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Abstract—Body Sensor Networks (BSN) provide a way to
gather continuous observations of human movements, which has
a potential of improving medical care quality, and enabling
continuous remote patient monitoring. Despite their potential,
BSNs face serious werability constraints. Energy optimization is
essential since werability is most affected by the battery size of
the device. In this paper, we introduce a burst communication
technique that takes advantage of data buffering to achieve
lower energy-per-bit cost with a possibly higher packet size or
more energy efficient communication scheme suited for higher
data rates. Our energy model combines the knowledge of the
signal processing required to complete a task with the deadline
associated with that task to define the optimal burst transmission
schedule. Based on the selected energy model, we formulate
an optimization function that minimizes the overall energy
cost of communication for a given signal processing task. We
demonstrate the effectiveness of our approach in sway monitoring
BSN applications with a short, medium, and long deadlines. We
further demonstrate the relationship between the task deadline
extension and the energy cost of the system. Our results show that
the proposed approach can improve the cost of communication
85 − 95% compared to streaming data to the basestation as it
becomes available.

I. INTRODUCTION

Wearable computers with sensors, also called Body Sen-
sor Networks (BSNs), have received tremendous attention
in recent years. These systems enable various applications
from medical monitoring [1] to wellness [2] and sports train-
ing [3]. While very portable and inexpensive, BSN systems
demonstrate effective results similar to classical systems like
ambulatory equipment, motion capture, and mechanical sports
training devices. Despite their considerable potential to impact
our everyday’s life, BSNs still face a number of challenges
that need to be addressed before a wide deployment. The
form factor is one of the main consideration for a successful
BSN deployment. While subjects may be able to tolerate bulky
uncomfortable devices during short experiments, BSN nodes
need to be as seamless as possible for long term use, since
smaller BSN nodes enhance the werability and comfort.

A typical BSN node contains sensors, processing, wireless,
battery and often storage units. Due to a relatively slow

advancement of the battery technology compared to the im-
provement of the processing and memory units [4], the form
factor of the system is often dominated by the size of the
battery. It is perceived that wireless communication often uses
one order of magnitude more energy than the processors [5],
emphasizing the importance of the power optimization in that
area. Several efforts have been made to reduce the power
consumption by optimizing RF circuits [6], [7], activating
and deactivating communication blocks [8] and reducing the
size of communicated data by means of signal processing
[9]. Transmitting data in bursts is an efficient power saving
approach in wireless sensor networks. It can reduce complexity
of communication, lower energy consumption, and increase
system throughput [10]. Intuitively, data are accumulated in
buffers and transmitted in bursts at a higher data rate. Different
radios are optimized for different data rates. Since we intend
to locally manipulate the communication data rate, a look at
different communication schemes is required.

Due to a great interest in low power wireless sensor net-
works, there have been several low power communication
circuits and protocols proposed, where each has been opti-
mized for specific applications and bit rates [11], [12]. ZigBee
[13], Bluetooth [14], WiFi [15], Ultra Wide Band (UWB) [16]
are among the most widely used communication standards.
Among the aforementioned, ZigBee seems to be the least
power consuming wireless technology; however, it is designed
for a nominal bit rate of 250 Kbps and less. If the power budget
per bit is considered, ZigBee does not necessarily provide the
most effective method of communication. Several diagrams in
Figure 1 support this claim. As shown in Figures 1(a) and
1(b), the amount of energy per bit (EPB) decreases as data
rate grows. Figures 1(c) and 1(d) show the total energy as a
function of data rate for ZigBee and Bluetooth technologies.
For visualization, the graphs in Figures 1(c) and 1(d) are
shown only for data rates 0-100 bps and 105-106 bps for
ZigBee and Bluetooth, respectively. State of the art devices
often provide multiple wireless communication schemes and
protocols [17], [18] to improve the versatility of the overall



system. The idea of the burst communication can be combined
with utilization of the multiple radios at the node side to further
improve the energy efficiency.

From the application perspective, body worn and im-
plantable sensors may be required to process the sensor data
within a predetermined deadline. The deadline can range from
a few milliseconds, in case of a cardiac arrest, to hours, and
possibly days for applications that require reporting non-urgent
events to the caregivers. For example, medical staff may be
interested in monitoring the number of sit to stands throughout
the day, and the final report is to be collected at the end of the
day or even the week. We propose to exploit this property
to further reduce the power consumption of the wireless
communication block for body-worn and implantable sensors.
Instead of transmitting outgoing data streams immediately
upon availability, we propose to store them locally and choose
the most power optimized radio that does not violate the timing
constraints of the application. The local storage can be realized
by means of buffers. In particular, we illustrate a methodology
for communication power optimization that minimizes energy
per bit.

II. RELATED WORKS

BSNs generally do not require a data flow to warrant usage
of a high throughput protocol. In order to justify effective
usage of a high data throughput protocol, data has be accu-
mulated at individual nodes, which means that the problem of
finding the most power optimized set of radios for a specific
application can be mapped into finding the best set of delays
at individual nodes. This problem also can be interpreted
as a problem of the optimized communication scheduling.
While the problem of scheduling in a distributed hard real-
time systems is known to be NP-hard [21], the problem we
are considering introduces an additional level of complexity
with the data flow dependencies. In the literature, there are
two types of approaches to such a problem. First, an off-line
scheduling solution can be considered [22]. Such protocols
assume either full or almost full knowledge of the system
execution, which allows to create an optimized schedule based
on the available prediction. Since the problem is NP-hard, even
off-line scheduling algorithms are based on heuristic solutions.
The second type of approach, on-line scheduling techniques,
are known to perform very poorly for the distributed hard
real-time systems. In this paper we consider signal processing
flow that is well defined. As a result, we can fully predict
system behavior and, therefore, utilize and off-line scheduling
approach.

We consider a scheduling problem applied to signal process-
ing with data dependencies. There is a variety of heuristics that
can solve this problem with a different degrees of precision
and a different cost. In the field of dynamic scheduling of work
flow application on the grid, well defined cycle estimation and
task migration techniques can be used to come up with good
scheduling heuristics for a Directed Acyclic Graph (DAG).
Effective scheduling in VLIW machines can be achieved with
the help of intelligent software pipelining that takes advantage

of the software dependencies [23]. A similar idea is applied
in effective instruction scheduling for pipelining [24], where
a DAG based heuristics are used to reduce the number of
pipeline interlocks. The uniqueness of the problem, we are
considering, lies in the fact that it needs to schedule data
delays; scheduling a delay does not only affect the specific
processing block, but also every processing block after it.
An effective scheduling technique that accounts for this delay
prorogation would allow for efficient burst communication.

The idea of data aggregation for energy savings has been
used extensively in different contexts. When sensor nodes are
forwarding data to a central node or a set of nodes, packets of
multiple flows can be combined to create larger joint packets
[25], [26]. This idea is known as data centric routing [27],
and has proven very useful in the setups similar to BSNs that
use a star topology for communication. A similar idea can be
applied for query processing. Instead of aggregating the data
from the sensor nodes, it is possible to aggregate requests for
such data, which would force those queries to be processed
in large chunk [28]. Our approach differs from all of the
above because we aim to delay particular data flows, instead of
combining multiple data flows to achieve energy savings. This
idea has been explored in the past; however, authors of [29] did
not consider application deadlines. We consider that a given
network flow supports specific applications with deadlines.

III. PRELIMINARIES

Before defining the problem formulation, we first introduce
some preliminary concepts including the application consid-
ered in this paper, signal processing and the energy models
relevant to the formulation.

A. Energy Cost Model

During the execution, nodes in a BSN spend energy on
collecting data from the sensors, storing the incoming data, and
forwarding it to the base station. The energy cost of the sensor
operation depends on the particular hardware, and the demands
of the application. We assume that for our applications the cost
of processing is constant. There is a variety of memory types
that offer different read/write costs for different capacities.
However, our energy model does not consider the energy cost
of memory operation due to the memories like FeRAM pro-
viding non-volatile read and write costs orders of magnitude
below the cost of communication [32]. Additionally, there
is a variety of low power communication protocols that are
designed to provide different system throughput at different
energy-per-bit cost. We next consider a set of wireless modules
and trade-offs they can offer in a BSN application.

1) Communication Energy Cost: In this work, we consider
four types of wireless protocols, namely ZigBee [13], Blue-
tooth [14], WiFi [15], and Ultra Wide Band (UWB) [16]. The
considered radio protocols operate on 10 - 100 meter radius,
which makes them perfectly suitable for BSN applications
[30]. While these protocols have some additional differences,
such as basic cell organization, encryption and authentication
capability, and coexisting mechanism, in this paper we focus



(a) EPB (ZigBee) (b) EPB (Bluetooth) (c) Energy (ZigBee) (d) Energy (Bluetooth)

Fig. 1. Energy per bit (EPB) and total energy cost versus data rate for ZigBee and Bluetooth (based on energy models in [19] and [20])

TABLE I
TYPICAL PARAMETERS FOR WIRELESS PROTOCOLS (BASED ON FINDINGS IN [30], [31])

Bluetooth ZigBee UWB WiFi
Max. Packet Size (bytes) 339 102 2044 1600(2312)
Max. Data Rate (Mbps) .72 .25 110 54

Energy per 1Kb (mJ) 0.034 0.296 0.007 0.013

TABLE II
LOW POWER OPERATION CHARACTERISTICS [30], [31]

Bluetooth ZigBee UWB WiFi
TX Current 57mA 24.7mA ∼230mA 219mA
RX Current 47mA 27mA ∼230mA 215mA

Sleep Current 15µA 400nA .5mA 10mA
Vdd 3.3V 3V 3.3V 3.3V

on the differences in the bit rate and energy cost of the
communication. Currently, ZigBee and Bluetooth are the most
popular BSN wireless protocols. This is mostly due to the
application demand to forward data as soon as it becomes
available. This approach is best realized with the protocols
that use lower data transmission rates. In order to operate
at a higher rate, nodes need to accumulate data before the
transmission. Table I shows that typically both WiFi and UWB
have packet sizes almost one order of magnitude larger than
ZigBee and Bluetooth. At the same time, if a sufficiently large
packet can be accumulated, it is clear from Table I that using
WiFi or UWB can constitute significant energy savings.

TABLE III
POWER-UP CHARACTERISTICS [33], [20], [34], [35]

Bluetooth ZigBee UWB WiFi
Startup Current 5.5mA 0.4µA 5.3mA 37.9µA

Startup Vdd 2V 1.8V 1.5V 3.3V
Startup Time 120µs 970µs 3.5ns 2s

When considering a system that is equipped with multiple
radios for communication, it is important to discuss the
behavior of each radio when it is not being used and a possible
energy cost associated with it. When a radio is not used,
there are two possible strategies to reduce energy consumption.
First, the radio can enter a low power mode, which greatly
decreases the operation current of the device and therefor

the energy expenditure. Table II includes reference values for
low power operation of the radios considered in this paper.
While the low power mode energy is significantly lower than
the operational energy expenditure, it may not be a good
solution in a system with infrequent use of the radio. Table III
displays the cost of the radio manipulation. This table clearly
demonstrate that over time while low power operation seems
to be more effective, the energy cost of the low power mode
exceeds the cost of turning the radio off. While turning the
radio off is relatively costly, it is approximately equal to idle
mode operation for 25ms. It suggests that with a short time
between transmissions it is beneficial to maintain low power
mode, while for the longer time between transmissions turning
the radio off is the better choice.

B. Pilot Applications

BSNs can be employed in a variety of monitoring tasks.
These tasks have different resource demands, priorities, and
deadlines. In this paper we consider a few variations of the
sway analyses application. We first consider the fall detection
application. In this application inertial sensors can be used
to detect the amount of postural sway to predict likelihood
of falls [36]. When a fall becomes likely, the postural sway
of the upper body needs to be quantified. Furthermore, this
information has to be relayed to the subject as soon as possible,
which makes it an application with a very high priority and
short deadline. In case of fall prevention, the application may
need to produce a result in the matter of 20ms. While in the
case of the fall detection, a deadline of a 2−3s is acceptable.
In both cases, the system needs to communicate the raw data
of the incident. Second, we consider an application that can
improve the quality of the fall detection. It has been suggested
that the amount of sway to cause a fall is not static and varies
depending on the level of activity in a person’s lifestyle [37].
This suggests that, that to avoid errors in the fall prediction
application, the system needs to constantly monitor the amount



of activity in patient’s life. As a result, this application may
also have a deadline of 30min to 1hour. This application does
not require the sensor nodes to forward all of the observed
raw data to the base station. Instead, the basestation can
maintain an average data set that represents the amount of
activity over time. This application can be employed in a long
term patient monitoring. It can identify time intervals where
subject’s sensor reading significantly differ from the long time
averages, and notify medical staff of the abnormalities.

IV. PROBLEM STATEMENT

BSN applications can be defined with a DAG that describes
the collaborative signal processing of the nodes in the network,
and a deadline that defines the time to complete the processing
associated with the application. The simplest communication
method assumes data to be processed and output forwarded
to other nodes as soon as they are received. Energy efficiency
of this approach can be improved by utilizing more effective
radios for communication. Figure 1 shows that higher data
rate protocols have a lower energy-per-bit cost. To achieve
energy efficiency data can be communicated and sent out in
bursts at different nodes. To accumulate enough data for the
burst communication, delays can be introduced at all of the
nodes in the communication model. Therefore, the problem
of optimizing communication energy for a given application
becomes equivalent to identifying the best set of delays and
the respective set of communication protocols at individual
nodes in the DAG without violating the timing constraints of
the application.

A. Problem Motivation

Each application A in the system is defined with a depen-
dency graph G = (V,E), a set of sensor nodes V , a set of
communication dependencies E = {rij} between the nodes
in V , a set of source nodes Vsource, a set of destination nodes
Vdest, a set of deadlines Td associated with the destination
nodes Vdest. To simplify the notation, we introduce a single
source node VS with an infinite capacity links to nodes in
Vsource, and a single destination node VD with outgoing links
from the nodes Vdest terminating at it. Define max(Td) to be
the maximum amount of time that data can be delayed between
VS to VD. To account for the delays at individual nodes, we
define di to be the cumulative delay at Vi, meaning that any
data byte can be transmitted by Vi no sooner than di seconds
after leaving VS . To accommodate all of the data accumulated
at Vi we define a buffer bi at each node Vi. The size of bi can
be calculated as

bi =
∑
j

di × rij , ∀ rij ∈ E (1)

rij is defined as the link capacity, governed by the application,
di is defined as the lower bound of the delay because it is
possible that at time di the data may not yet be available at
Vi. If data arrives at Vi later than di seconds after leaving
VS , it is transmitted by Vi immediately. However, regardless
of whether the data is slowly accumulated at Vi or is received

in one transmission, bi represents the new outgoing link from
Vi. The cost of transmitting the buffer data is defined as

ei = f(bi) (2)

where f(x) is the cost of sending x units of data. The detailed
definition of f(x) will be provided in Section IV-C.

In order to satisfy the timing requirements, the system needs
to ensure that the cumulative delay at VD does not exceed the
deadline associated with the packets to be delivered. In our
optimization delays are assigned independent of each other.
This means that the individually computed delay at VD can
be defined by either dD or by any other di that precedes dD
on the data path from VS and exceeds it. It is true, since the
communication takes place when the buffer, defined with the
help of the value of the delay, is full. If Vj has a smaller
delay, and therefore smaller buffer than Vi, its buffers will be
flooded upon receiving a communication from Vi, which will
cause immediate data transmission from Vj . In this example,
the delay of Vj does not contribute to the overall delay of the
data in the system. Therefore, the deadline constraint can be
defined as

max(di) ≤ Td, ∀ Vi ∈ V (3)

The overall objective of the optimization is to find the best
set of delays that allow minimization of the energy expenditure
of an application A via utilizing more efficient communication
protocols at the nodes in the network without violating the
timing constraints.

minimize
∑

ei (4)

subject to: max(di) ≤ Td, ∀ Vi ∈ V

B. Problem Complexity

Our formulation is similar to a knapsack problem, since it
attempts to pack delays at different nodes into a deadline of
the application. However, there is a major difference between
the two problems, in the traditional knapsack problem the size
and the benefit/cost of items is constant and is independent of
each other. That is not the case in our problem, since the delay
that propagates through the path from VS to VD also changes
benefit/cost values of the following node’s delays. This implies
that our system needs to consider an exponential number of
choices for the delay values. If the considered problem can
be solved easily, a similar solution can be applied to the
knapsack problem, which is known to be NP-complete [38].
In this paper we solve the problem using enumeration of the
possible solutions using an integer linear programming (ILP)
solution in order to demonstrate usefulness of this type of the
optimization in BSNs. It is a reasonable approach since the
number of solutions to consider depends on the length of the
path from the source nodes to the destination nodes, which in
BSN applications is typically is 2 or 3 with less than 10 nodes
in the system.



C. Problem Formulation

We first define the energy cost of sending data using each
one of the four wireless protocols, assuming that each protocol
sends data using the maximum packet size. We use the packet
size of 1600 for WiFi in order to make it competitive with
UWB. costj corresponds to the energy-per-bit values defined
in Table I for each of the four protocols. The energy cost of
sending x units of data at Vi can then be defined as

ei(x) = costj × x× cij (5)

where cij takes a value of either zero or one, and selects
whether the specific protocol is used for communication. The
overall linear objective function can be defined as

minimize
∑
i

(
costj ×

∑
k

r′ik × cij

)
, ∀rik ∈ E (6)

where r′ik corresponds to the modified data flow after data has
been delayed at Vi in terms of bits per second.

First, we consider a situation where nodes accumulate
enough data to send one maximum size packet using each
radio. As a result the delay di at each node Vi can be defined
as

di =
pj∑
k rki

× cij , ∀rki ∈ E (7)

where pj is the maximum packet size value defines for each
protocol in Table I.

Based on the discussion in Section IV-A, the system needs
to identify the largest delay in the system and guarantee
that it does not exceed the deadline. This can be done with
introduction of the following constraint

max di ≤ Td, ∀i ∈ V (8)

but since this construct can be expressed in this form in our
ILP formulation, we replace it with (9) since they are logically
identical.

di ≤ Td, ∀i ∈ V (9)

This definition of di generates a solution, where each
node accumulates data until the size of the suitable packet
for each radio, as shown in Table 1, is reached. We can
chose to send the packet immediately and wait until the next
packet is generated. During the waiting time, the node can be
switched into the low power mode. The other alternative is to
accumulate data for more than one such packet, send multiple
packets in bulk, and turn the radio off until the next set of
packets becomes available. Hence, we introduce a coefficient
l in our formulation, that defines the number of packets to be
accumulated, to group multiple packets into Pjl.

Pjl = l × pj (10)

Taking (6), (7), (8), and (10) into account, the overall
solution can be defined as

min
∑
i

(
costi ×

∑
k

rij × cij

)
, ∀rik ∈ E, ∀l (11)

subject to: cij ∈ {0, 1}
4∑

j=0

cij = 1, ∀i ∈ V

Pjl∑
k rki

× cij ≤ Td, ∀rki ∈ E

D. Optimality Discussion

In reality, there is a number of delay set solutions that
are not practical. This observation comes from the fact that
delaying data at node Vi causes that node’s output to be
modified, while the following nodes estimate their delays
based on the original output of Vi. The new output r′ij can be
defined in terms of the original output, and the delay applied
of the node.

r′ij = rij + di × rij (12)

Once the optimization decides to introduce a delay di to Vi,
its output is modified to r′ij every di seconds. However, Vj still
estimates to receive rij every second and calculates dj based
on this estimation. Due to the propagation error not all of the
data may be available at Vj at time dj . This idea is better
described in the example of Figure 2. Figure 2 shows how for
every 10 points of input V2 produces 5 units of output. Figure
2.a shows a sample signal processing flow with no data delays.
This strategy is inefficient and we may chose to delay packets
to achieve a better energy per bit characteristic. This idea is
further demonstrated in Figure 2.b and Figure 2.c. Figure 2.b
has an example where V1 expects to produce 20 units of data
every 2 seconds, and V2 expects to produce 20 units of data
every 4 seconds. From Figure 4 it is clear that no problem
arises since d2 is a multiple of d1, and V2 has enough input
to generate its output at multiple of d2. This is not the case in
the example of Figure 2.c. In the figure, V1 produces 30 units
of data every 3s, while V2 expects to produce 20 units of data
based on the 40 units of input every 4s. From Figure 5 it is
clear that at time 4, V2 has only 30 units of input. Which is not
enough to produce an output at V2. At time 6, when another set
of inputs arrives from V1, V2 has enough data to produce the
first set of outputs. The figure also shows that incorrectness of
the estimation is local, and at time 12 V2 produces 3 outputs
as expected. In the next section we discuss the estimation of
the delay inaccuracy in the worst case scenario.

E. Error of Delay Estimation

First, we identify the worst case error that can be introduced
into the system between two nodes. An example, where the
error is equal to the maximum of the two delays is trivial.
Consider V1 with a delay of k, and V2 with a delay of 1.
V2 does not receive any input until time k and immediately
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Fig. 3. Data flow in Figure 2.a

produces k outputs, which means that each output is on
average delayed by k time units, which is the largest of the
two delays. A stronger argument can be made

Lemma 1: In a graph with two nodes, the error of the delay
estimation can not exceed the largest of the two delays.

Proof: Consider a graph with nodes V1 and V2, and delays
d1 and d2 assigned to the respective nodes. Assume that the
expected inaccuracy of the delay exceeds the max(d1, d2).
If the average value exceeds the max(d1, d2), it means that
during the algorithm execution data is delayed at one of the
nodes for longer than the max(d1, d2), which is impossible.
Therefore, by contradiction, in a graph with two nodes, the
inaccuracy of the delay estimation can not exceed the largest
of the two delays.

Next, we consider a case with more than two nodes.
Theorem 1: In a graph with a sequence of k + 1 nodes,

the error of the delay estimation can not exceed k times the
largest of the k + 1 delays or k ×max(1..k + 1).

Proof: For the base case consider (1). Assume that for
k nodes, the inaccuracy of the delay is (k − 1)×max(1..k).
Without a loss in generality, assume that if one more node is
added to the sequence, the new node has the highest delay.
Based on (1) the delay between kth and (k + 1)th item can
not exceed 1 × max(k, k + 1). Clearly, max(1..k + 1) =
max(max(1..k),max(k, k + 1)), which means that the total
inaccuracy is defined as (k − 1) × max(1..k + 1)+1 ×
max(k, k + 1) = k ×max(1..k + 1).

The worst case of the error in delay estimation that can be
accumulated by our ILP solution might seem a major concern,
however, it does not carry significant affect on the BSN
applications we considered. First, BSN application normally
do not involve many nodes, which limits the amount of error
of the system. Movement monitoring and classification can be
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achieved with 1 to 4 nodes without a significant sacrifice of
the classification quality.

V. EXPERIMENTAL RESULT

To demonstrate the effectiveness of our approach, we apply
simulations of our optimization to the DAGs corresponding to
the applications defined in Section III-B. For this experiment,
we assume hardware that can simultaneously support Zigbee,
Bluetooth, WiFi, and UWB radios and switch between them.
We also consider a system that uses only one of the four
radios at a time, while turning off the others. While a node is
accumulating data, all the radios are turned off. We assume the
hardware to be equipped with a low power wake-up circuitry
that allows radios to know when they need to power up[39]. To
avoid discrimination radios based purely on the startup cost,
we consider a scenario that does not include the startup cost.
We add this scenario because we feel that improvements in
the wireless technology can significantly decrease that cost,
especially in the case of the WiFi networking, which has at
least 3 orders of magnitude inferior startup cost compared
to other radios. We begin with a requirement to accumulate
one packet of the largest size specified for the radio. We then
increase the number of packets that needs to be accumulated
before each radio can be used. Finally, we consider how
changes to the deadline of an application can affect the radio
selection.

First, we consider the fall prevention and detection ap-
plication. For this application, two nodes are placed on the
body. One node is places on upper body, while the second
node is placed on the waist. The application tries to detect or
even predict falls based on the amount of upper body sway
exhibited by the subject. Details of the signal processing for
this application is depicted in Figure 6. The values assigned
to the edges of the figure correspond to the bytes-per-second



TABLE IV
FALL DETECTION APPLICATION OPTIMIZATION WITHOUT RADIO

DEACTIVATION COST

Td N1 N2 N3 Cost
(s) Radio d1(s) Radio d2(s) Radio d3(s) (µJ)
.2 Z 0 Z 0 Z 0 96.8
3 Z 0 B 3 B 3 23.9
7 B 7 B 3 B 3 11.1

12 B 7 W 12 W 12 5.28
15 B 7 U 15 U 15 3.61
32 W 32 U 15 U 15 2.58
41 U 41 U 15 U 15 2.29

TABLE V
FALL DETECTION APPLICATION OPTIMIZATION WITH RADIO

DEACTIVATION COST

Td N1 N2 N3 Cost
(s) Radio d1(s) Radio d2(s) Radio d3(s) (µJ)
.2 Z 0 Z 0 Z 0 981
3 Z 0 B 3 B 3 150
7 B 7 B 3 B 3 11.1

15 B 7 U 15 U 15 3.61
41 U 41 U 15 U 15 2.29

communication requirement. In this application, both waist
and upper body nodes monitor the amount of sway and
balance. When one of the nodes detects a fall, it sends data
about the abnormal readings to the other node. If the second
node confirms the fall classification, it affirms its decision to
the original node. Both nodes start forwarding raw data to the
base station, to avoid information loss, of the last few seconds
before the fall was detected and a few second after the fall to
the base station. The results of the optimization without radio
deactivation cost are displayed in Table IV and result with
the deactivation cost are displayed in Table V, where startup
and shot down costs are define in Table III. In the case where
the radio deactivation cost is not taken into account, if the
deadline for the application completion is strict 20ms, then
the system does not have enough time to accumulate large
enough packets to use anything other than the ZigBee radio.
If the deadline is relaxed to 3s, in case of the fall detection
application, the system can improve the power performance
a little over 4 times, and almost 40 times if the deadline can
be extended to 32 − 41s, in case of the long term average
calculation. Practicality of such deadline extension depends
on the hardness of the deadline, and the overall amount of
data to be sent. Addition of the activation/deactivation cost
introduces a few changes, but the main trend remains. ZigBee
and Bluetooth have a relatively high activation cost, which
makes the benefit of UWB stand out even more. Instead of
a 40 times improvement, UWB increases energy savings to
almost two orders of magnitude. Finally, WiFi has a very
high activation cost, which effectively dominates the overall
communication cost and removes WiFi from consideration.

We also consider the error in delay estimation that can be
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Fig. 6. Dependency Graph for Fall Detection

caused by lack of multiplicity of the delays. Table VI shows
comparison of di, or the calculated value, to the d′i, or the
value that does not cause delay errors, for the fall prevention
and detection application. d′i is calculated by making it a
product of its predecessor’s delay, as long as the new delay
does not violate the deadline. We also introduce a concept of
Punctuality. This concept assumes that if nodes do not have
enough data to communicate they will wait until sufficient data
is available. This effectively is transformed into the smallest
delay divisible by node’s predecessor delays. The node is
not penalized for that action, unless the first suitable delay
exceeds the deadline of the application. Punctuality is defined
as (1− error/deadline)× 100. From the table it is clear that
the real error is no more than 20% of the maximum error
discussed in Secton IV-E.

TABLE VI
FALL DETECTION APPLICATION OPTIMIZATION DELAYS

Td N1 N2 N3 Punctuality
(s) d1 d′1 d2 d′2 d3 d′3 (%)
.2 0 0 0 0 0 0 100
3 0 0 3 3 3 3 100
7 7 7 3 3 3 3 100
12 7 7 12 14 12 14 92
15 7 7 15 21 15 21 80
32 32 32 15 15 15 15 100
41 41 41 15 15 15 15 100

VI. CONCLUSION AND FUTURE WORK

We utilized the fact that higher throughput radios have a
lower energy per bit cost, to define an energy optimization
technique that accumulates data at local nodes and then trans-
mits them in bulk while not violating the timing constraint of
the applications. To materialize this solution, we first identified
the type of signal processing that is used in BSN applications.
We then looked at communication and memory energy cost
associated with these applications. Based on these preliminary
results, we defined a problem and suggested an ILP solution
to it. Since the actual problem is NP hard, we provided the
worst case bound on error for BSN applications. To verify the
validity of the approach, we applied it to three representative



BSN application with different deadline, amount of commu-
nicated data, and priority. We showed that our approach can
improve the energy cost of communication from 20 to a 50
times depending on the particular application parameters. Our
approach however has some limitations. The main problem
lies in the error of the delay estimation, which potentially
has a very bad worst case. We intend to investigate this issue
further, and design an approach capable of maintaining the
energy benefit of the proposed approach, while minimizing
the bound on the delay estimation error.
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