cost of not
only the wireless but all the system components.

In this paper, we propose a novel automated action recog-
nition approach based on our previous work about the BSN
repository mining[26]. It is based on the repository that has
a potentially large and diverse amount of sensor readings
describing different movements, different subjects, and dif-
ferent node placements. Our system mines the repository
to find the observations most similar to the limited training
data, and uses them as training. This step provides a fast,
flexible and scalable training process based on the extensive
data set in the BSN repository. This also means that the
training data is largely out of control of our system. This
suggests that the number of nodes, power consumption, and
other parameters of the training data set may not be in line
with the particular deployment’s requirements. To address
this issue, we define an energy model for the node execu-
tion that includes the cost of data collection and processing
for individual sensors and sensing axis. Based on this model,
we define a relationship between the power consumption and
the accuracy of recognition. To evaluate our approach, we
implemented the partial functionality on the sensor nodes
to verify its complexity, execution time, and energy cost.
We then evaluated the quality of the approach based on a
limited repository we created.

2. RELATED WORKS

Activity monitoring is an important task in the field of
BSN. Researchers might be interested in the type of tasks
that a subject performs [37] or in the properties of a subset
of the performed activities [38]. While many approaches at-
tempt to address these tasks, they face many problems not
apparent during the limited lab experiments and inherent to
the practical deployment of the long term continuous activ-
ity monitoring. These problems include sensor type, sensor
placement, movement, and subject variations. There is no
consensus on what sensors are preferred for activity moni-
toring. Some researchers select accelerometer based sensors
only [41]. Other select gyroscopes [25], magnetometers [23],
or even RFID sensors [15]. Different deployment scenarios
have different sensor demands. For example, gyroscopes ex-
cel at capturing rotations; however, they generally require
an order of magnitude more power than accelerometer sen-
sors. It is possible to approximate the information a sensor

would provide from other sensors, for example some work
has been done on approximating gyroscope reading using
accelerometers [39]. However, these approximations are not
precise and can potentially hurt the accuracy of recogni-
tion. Sensor placement is extremely important since even a
slight misplacement can potentially affect the structure of
the observation [16]. It is easy to make sure that the sen-
sors are placed correctly in the lab conditions during short
experiments; however it is not something that can be eas-
ily controlled during a remote continuous deployment. Even
when the sensors are placed precisely, different subjects may
perform the same movement differently. It heavily affects
the statistical learning approaches such as Hidden Markov
Model(HMM) [20], k-Nearest Neighbor(k-NN) [24], neural
networks [33], Dynamic Time Warping [18], and support
vector machines(SVM) [34] based approaches. As a result,
these approach require to be trained on the subject they will
be tested on to achieve the optimal performance. This is ac-
ceptable on a small data set, but may be impractical and,
most importantly, not scalable.

In addition to the issues introduced by the heterogeneous
nature of the BSN sensor readings, it is important to con-
sider the maximum lifetime of the system. Intuitively, the
maximum lifetime is the time that the system can perform
its function. While in other types of systems the maximum
lifetime can be increased through the introduction of redun-
dancies, it is not an acceptable solution in the case of BSN
based systems due to the wearability requirements. Weara-
bility dictates that a BSN would contain only the minimum
number of sensor nodes required for the task. This mean
that the maximum life time can be defined as the time before
the first sensor node failure. Sensor nodes require energy to
collect the sensor data, process it, and forward it to a base
station. Wireless communication is known to consume an
order of magnitude more energy than processing [26], which
renders centralized approaches which forward the raw sen-
sor readings to the basestation to make the classification
decision [40] unacceptable. The processing needs to be im-
plemented locally, to allow sensor nodes to make individual
classification decisions and communicate only the minimum
amount of information. Many approaches in the literature
address this problem [28, 42], however they do not consider
the fact that after reducing the amount of data to be com-
municated, the wireless link may no longer accounts for the
majority of the power consumption. This suggests a need for
an energy model which explicitly considers the cost of sam-
pling different sensors, and processing the collected data.

The task of optimizing the energy lifetime of the system
due to sensing and processing can be implicitly addressed
via optimal node selection [20] or action coverage [11] ap-
proaches. It ensures that only the nodes that are required
for movement classification are selected, and little energy is
spent needlessly. However, this approach does not address
the fact that not all of the sensor modalities and not all
of the sensing axis can contribute to an individual classi-
fication decision. For example, in a setup with a tri-axial
accelerometer and a gyroscope placed on the belt, only the
forward facing accelerometer can be used to recognize walk-
ing. While it is not practical to expect an individual sensor
node design for each of the monitoring tasks, a variety of
Microelectromechanical systems (MEMS) sensors allow in-
dividual axis power manipulations [31]. This means that a
microcontroller, can potentially disable sensing axis or even



entire sensors to preserve power. Each of the sensing axes
can be considered to be an individual classifier. During com-
bining individual classifiers at sensor node, it is possible ex-
plicitly considering the power and accuracy trade of. This
can be a very useful tool, as different applications may have
different run time and accuracy requirements. For example,
an application that collects statistics about the activities a
subject performs every day may accept a lower classification
accuracy in exchange for a longer lifetime of the system. On
the other hand, a medical application that tracks deteriora-
tion of the Parkinson disorder based on the gait parameters
of walking would favor the classification accuracy over the
longer lifetime.

3. SENSING ARCHITECTURE

Our sensing system consists of several XBow® TelosB sen-
sor nodes with custom-designed sensor boards shown Figure
1. Each sensor board has a tri-axial digital accelerometer
and a bi-axial analog gyroscope. Sensor nodes sample their
sensors at 50H z, perform limited local computations, and
transmit their data wirelessly to a basestation. In this ex-
periment, the basestation is a sensor node connected to a
PC via USB. During the experiment, we also use a Logitech
camera to record video of the movement trials. The video
frames and data samples are recorded and synchronized in
MATLAB. The video of the trials is later used as a gold
standard during classification verfication.

2.580 in.

Figure 1: Mote with inertial sensors

4. BSN REPOSITORY APPROACH

The BSN repository organization and mining approach,
we introduced in our previous work [26], can be utilized to
address the heterogeneous nature of the BSN data. The
repository does not enforce any constraints on the data it-
self, but rather provides a way to organize and mine het-
erogeneous data quickly and efficiently. This means that it
can potentially hold observations of different subjects, sensor
modalities and placements, providing flexible and reliable
training data for a variety of deployments. Additionally, the
mining approach, defined for the repository, is designed to
be fast and lightweight with potential implementation on the
sensor nodes in mind. In the next sections, we outline the
procedure that allows utilization of the repository data for
training and repository mining for the activity monitoring.

4.1 Overview of the Mining Approach

While the repository stores heterogeneous data, it uses a
common approach for data representation in order to allow
data mining. Every entry in the repository shares the same-
floating point preprocessing. When the data is collected, the

system extracts a set of common features, such as first and
second derivative, from the raw sensor readings. Every point
in the data is then clustered with respect to these features
using a Gaussian Mixture Model(GMM) based clustering
approach [9], where the cluster heads are also defined for
the entire repository. A motion transcript [13, 12] is then
generated for the new observation by replacing individual
points in the raw signal with the associated cluster labels
[10]. Note that an individual motion transcript is generated
for each of sensing axis used to collect the data. A set of
motion transcripts, representing each of the sensing axes on
the nodes, is used to mine the data or make a classification
decision.

Since the mining approach should be able to tolerate mi-
nor differences in the movement performance, it does not
employ entire transcripts. Instead, it focuses on the im-
portant transitions, or transitions which can differentiate a
given movement from the other movements in the repository,
in motion transcripts. It is done with the help of n-grams
[36], or substrings of length n. Based on the training data
set, the repository selects n-grams that correspond to the
important transitions for each of the movements using the
idea of Information Gain(IG)[19]. It is an important step,
as movements can potentially have a great number of transi-
tions, which can slow down and obscure the mining process
significantly. This process is performed for every movement
in the repository. Once the repository training is concluded,
every movement is represented with a unique set of n-grams
at each sensing axis. The movements are grouped based on
not the artificial conceptual tasks, but the similarities in the
signal. Meaning, that two conceptually identical movements
with signals that do not look alike are stored as two different
movements. For example, a sit to stand action performed
on an office chair and a sit to stand action performed on a
comfortable sofa can be stored as two different movement,
and represented with two different sets of n-grams.

To identify an unknown movement, the system can gen-
erate motion transcripts based on the sensor data and use
them as input to the mining approach. The approach ex-
tracts all of the n-grams found to be important for any of the
movements of interest from the corresponding transcripts
and applies a Patricia tree [17], where the edges correspond
to individual n-grams and leafs correspond to movement
classes, based classifier to detect the movement.

4.2 Action Recognition Training

While the repository can contain a great deal of hetero-
geneous data, it is still unclear how that data can be used
in a particular system deployment. Specifically, it is unclear
how the repository data can be used for training an activ-
ity recognition system for a specific subject. It was mention
in Section 1 that a system that requires manual training is
not a practical or scalable solution. To address it, we define
an automated training process based on a limited training
sample.

The flow of the training process is demonstrated in Fig-
ure 2. At the beginning of training, the subject is outfitted
with sensors required for the study, and asked to perform
the target movements a limited number of times. The data
of the trial movements, along with the node locations, is
forwarded to the BSN repository. The repository combines
the knowledge of the node placement with the raw sensor
readings to calculate motion transcripts that represent the



training data. Based on these transcripts, the system can
search the repository for movements, trials, or even subjects
which most resemble the training subject. Once this infor-
mation is discovered, the system can use the information,
found most relevant for the training subject, as the train-
ing data for the activity monitoring. This approach allows
the system to take advantage of the entire data set of the
repository, relevant for the subject, based on only the au-
tomatically collected limit training data. Additionally, this
approach is scalable, because by identifying the set of sub-
jects in the repository closest to the target subject, it is
possible to train the system for the movements that were
not directly observed during training.

Repository Training (n-grams and
decision trees)

Raw Best
Sensor Data Fitting )
Sensor | pata | Generate [Transcriptf Mine Data Find

Sampling Transcripts Repository N-grams

Sensor
Location

Sensor Node Repository Repository Repository

Figure 2: Training Flow for Activity Recognition

Note that the quality of the recognition is based on the
assumption that the repository contains a lot of informa-
tion from different subjects and movements. It follows, that
it is beneficial to extend the size of the training data set.
However, the original training data may become outdated
as the size of the training set increases, because the current
approach is based on a fitting model with respect to the
available data. It is beneficial to incrementally retrain the
system as the amount of data available for training increases.
The details of such a procedure are outside the scope of this

paper.

5. ACTION RECOGNITION EXECUTION

Once the specific subset, relevant to the training subject,
is recognized in the repository, it is possible to use the n-
grams that characterize training data for the activity recog-
nition for the current target subject. This can be achieved
by loading the relevant n-grams onto the node to mine the
incoming data stream. We will discuss the quality of the
activity recognition based on this model in Section 7.4. In
the remainder of this section, we will first discuss the fea-
sibility of implementing the mining algorithm on the node,
and show its performance based on our limited implemen-
tation. We then will consider the power profile of such an
implementation.

5.1 Transcript Generation Node Implementa-
tion

For the purpose of this study, we implemented the tran-
script generation approach on the TelosB [30] sensor nodes
using TinyOS [22]. The raw sensor data is passed through a
simple windowed filter that computes a z-score [29]. During
the execution, features are extracted from the raw sensor
reading. Utilizing the clusters defined in the repository, la-
bels are generated on the motes based on these features. In
particular, we implemented clustering based on GMM on
the sensor nodes. Due to the resource constraints, cluster-

ing algorithms are not suited to run on these sensor nodes
because of the amount of heavy computations they require.
Additionally, while the majority of the PC-based simula-
tions during the development utilize the floating point arith-
metic, BSN devices have no efficient way to perform floating
point computations. Specifically, the TelosB node utilizes a
AMHz TI MSP430 microcontroller based on a simple 16
bit RISC architecture. It lacks hardware multiplication and
division operations, which means that they need to be simu-
lated in the software. It does, however, support a hardware
multiplier peripheral, that efficiently performs 16 bit and 8
bit multiplications. To be able to implement transcript gen-
eration on the sensor nodes, the implementation needs to
be able to simplify the complexity of the algorithm without
a significant loss in accuracy while observing the hardware
constraints of the platform.

In the GMM based clustering, finding the label for a raw
sensor reading amounts to finding the cluster that has the
highest probability density value. It involves computing the
individual probabilities for each of the clusters. In our im-
plementation, the individual probability density values are
computed by finding Mahalanobis distance [27] over the fea-
ture set. To simplify the processing, we moved the probabil-
ity density computations to logarithmic space, which allows
us to convert multiplications into additions which are easier
to compute on the sensor nodes. Second, the floating point
operations were converted to fixed point operations. This
was done by representing the GMM coefficients as a fixed
point numbers via multiplying the original coefficients by a
large constant. The feature vectors from sensor data were
also scaled appropriately to work with these coefficients. We
then utilized the multiplication hardware peripheral avail-
able in the microcontroller to speed up the remaining multi-
plications. All divisions by constant numbers, occurring as
a part of the coefficient calculation, were converted to mul-
tiplication by their reciprocals with appropriate scaling to
maintain precision. Finally, we truncated the lower bits of
the operands to ensure that no saturation of results takes
place, which allowed us to to maintain the accuracy of clus-
tering. Note that even though we have utilized a specialized
hardware peripheral for classification, the log space conver-
sion is still imperative to the calculation since addition and
subtractions still take much fewer instructions than multi-
plications.

5.2 Transcript Generation Performance

In order to evaluate the feasibility and properties of our
solution, we measured the execution time of the different
code blocks of the system. This way we can evaluate how
changing the data mining parameters will affect the running
time. Additionally, we can verify whether the running time
is sufficiently low to allow for a reasonable data collection
frequency. We measured the execution time by toggling one
of the GPIO pins available on the TelosB sensor node. We
then connected an oscilloscope to that pin, and measure the
period of the signal as the task was executed repeatedly. The
results of this measurements are presented in Table 1. The
first and second derivatives are calculated based on a win-
dows of three samples centered about the point. The other
features, such as mean, max, min, etc, are calculated based
on a window of 25 samples, which translates to % sec in our
case. A couple of observations can be made about the re-
sults. First, the feature extraction time depends on the type



of features and can not be predicted without more specific
information. For example, the mean is implicitly extracted
to calculate the other features, therefore two data sets that
differ only by maz and mean significantly differ in the exe-
cution time. The cluster generation takes about 1.1ms per
feature and scales linearly. Finally, if a data collection is pro-
cessed at 50H z, it means that in order to maintain stable
processing the data has to be collected and processed within
20ms. The table shows that even when a larger number of
features is used, the overall time stays below 20ms.

Table 1: Measured Execution Time

Processing Running

Type Details time
Data collection | n/a 4.9
Pre-Processing | n/a 1.3ms
Feature o 98us
extraction ', f”, mean, std 2.3ms
f', f”, min, max, std 3.4ms
f', f”, min, mean, std 3.05ms
f', f”, min, mean, std, rms | 3.75ms
Cluster 7 2.18ms
Generation ', f”, mean, std 4.4ms
', f”, min, max, std 5.56ms
f', f”, min, mean, std 5.56ms

£, f”, min, mean, std, rms 6.7ms

After the measurements, we performed theoretical verifi-
cation of our results to make sure that both software and
hardware performance is consistent. Based on the time of
execution and the microcontroller speed, we calculated the
number of instructions performed by each of the process-
ing blocks. We then disassembled the TinyOS code using
msp430-gce, and verified whether the results matched. For
example, the feature extraction, using the first and second
derivative, was measured to take 98us. On a 4Mhz mi-
crocontroller, it translates into 4MHz x 98us = 392 in-
structions. From the analysis of the disassembled code, its
takes about 400 instructions to complete feature extraction.
Namely, the initialization takes two instructions, the loop of
79 instructions performed for each of 5 sensing axis, and 8
instructions for the bookkeeping at the end. Using this type
of analyses, we verified that the execution time numbers we
measured are close to the theoretical values we expected.
In Section 7.2 we will discuss the quality of recognition our
transcripts, generated on the node can achieve.

5.3 Power Profile of Activity Monitoring

During a data collection, where sensor nodes continuously
forward all of the sensor data to the basestation, wireless
plays a major role in the node’s power consumption. In
fact, the wireless communication consumes an order of mag-
nitude more power than data collection or processing [32].
This is not the case when a continuous action recognition
is considered. This can be easily visualized based on the
amount of data required in both cases. For this setup, we
consider sensor nodes equipped with a tri-axial accelerome-
ter and gyroscope. The previous work has shown that a zig-
bee based low power radios, such as ¢c2420 radio [4], utilize
about 80mW of power for transmission [21]. If we consider
a node that is active for 8 hours, with a duty cycle of the
movements of interest of .5%, meaning that movements of

interest occure .5% of the time. Movements we consider,
such as sit to stand, normally take about .5 — 1 seconds to
perform. In this contest, the .5% duty cyle suggests that we
expect about 150 — 300 occurencies of the movement during
the 8 hour period, which is a reasonable estimation of the
daily activities. With this duty cycle the cost of commu-
nication over the 8 hour period can be estimated as 12.J,
which in average transaltes into .4mW power consumption.
We also assume that the radio is only turned on when it
has data to transmit. However, based on our estimation the
radio will have to be turned on and off only a limited num-
ber of times. This makes the power overhead of turning the
radio on and off orders of magnitude less than the rest of
the communication power estimation [2]. Due to this fact,
we do not include it in the model.

Table 2 demonstrates the expected power consumption for
the MSP430 [1, 30], a 3-axes MEMS accelerometer [31], and
a 3-axes MEMS gyroscope [7] designs. Under the same 8
hour operation requirements, the cost of running the micro-
controller can be estimated as 260.J, and the cost of sensing a
3-axes accelerometer can be estimated as 155J. The cost of
radio communication is under 3% of the cost of sensing and
processing the data, even without considering the cost of the
gyroscope. This suggests that to optimize the power of the
activity monitoring application, a power model based on the
sensing and processing is required. Additionally, from Table
2 it is clear that the power consumption of the individual
sensors is on par with that of the microcontroller. Suggest-
ing that the power model should consider the classification
accuracy and cost of individual sensing axes as opposed to
the entire sensor node operation.

Table 2: Power Consumption of a Microcontroller
and Common BSN Sensors

Device Power Consumption
Microcontroller S5mW
1 Axis Accelerometer ImW
1 Axis Gyroscope S5mW

6. POWER OPTIMIZATION

Based on the training data in the repository, the system
can calculate the effectiveness of each classifier, one for each
of the sensing axes, based on the cross-validation set. Effec-
tively, for each of the sensing axes, the system can compute
the contribution to the classification decision and the en-
ergy cost of making the classification decision. A common
approach of combining classifiers with respect to both their
quality and cost is based on the utility theory [8]. This idea
is widely used in different applications such as Bayesian In-
formation Criterion(BIC) metric[35], game theory [3], and
various economical [14] and behavioral [6] models. The over-
all idea is to represent a complex decision that includes mul-
tiple parameters, such as accuracy and cost, into a unified
function, or utility, that demonstrates how desirable the de-
cision is. For a classification problem with multiple classi-
fiers, it is common [5] to represent the utility of a classifier
as

U(zk|As) = accuracy(zi|Ai) — a X cost(zi|Ai) (1)

where xj is an unknown observation, and A; is one of the



classifiers. This utility function is based on the classifica-
tion accuracy of A; that considers a penalty for the cost
of computing A;. The parameter « is introduced to allow
flexibility for the weight of the cost function. Specifically,
the accuracy(zi|A;) can be defined as the probability of the
correct classification of the trial x; by the classifier A;, and
extracted from the data available in the repository.

accuracy(zy|A;) = P(xk|Ai) (2)

This is a simple case where only one testing sample is
considered. When observing a data stream that potentially
contains multiple equally likely movements, the quality of a
classifier can be defined as the average probability of classi-
fying all of the unknown movements

S, P@AY)
= = 0 3)

where X is the set of all the unknown observation trials,
N is the number of unknown movements the classifier can
observe, and z' is an observation of a trial of movement t.
Additionally, the system may chose to use more than one
classifier at a time. To address this, we can rewrite (3) as

accuracy(X|A;)

_ Y, P@EtA - Ar)
N

where m corresponds to the number of classifiers.

For the purposes of this formulation, we define the cost
function as the power cost of sampling the data and process-
ing all classifiers to be used on that node.

accuracy(X|A1, ...Ap)

(4)

cost, = P;Ense + PTZZTocess (5)

where cost,, corresponds to the power consumption at Node,,,
Pe*¢ and PPT°°“** correspond to the power cost of sens-
ing and processing at Node,, respectively. Both the sensing
and processing power levels are defined in Table 2, so the
equation (5) can be expanded to

costn = Pp(acc) x a + Pn(gyro) * g + Py (proc) xp  (6)
where p = 1 if (a+g) > 0
p=0if (a+g) =0

where P,(acc) is the power cost of sensing one axis of ac-
celerometer, a is the number of axes of accelerometer active,
P, (gyro) is the power cost of sensing one axis of gyroscope,
g is the number of gyroscope axes active, and P, (proc) is
the power cost of having the microcontroller on. Note that
there is no reason to keep the microcontroller on if no axes
are sampling data. This behavior is defined with the help of
variable p. The overall cost of the system can be defined as
the summation of the cost of individual nodes

cost(xr|As) = Z cost; (7)
j=1

Based on (3) - (7) the utility function can be defined as

Since the larger utility corresponds to better quality of
detection at a better cost, the objective function for a set of
movements X can be defined as

maximize U(X|Ao, ..., Ax) 9)

7. EXPERIMENTAL RESULTS

In this section we demonstrate different aspects of the
solution. First, we verify the quality of the transcript gen-
eration on the sensor nodes. We then verify the scalability
of the model by verifying the quality of recognition when
the system is trained and tested on different subjects, as
defined in our training model. Finally, we demonstrate the
energy savings our model can generate when it tries to select
sensing nodes, and sensing axes for recognition.

Table 3: Pilot Application Movements

No. Description

1 Stand to Sit

2 Sit to Stand

3 Stand to Sit to Stand

4 Sit to Lie

5 Lie to Sit

6 Sit to Lie to Sit

7 Bend and Grasp

8 Turn Counter Clockwise 360 degrees

9 Look Back Clockwise

10 Move Forward (one step)

11 Move Backward (one step)

12 Move Left(one step)

13 Grasp Object with One Hand,
Turn 90 Deg and Release

14 Grasp Object with Two Hands,
Turn 90 Deg and Release

15 Jumping

7.1 Experimental Setup

For the experiment we collected data of fifteen movements
from three subjects. The details of the experimental move-
ments can be found in Table 3. Every subject repeated each
movement ten times to increase the size of the data set. Each
subject was equipped with nine sensor nodes positioned as
demonstrated in Figure 3.

7.2  Quality of Local Transcripts

To verify the quality of the local transcript generation we
compared transcripts generated on a sensing node to the
transcripts generated on a computer. During the experi-
ment, each node collected data and generated local tran-
scripts as demonstrated in Figure 4. The figure corresponds
to a sequence of movements execution. While the specific
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Figure 4: Sample of the Node Generated Transcripts

trials of the movements are not identical, the figure demon-
strates that the structure of the generated transcripts is
maintained. Furthermore, it shows that the differences in
the trial length are consistent between the nodes in the sys-
tem, meaning that the inconsistencies are generated by the
movement variations and not node specific error. Nodes
communicated the local transcripts to the server along with
the raw sensor data. On the server side, the raw sensor data
was converted to the transcripts. Finally, we compared the
two sets of transcripts. Since both transcripts represent the
same data and have the same length, the comparison is done
by verifying if the points with the same index in two tran-
scripts are the same. If the points are not the same, they
are reported as mismatched.

To verify the local transcript generation quality, we per-
formed an experiment with two sensor nodes. One node
was located on the waist, and the other was located on the
right thigh. The experiment consisted of three movements,

namely: sit to stand, sit to lie, and turn in bed. Table 4
show the mismatch between node and computer generated
transcripts for these movements when performed by two sub-
jects. The first number in the cell indicates the number of
mismatched points, while the second number indicates the
total length of the transcript. In the worst case, the tran-
script generated on the nodes differ by 2% of the overall
transcript length. This indicates that transcript generation
can be performed on the sensing nodes without introducing
a segnificant amoutn of error to the evaluation of the model
performed in MATLAB.

Table 4: Transcript Mismatch

Movement | Waist Node | Right Thigh Node
Subject 1
Sit to Stand | 2/3586 84/35%6
Sit to Lie 9/3196 77/3196
Turn in Bed 2/2194 12/2194
Subject 2
Sit to Stand | 1/2472 34/2472
Sit to Lie 2/1998 43/1998
Turn in Bed 1/1718 40/1718

7.3 System Scalability

The repository based system scalability will be improved
over training the system for every individual subject. This
setup requires only a limited movement set to be obtained
from the individual subjects in order to locate the most fit-
ting training for all of the movements of interest from the
repository. This approach, however, has an assumption that
such training would work without a considerable accuracy
decrease. To test this hypothesis we trained the system on
the data of one subject and tested on a completely different
subject. It must be noted that in a large repository it is
more likely to find observations, or even a subject, that well
resemble the subject that the system is being deployed for.

When we trained the system with observations of 15 move-
ments performed by the first subject and tested on the third
subject, we got an average accuracy of 75%. When the sys-
tem was trained on the data of the second subject and tested
on the third subject, we got an average accuracy of 87%.
This indicates that the step of selecting the most fitting
training data is essential, as some subjects have a closer cor-
relation in movement performance than the others. Addi-
tionally, while 87% accuracy is not perfect, we expect that in
a repository with more subjects the accuracy of training on
a different subjects will be improved. Finally, we considered
a case where the system was trained on both first and second
subject and tested on the third subject. This case produced
average accuracy of 92%. Which suggests that it may not
be practical to search for a subject in the repository that
the system can be trained on. Instead, the system can be
trained on a mixture of different subject data with superior
results. However, the specific details of the system training
are out of the scope of this paper and will be investigated in
the future work.

7.4 Optimization for Power

We first consider the case where the individual sensing
axes can not be disabled and the system can only select the
best set of nodes. As a result, each node has a constant



cost of sensing and processing, which equals to 18mW. For
this experiment, the system is trained on half of the trials
of each subjects, and is tested on the second half of the
trials. Table 5 shows average precision and power cost of
the computation. It demonstrates that the most effective
individual node is the waist node. It also shows that the left
wrist, ankle and thigh nodes can be used to further refine
the precision.

Table 5: Node Selection

Sensing Node Average Precision | Power Cost
Waist 0.9569 18mW
Waist, Left Wrist 0.9843 36mW
Waist, Left Ankle 0.992 36mW
Waist, Left Thigh 0.9961 36mW
Waist, Left Wrist, 1 54mW
Left Ankle

Waist, Left Wrist, 1 54mW
Left Thigh

The actual selection of the nodes is highly dependent on
the parameter « in the formulation. In other words, it is
essential to define the importance of the power conservations
in the context of a given application. If the selected « is
greater than 0.7 than only the waist node will be selected.
If « is between 0.04 and 0.7 the set of waist and left thigh
will be selected. Finally, if « is below 0.04 the system will
select the waist, left wrist, and left ankle nodes. Table 6
shows the effective power saving as compared to using all of
the nine nodes in the repository with respect to the required
error tolerance.

Table 6: Node Selection Efficiency

«a Power Saving | Error Tolerance
[0.7,00) 89% 4.4%
[0.04,.7) 78% 0.4%

(—00,.04) 67% ~ 0%

This result shows that at least node selection is required
if a system is trained on the data from the repository. Since
the training data is not controlled by the person training
the system, it may contain redundant sensor nodes. Dif-
ferent applications require different node placement, have
different tasks, and require different levels of redundancy.
Additionally, this result demonstrated that only one sensor
node can be used to recognize a limited set of movements
reasonably well, while some nodes may have no useful infor-
mation about the movements of interest and can introduce
confusion to the final decision. The same might be true
about the individual sensing axes on a given mote.

We next apply our optimization to the data with an as-
sumption that individual sensing axes can be disabled. This
means that we are looking for a subset of sensing nodes and
a subset of sensing axes at each node to be used as training
data. Intuitively, the system should select one node with a
subset of sensing axes because enabling an additional node
with one sensing axis enabled is relatively costly.

Once again the selection of « is very important. If « is
greater than 2 then the waist node with one axis of the
accelerometer will be selected. If the a is between 0.1 and
2 the system will select the left wrist node with two sensing
axes enabled. Finally, if « is less than 0.1 the system would

Table 7: Node and axes Selection

Sensing Average | Power

Node axes Precision | Cost
Waist Acey 0.9647 5mW
Waist Accy, Gyrog 0.9649 10mW
Left Wrist | Acc., Gyros 0.9961 10mW
Left Wrist | Accy, Gyrog, 1 15mW

Gyroy

suggest to enable an additional sensing axes at the left wrist
node. Table 8 demonstrates the power saving the system can
observe if individual sensing axis are selected as opposed to
utilizing all of the nodes and all of the sensing axes.

Table 8: Node and axes Selection Efficiency

«@ Power Saving | Error Tolerance
[2,00) 97% 3.6%
[0.1,2) 94% ~ 1%%

(—00,.1) 91% ~ 0%

Table 7 demonstrates that not all of the sensing axes con-
tribute to the classification decision equally. In fact, select-
ing only a small subset of sensing axes can improve the over-
all system accuracy. This subset is not necessarily the same
between different experiments, meaning that the hardware
does not need to change and the selection can be made in the
software. In addition to the accuracy boost, the system can
reduce the power consumption almost by two orders of mag-
nitude when the training data contains possibly redundant
nodes.

8. FUTURE WORK

The major weakness of our approach is the training step.
During training we assume that the data we are looking for
is present in the repository, and that we know how to locate
it. The second assumption can create significant issues in
the context of sensing node misplacement. Our approach
can tolerate some misplacement, as during our experiment
we did not attempt to reproduce node placement precisely
between subjects. However, we have no direct measure of
misplacement and its relationship to the classification accu-
racy. In our future work we intend to address this problem
by first quantifying the displacement, and then defining a
transformation model to create a relationship for metadata
of different node placements.

9. CONCLUSION

In this paper, we proposed a novel automated action recog-
nition approach based on the idea of a BSN repository. We
showed that such an approach is scalable and can poten-
tially handle a large repository of heterogeneous data. Based
on our limited implementation we showed that it is feasible
to implement our approach on the resource limited sensor
nodes without a significant loss of accuracy. Finally, we
defined an approach to intelligently select only a subset of
nodes and sensing axes based on a utility function to reduce
the energy cost of the system, and thus improve the system
lifetime. We evaluated the performance of our approach
based on the limited repository we created.
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