
2364 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

A Unified Theory of Timing Budget Management
Soheil Ghiasi, Member, IEEE, Elaheh Bozorgzadeh, Member, IEEE, Po-Kuan Huang, Student Member, IEEE,

Roozbeh Jafari, Student Member, IEEE, and Majid Sarrafzadeh, Fellow, IEEE

Abstract—This paper presents a theoretical framework that
solves optimally and in polynomial time many open problems in
time budgeting. The approach unifies a large class of existing
time-management paradigms. Examples include time budgeting
for maximizing total weighted delay relaxation, minimizing the
maximum relaxation, and min-skew time budget distribution. The
authors develop a combinatorial framework through which we
prove that many of the time-management problems can be trans-
formed into a min-cost flow problem instance. The methodology is
applied to intellectual-property-based datapath synthesis target-
ing field-programmable gate arrays. The synthesis flow maps the
input operations to parameterized library modules during which
different time budgeting policies have been applied. The tech-
niques always improve the area requirement of the implemented
test benches and consistently outperform a widely used competitor.
The experiments verify that combining fairness and maximization
objectives improves the results further as compared with pure
maximum budgeting. The combined fairness and maximization
objective improves the area by 25.8% and 28.7% in slice and LUT
counts, respectively.

Index Terms—Implementation selection, slack distribution
optimal algorithm, time budgeting.

I. INTRODUCTION

W ITH tremendous growth in the complexity of today’s
systems, traditional design techniques are no longer ca-

pable of handling the design issues. One approach to tackle this
problem is to design the system in a modular and hierarchical
fashion, which in turn calls for methodologies to transform
system-level constraints to component-level constraints. Such
techniques enable the application of divide-and-conquer-based
approaches to address the system issues. This task is generally
referred to as “budget management.”

The problem of budget management has been studied for
several design constraints including timing and area. Particu-
larly, time budgeting is performed to assign timing constraints
to subcomponents of a design. This intuitively translates to
relaxing the timing constraints for as many components as
possible without violating the system’s timing constraints. The
components with relaxed timing constraints can be further
optimized to improve system’s area, power dissipation, or other
design quality metrics.

Manuscript received March 15, 2005; revised August 22, 2005. This paper
was recommended by Associate Editor M. D. F. Wong.

S. Ghiasi and P.-K. Huang are with the Department of Electrical and Com-
puter Engineering, University of California, Davis, CA 95616 USA (e-mail:
soheil.ece.us.davis.edu).

E. Bozorgzadeh is with the Department of Computer Science, University of
California, Irvine, CA 92697 USA.

R. Jafari and M. Sarrafzadeh are with the Department of Computer Science,
University of California, Los Angeles, CA 90095 USA.

Digital Object Identifier 10.1109/TCAD.2006.873901

However, almost all of the previous research efforts employ
suboptimal heuristics for addressing the reasonable formula-
tions of the budgeting problem. In our previous work [12], [13],
we optimally solved the problem of integral budget assignment
through linear programming (LP) relaxation and subsequent
optimal delay budget reassignment. Combinatorial methods,
however, are often preferred to LP-based approaches due to
their numerical instability and slow runtimes.

In this paper, we present a unified theoretical framework
that solves different well-known formulations of the budgeting
problem through efficient combinatorial techniques. We model
the given application as a directed acyclic graph (DAG) and
assign timing budget values to the edges of the DAG. We
show that many other common budgeting models such as node
budgeting or hybrid edge/node budgeting are special cases of
our generic model. Moreover, our method optimally solves
the problems of maximum, weighted, bounded, fair, and min-
skew budgeting. It also provides some guidelines for incre-
mental budget reassignment, which is useful for many practical
applications.

To experiment our theoretical results, we apply our technique
to library mapping during datapath synthesis. We integrate the
time budgeting and module selection into the synthesis flow
for mapping applications onto field-programmable gate array
(FPGA) devices. Efficient time budgeting allows us to choose
the proper modules from the library to obtain further quality
improvements. Our results highlight that along with the total
weighted summation of delay budget, its distribution through-
out the design can significantly impact the design quality.

II. BACKGROUND

A. Application and Delay Model

A given application can be represented as a DAG G =
(V,E), where V is a set of vertices and E is a set of directed
edges. A set of sources (or primary inputs) I ⊂ V is a set of
vertices without incoming edges, and a set of sinks (or primary
outputs) O ⊂ V is a set of vertices without outgoing edges.
Given |I| signals each starting from a source at the time zero,
we consider their propagation toward O along directed edges
and vertices in G.

Traditional formulations assume that each vertex v ∈ V is
associated with a delay d(v), which represents the time it takes
for a signal to pass through v, and that there is no delay on
edges. On the other hand, some formulations assume that each
edge e ∈ E is associated with a delay d(e) and nodes have
zero delay. In this section, we adopt the node delay model for
explaining the definitions and the example. However, this paper

0278-0070/$20.00 © 2006 IEEE



GHIASI et al.: UNIFIED THEORY OF TIMING BUDGET MANAGEMENT 2365

Fig. 1. Example of delay budget assignment for maximum, bounded, and
min−max (with different total budgets bounds) objectives.

deals with the more generic edge delay model. Note that edge
delay model can be utilized to model the node delay model as a
special case.

The latest time of signals to arrive at the output of any vertex
v ∈ V − I is given recursively by a(v) = maxu∈FI(v)(a(u) +
d(v)), where FI(v) is a set of immediate predecessors (or fan-
ins) of v, and a(v) is the arrival time at v. The application
is often required to meet a given timing constraint T , which
means that a(v) ≤ T ∀v ∈ O. Intuitively, the problem of timing
budget assignment is to allocate extra timing delay b(v) to
v ∈ V such that the application timing constraint is met and
some objective function is optimized.

B. Motivating Example

Fig. 1 illustrates an example of different delay budget assign-
ment policies in action. All of the nodes in the example have
unit intrinsic delay. Therefore, the critical path of the graph
has length 4. Delay budgets are assigned to the nodes, and we
assume that the timing constraint for the application is eight
time units. Hence, delay budget assignment should not create
any path that takes longer than eight units of time. For each
cost function (policy), an optimal solution is depicted in the
table. The delay budget assigned to each node is shown in each
cell of the table. Note that the delay budget should be added to
the unit intrinsic delay of the node to calculate its actual latency.

An intuitive budget assignment policy tries to maximize
the total delay budget assigned to the graph, assuming that
larger total budget correlates to larger improvements in the
utility function. The first column of the table shown in Fig. 1
(maximum budgeting) represents the result of applying this cost
function. A useful extension of this policy considers different
weights for the nodes and tries to maximize the total weighted
budget assignment.

The second column of the table (bounded maximum budget-
ing) illustrates the node budgets when the cost function aims to
maximize the total budget while maintaining some lower/upper
bounds on the amount of delay budget assigned to nodes. In this
example, node a has a lower bound of 1, and nodes b and c have
an upper bound of 3 on their delay budgets. Bounds are useful
in many applications due to nonlinear or semidiscrete relation
of the utility function to node delays. Another popular policy is
to distribute the budget values fairly (minimizing the maximum
budget value) while still trying to maximize the total budget.
The last two columns of the table (i.e., min−max) represent
the result of applying this policy to the sample graph, where

25% and 40% deviation from maximum budget is allowed
for each case. Note that minimizing the maximum budget
value leads to trivial solutions if there is no constraint on the
total budget.

III. RELATED WORK

The idea of resource budgeting (both temporal and spatial
budgeting) has been widely used in many different applications.
For example, during design optimization flow, timing budget
is allocated to each node under a given timing constraint and
optimization is applied. If timing constraint is not met, the delay
budget is reallocated [5], [24]. Distribution of delay budget is
applied to determine the wire length under the given timing
constraints. Delay budgeting has also been utilized to slow
down the noncritical functional units or gates through supply or
threshold voltage adjustment. A significant amount of savings
in dynamic or leakage power has been reported using such
techniques [2], [32]. Another example of application is timing-
driven placement and floor planning for which delay budgeting
has been extensively studied by several researchers [1], [4],
[20]. In [20] and [22], placement and net rebudgeting are com-
bined. In [34], a novel technique for net weighting algorithm
is proposed for timing optimization in placement. Recently, in
[7], a new technique for delay budgeting on sequential circuits
is proposed.

Moreover, the idea has been applied to gate and wire sizing
under timing constraints, where budget management is utilized
to find a set of nodes/edges in the netlist graph whose physical
size or power dissipation can be reduced by mapping to smaller
or power-efficient cell instances with larger delays from a target
library [4], [16], [25]. High-level synthesis is another sample
application in which timing slack of the nodes in the data flow
graphs (DFGs) is considered for better optimization in area and
power. Examples are the algorithms and techniques developed
for area minimization in pipelined data path [28] and power
minimization under timing constraint [18], [35]. Similarly, lay-
out compaction has benefited from space budgeting [14], [19],
[36]. The concept of budgeting was first proposed by Liao and
Wong [36] for spatial budgeting in layout compaction. Finally,
software optimization constitutes another application domain
in which timing slack has been utilized to improve power
efficiency or computation quality. Examples include intrapro-
gram dynamic voltage scaling [15] and accuracy improvement
in tracking systems [31] via timing relaxation for noncritical
software blocks.

The techniques employed in previous works are suboptimal
heuristics such as zero slack algorithm (ZSA) [27] and max-
imum independent set algorithm (MISA) [3]. In our previous
work [12], we solved the problem of integral delay budget-
ing through LP relaxation. However, LP-based techniques are
prone to numerical instability and slow runtimes, hence, com-
binatorial methods are preferred. In this paper, we present an
optimal combinatorial method for solving the integral budget-
ing problem [30]. Furthermore, we utilize our method to solve
the budgeting problem under many other objective functions,
including weighted, bounded, and fair budgeting. Moreover,
we present potentials for tackling the incremental budgeting



2366 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

problem. Our method is similar to the approach that Boros et al.
have taken for the problem of balancing the DFGs [10], [11].
However, the time-budgeting problem is fairly different from
the problem at hand. Moreover, to the best of our knowledge,
this technique is quite novel in the electronic design automation
(EDA) community.

IV. PROBLEM STATEMENT

Intuitively, the problem of timing budget management can be
stated in the following way: Given an application with distinct
constituting blocks, what is the maximum tolerable slow down
of individual blocks without violating the timing constraints
of the application? The slowed-down blocks can be further
optimized to improve any of the generic design quality metrics
depending on the application domain.

Although constituting blocks are often modeled as nodes in
a DAG, the problem of delay budgeting for nodes is a special
case of the more general edge budgeting case. This fact will
be discussed in Section VI in more detail. Therefore, we focus
on the edge-budgeting problem. We assume that delay values
and delay budgets are assigned to each edge of the DAG, and
nodes do not impose any delay on application paths. Edge
budgeting has direct application in many areas such as routing
and network optimization. Moreover, its special cases can solve
the node budgeting problem that applies to many other areas
such as application and architecture synthesis.

Given an application represented by a DAG G(V,E), there
is a nonnegative delay value dij and a nonnegative delay budget
variable bij associated to each edge eij ∈ E. There is a given
value T that specifies the timing constraint of the application.
Timing constraint implies that all paths from any primary
input to any primary output must take no longer than T . The
delay of each path is calculated according to the following
definition.

Definition 1: The delay of a path p from node s to node t is
equal to

∑
eij∈p(dij + bij). We may use the terms delay of the

path, cost of the path, and the distance between nodes s and t
interchangeably.

For simplicity, we add a virtual super input node SI to G that
is only connected to all of the primary inputs. Similarly, we add
a virtual super output node SO that takes only all of the primary
outputs of G as its fan-ins (Fig. 2). All of the edges connecting
SI or SO to any other node in G have zero delay. We still use
V and E to represent the set of nodes and edges after adding SI
and SO to G. The problem at hand can be formally formulated
as maximizing

∑
eij∈E bij such that all the paths from SI to SO

take no longer than T .
The problem can be stated as the following ILP formulation:

Max
∑

eij∈E

bij (1)

∑
(dij + bij) ≤ T ∀SI → SO paths (2)

bij , dij , T ∈ Z+ ∀eij ∈ E. (3)

We assume that the problem input and output variables are
nonnegative integers. This is particularly useful for application

Fig. 2. Sample DAG with edge delay annotations. Nodes SI and SO and
corresponding virtual edges are shown with dashed lines.

domains in which only discrete integer values are meaning-
ful. Examples include high-level synthesis, which deals with
discrete clock cycles, or grid routing, which can only handle
discrete values for addressing grid coordinates.

Relaxing the integral constraints to allow the variables to be
any nonnegative number would form an LP formulation. LP
problems are known to be solvable in polynomial time and, in
that sense, are easier to solve. Moreover, in our previous work,
we showed that the LP formulation of the budgeting problem
has an optimal integer solution [13], which implies that the
solution with integral constraint is optimal for the nonintegral
version of the problem as well. Consequently, we assume that
the variables should be nonnegative integer. Note that the prob-
lem becomes NP-hard if only arbitrarily discrete (as opposed to
consecutive) integers are allowed for each variable [29].

DAGs are usually utilized to model the applications at
different levels of abstraction. Examples include task graphs
modeling a high-level computation at the task level, DFGs
representing applications at the architectural level, and netlists
modeling a gate-level combinational circuit. The problem and
techniques presented in this paper are valid on any DAG.
Therefore, they are quite generic and applicable at different
levels of abstraction.

A. Reformulations Enabled by Problem Properties

We use a series of problem reformulations to transform our
problem into one whose dual LP formulation has a known
combinatorial solution. Our approach is inspired by the tech-
nique that Boros et al. developed for a graph balancing problem
[10], [11]. We have adjusted and extended their results to the
problem at hand (delay budget assignment).

The following lemma is a crucial observation that allows us
to reformulate the problem.

Lemma 1: In an optimal budget assignment, the delay of any
path from SI to SO is T .

It follows that for a given graph G, the cost of a path from
node i to SO does not depend on the choice of the path and is



GHIASI et al.: UNIFIED THEORY OF TIMING BUDGET MANAGEMENT 2367

only a function of i. Let ri be a variable assigned to each node
i that represents its distance to SO. Therefore

ri − rj − dij = bij ∀eij ∈ E. (4)

Substituting this equation into (1)–(3) leads to the following
set of equations:

Max
∑

eij∈E

bij (5)

ri = rj + dij + bij ∀eij ∈ E (6)

rSI − rSO ≤ T (7)

ri, bij ∈ Z+ ∀vi ∈ V and eij ∈ E. (8)

Note that the number of constraints in (1)–(3) can grow
exponentially with respect to the number of nodes in the graph.
However, formulation (5) has polynomial number of constraints
with respect to the problem size. Moreover, we can assume that
there is a virtual edge eoi from SO to SI with −T delay (Fig. 2).
The constraint rSI − rSO ≤ T can be represented as one of the
regular edge constraints and can be safely removed as a separate
constraint. The example shown in Fig. 2 assumes that the timing
constraint for the application is six time units.

Utilizing (4), we can eliminate bij variables from the ob-
jective function by substituting bij = ri − rj − dij . Note that
the nonnegativity constraint of bij transforms to ∀eij ∈ E :
ri − rj ≥ dij . It follows that:

∑
eij∈E

bij =
∑

eij∈E

ri − rj − dij

=
∑
vi∈V

ri [out(vi) − in(vi)] −
∑

eij∈E

dij

where in(vi) and out(vi) are the in-degree and out-degree
of vertex vi, respectively. Note that the term

∑
eij∈E dij is

constant and can be eliminated from the objective function.
Defining ρi = out(vi) − in(vi), (5)–(8) can be rephrased as

Max
∑
i∈V

ρiri (9)

rj − ri ≤ −dij ∀eij ∈ E (10)

ri ∈ Z+ ∀vi ∈ V (11)

and the dual problem to the LP (9)–(11) is

Min
∑

eij∈E

−dijyij (12)

∑
eki∈E

yki −
∑

eij∈E

yij = ρi ∀vi ∈ V (13)

yij ∈ Z+ ∀eij ∈ E. (14)

Interestingly, (12)–(14) formulate a conventional min-cost
flow problem on the DAG, where yij variables are the amount
of flow along edges eij with cost −dij , and ρi is the amount of
demand at node i. Equivalently, −ρi can be interpreted as the

Fig. 3. (a) Dual min-cost flow problem/solution for example in Fig. 2.
(b) Corresponding residual graph and edge costs.

amount of flow supply at that node. Note that
∑

i∈V ρi = 0 is
satisfied as required in the min-cost flow problem [10], [26].

It follows that the original problem can be solved optimally
in polynomial time. Section V presents an algorithm that can
determine the value of bij for each edge after solving the dual
min-cost flow problem. Our solution is similar to that of [10]
and [11].

V. EFFICIENT OPTIMAL ALGORITHM

The dual of the original edge delay budgeting problem can
be stated as a min-cost flow problem on a new graph called
G′(V,E) (Section IV-A). G′ and G are identical in terms of
nodes and edges. However, the cost of edge eij is −dij in G′,
and the amount of flow supply at node vi is −ρi = in(vi) −
out(vi). The flow supply has to be satisfied at each node by
a feasible flow solution. Note that the cost of eoi is T . Hence,
there is no negative cycle in the graph, and the dual problem can
be solved by any of the well-known min-cost flow algorithms
[26]. Fig. 3 illustrates the dual min-cost flow problem and its
solution for the graph shown in Fig. 2. In Fig. 3(a), edges are
annotated with their cost and flow, respectively. Supply at node
i is in(vi) − out(vi). In Fig. 3(b), nodes are annotated with their
shortest path to SO (i.e., δi).

Once yij variables (the amount of flow along edge eij) are
figured out, we can construct the residual graph Gy(V,E ′) from
G′(V,E). For any edge eij in G′ with nonzero flow along
it, there are two edges eij and eji in the residual graph. The
cost of each backward edge eji is dij , which is equal to the
complement of the forward edge cost.

Let δi be the shortest distance of node i to SO in the residual
graph Gy . There is no negative cost cycle in the residual
graph Gy , hence, δi variables are well defined. δi variables
can be determined by utilizing any well-known shortest path
algorithm, such as Bellman–Ford algorithm [33], which is
applicable to graphs with negative edge costs. Fig. 3 shows the



2368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

residual graph Gy and δi variables for the example shown in
Fig. 3.

Variables ri and bij of the primal problem can be easily cal-
culated by substituting ri = −δi and bij = ri − rj − dij . The
following theorem proves that this simple equation determines
the primal variables correctly.

Theorem 1: ri = −δi is an optimal solution to the (9), where
δi is the shortest path of node i to SO in the residual graph Gy .

Proof: Corresponding to each flow variable yij on edge
eij , there is a constraint for that particular edge in the primal
problem. According to the complementary slackness condition
[9], we only need to assign values to ri variables such that
the corresponding constraints become an equality for edges
with nonzero flow. We show that ri = −δi satisfies this con-
dition. Suppose that yij > 0 for an arbitrary edge eij in G′.
Therefore, both edges eij and eji exist in Gy . Note that the
cost of edges eij and eji are −dij and dij in Gy , respectively.
According to the shortest path definition, both of the following
equations hold:

δi ≤ δj − dij

δj ≤ δi + dij .

Consequently, ri − rj = δj − δi = dij , which is exactly
what complementary slackness condition implies. �

Algorithm 1 Optimal assignment of budget values to edges of
a DAG

Input: G(V,E), dij , T
Output: bij

Create G′(V,E ′) with appropriate edge costs and node
supplies;

Solve min-cost flow on G′ and determine yij ;
Create the residual graph Gy;
for all vi ∈ V do

Let δi = length of the shortest path from vi to SO in Gy;
Let ri = −δi;

end for
for all eij ∈ E do

Let bij = ri − rj − dij ;
end for
Return bij .

Edge delay budgets are now easily calculated by bij = ri −
rj − dij . This process is depicted in Algorithm 1. According to
this algorithm, we first create the graph G′, whose nodes are the
same as graph G and whose edges have the cost equal to −dij .
Furthermore, node vi in G′ will have a flow supply equal to
in(vi) − out(vi). Then, the min-cost flow on G′ will be solved,
and the residual graph Gy will be created. Note that for those
edges in G′ that have a nonzero flow going through them, there
will be edges with reverse direction and cost in Gy . Finally, the
complement of the shortest path of each node vi to SO in the
residual graph forms the variable ri. Budget vector b is readily
given once ri variables are determined. Well-known techniques
including min-cost flow and shortest path calculation are only
used as black boxes here.

Fig. 4. Optimal budget assignment for example in Fig. 2. Numbers on each
edge denote delay and assigned budget. Nodes are annotated with their delay
to SO (ri).

The time complexity of Algorithm 1 is determined by the
time complexity of the min-cost flow step, which functions on
the augmented graph G′. Assuming that the input graph G has n
nodes, G′ would also have O(n) nodes. Therefore, the min-cost
flow instance can be solved in O(m · log(n) · (m + log(n)))
via enhanced capacity scaling algorithm [26], where m is the
number of edges in G′. For practical computer-aided design
(CAD) problems, G is a sparse graph, and the degree of nodes is
bound by a small constant. Hence, the number of edges is O(n),
and the time complexity reduces to O(n2 · log(n)), which is
quite affordable for many problem instances. In Section VIII,
we will report our observations regarding the runtime of our
algorithm on practical benchmarks, which advocate the practi-
cality of our approach for CAD problems.

For the graph shown in Fig. 2, the amount of the budget
assigned to each edge of the graph is illustrated in Fig. 4
utilizing Algorithm 1. Note that the number on each node is
its distance to SO and does not depend on the choice of path
(Lemma 1). The amount of budget on edge eij is readily given
by bij = ri − rj − dij .

VI. EXTENSIONS TO OTHER BUDGETING POLICIES

The timing budget assigned to each of the design components
can be exploited to improve its quality. The quality metric de-
pends on the application domain, among which area, power dis-
sipation, predictability, and cost are only a few examples. The
objective function presented in Section IV (i.e.,

∑
eij∈E bij)

assumes that a unit of delay budget assigned to any component
will lead to the same amount of savings in the particular design
quality metric of interest. This is not the case, however, in many
practical situations.

For example, the amount of utility improvement per unit
budget for a particular component might be twice as much as
another component. Moreover, a component might be able to
utilize only a limited amount of extra delay budget. Similarly,
designers might need a minimum amount of delay budget
assigned to some component to be able to optimize it for a
particular design metric.

In this section, we study the problem of delay budget assign-
ment under various cost functions. We will show that many
natural budget distribution policies are simple extensions of
what we presented in Section IV.



GHIASI et al.: UNIFIED THEORY OF TIMING BUDGET MANAGEMENT 2369

Fig. 5. Weighted node budgeting problem is transformed to weighted edge
budgeting instance.

A. Weighted Budget Distribution

A unit delay budget can lead to different amounts of savings
in the utility metric depending on the component that the budget
is assigned to. In such cases, the budget assigned to different
components of the application contributes to the cost function
with different weights. Let nonnegative wij variables denote the
weight of edge eij . The weighted budget assignment problem
can be formulated as

Max
∑

eij∈E

wij · bij (15)

ri = rj + dij + bij ∀eij ∈ E (16)

rSI − rSO ≤ T (17)

ri, bij ∈ Z+ ∀vi ∈ V and eij ∈ E (18)

and similar to what we did in Section IV-A, i.e.,

∑
eij∈E

wij · bij =
∑

eij∈E

wij · (ri − rj − dij)

=
∑
vi∈V

ri ·


 ∑

vj∈out(vi)

wij −
∑

k∈in(vi)

wki




−
∑

eij∈E

wij · dij .

Note that the second term (i.e.,
∑

eij∈E wij · dij) is constant
for a given problem instance. It follows that (15)–(18) can be
transformed to (9)–(11) by defining ρi =

∑
vj∈out(vi)

wij −∑
k∈in(vi)

wki. Therefore, the algorithm described in Section V
can handle the weighted version as well. The only required
modification is to update the demand function ρi at nodes for
the dual min-cost flow instance.

An interesting special case of the weighted edge budgeting
problem solves the “node budgeting” problem where each node
has a delay value, and we would like to assign budget values
to nodes instead of edges. Fig. 5 shows an example for trans-
forming a weighted node budgeting instance into a weighted

edge budgeting problem. The only required transformation is
to split each node into two other nodes that are connected by an
edge with weight equal to the original node weight. All of the
other regular edges will have zero weight. Note that in the final
solution, some edges with zero weight might be assigned delay
budgets to validate Lemma 1.

B. Bounded Budget Distribution

The delay budget assigned to each component can be ex-
ploited to some specific extent. Extra budget assigned to a
component would potentially be wasted, i.e., it will not lead to
any utility improvement. Similarly, a component might require
a minimum amount of timing budget assigned to it to reflect any
improvement in its utility function. In such cases, it is desirable
to have a lower and/or upper bound on the delay of each edge.
Budget lower bounds are easy to implement because they can
be added to the edge delay at the first place. In other words,
it is straightforward to create a problem instance that already
satisfies the lower-bound requirement or find out that such a
budget assignment solution is infeasible.

Upper bounds, however, are not as easy as the lower bounds
to handle. In this section, we address the problem of maximum
budget assignment under upper-bound constraints on edges. We
show that this problem boils down to solving the min-cost flow
on a modified network and is similar to what we presented in
Section IV.

Assume that there is an upper bound uij for the delay of edge
eij . Therefore, (9)–(11) change into

Max
∑
i∈V

ρiri (19)

rj − ri ≤ −dij ∀eij ∈ E (20)

ri − rj ≤ uij ∀eij ∈ E (21)

ri ∈ Z+ ∀vi ∈ V (22)

whose dual problem is

Min
∑

eij∈E

uijzij − dijyij (23)

∑
eki∈E

(yki−zki)−
∑

eij∈E

(yij−zij)= ρi ∀vi ∈ V (24)

yij , zij ∈ Z+ ∀eij ∈ E. (25)

Equations (23)–(25) formulate a min-cost flow problem on
a network that is built by the following rule: For every edge
eij with cost −dij , there is a reverse edge eji with cost uij

(Fig. 6). yij and zij are the amount of flow along edges
eij and eji, respectively. Note that by definition, dij ≤ uij .
Hence, there is no negative cycle introduced into the network.
Again, this problem can be solved using standard min-cost
flow techniques. The solution to the primal problem can be
determined after knowing yij and zij values. Fig. 6 illustrates
an example of transforming a bounded edge budgeting problem
to a conventional unbounded instance. In this example, nodes



2370 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 6. Bounded edge budgeting problem is transformed to conventional
unbounded instance.

a and e are assumed to have the upper bound of 3 on their delay.
The rest of the nodes can have at most four units of delay.

C. Min−Max Budget Distribution

Fair distribution of the available budget to application com-
ponents is another useful objective. Fair distribution can be
quantified as minimizing the maximum budget assigned to
graph edges or minimizing the budget skew (the difference
between the maximum and the minimum allotted budgets).

The problem of fair budgeting would have trivial ineffec-
tive solutions that minimize the maximum assigned budget or
budget skew if fairness was the only objective. For example,
the zero budget assignment minimizes the maximum assigned
budget. Similarly, one might increment the budget on each
edge as long as the timing constraints are not violated, which
leads to minimizing the budget skew. In practice, fair budget
distribution has to be considered as a supplementary objective
to maximizing the total budget. For example, one might look for
fair budget assignments among the solutions whose total budget
is at least 80% of the total budget of an optimal maximum
budget solution (with no fairness constraint).

For both fair and min-skew budgeting, the problem has to be
initially solved using the algorithm described in Section IV-A
to determine the maximum budget that can be assigned to the
application nodes. Assuming that minimizing the maximum
assigned budget (min−max) is the objective, we can perform
a binary search on the budget upper bounds to choose the
best solution that has a reasonable total budget distribution. It
follows that the algorithm complexity is only O(log(T )) times
more than that of the Algorithm 1. Similarly, we can search
on edge lower and upper bounds at the same time to minimize
the budget skew (the difference between the maximum and
minimum assigned budget). However, this can increase the time
complexity by a factor of O(T 2) in the worst case.

VII. POTENTIALS FOR INCREMENTAL BUDGETING

In many practical situations, the delay of one or only a few
components might change during the design flow iterations.

Fig. 7. (a) Sample DAG and sample cut. (b) Corresponding edge graph. Edges
in cut correspond to dark nodes. (c) Transitive graph of edge graph.

Examples include, but are not limited to, library binding and
physical design. Such problem instances can have millions of
nodes in their representing graphs. Therefore, it is often imprac-
tical to reexecute Algorithm 1 to find a new budget assignment
for each local change and its corresponding problem instance.
In such cases, it is often required to transform the current
solution to a new feasible solution by performing local, rapid,
and incremental calculations.

In this section, we present some interesting properties of
the problem formulated in Section IV. These properties can be
further exploited to tackle other practical budgeting problems
including incremental budget assignment.

Lemma 2: Given a solution for the dual LP problem of a
budgeting instance, the flow variables do not change with the
increase of the timing constraint T .

Proof: There is no negative cycle in G′. Therefore, all
of the paths that do not include eoi have costs not less than
−T (Fig. 3). The min-cost flow algorithms work based on the
augmenting path idea. In each iteration, a path with minimum
cost from a source to a sink is found, and the flow along that
path is added to the solution. Therefore, increasing T has no
effect on the flows that run along paths that do not contain eoi.
Note that all such paths have negative cost.

However, edge eoi is the only “backward” edge of the graph
G′ and is common among the rest of the flows. Increasing
its cost will increase the cost for all such paths; however, it
will not provide a change in the choice of the path for min-
cost flow algorithm. It follows that the flow solution and the
corresponding variables will not change by increasing T . �

Moreover, it is easy to update the shortest path variables δi

in the new residual graph. If the shortest path from a node
to SO passes through eio in the original Gy , the value of the
path is decreased by the amount of increase in T . For other
nodes, δi variables remain intact. It follows that if the timing
constraint T is increased by ∆T , the budget of a certain set
of edges will be increased by ∆T . In other words, we start
from the original budget assignment that has been carried out
under timing constraint T . ∆T is then added to the budget of a
particular set of edges.

Definition 2: In graph G(V,E), a subset of edges is called
a “cut” if and only if every SI to SO path contains exactly
one edge of the set (Fig. 7). Graph G∗(V ∗, E∗) is called the
intersection graph (or edge graph) of G(V,E) if there is a node
v∗

ij ∈ V ∗ for every eij ∈ E and if there is an edge e∗ijk between



GHIASI et al.: UNIFIED THEORY OF TIMING BUDGET MANAGEMENT 2371

Fig. 8. Delay budgeting in core-based FPGA CAD flow.

TABLE I
CHARACTERISTICS OF BENCHMARK DFGS

v∗
ij and v∗

jk. Note that a cut in G corresponds to an “independent
set” of the transitive graph of G∗ (Gt∗). In the transitive graph,
if there is an edge from node vx to vy and from vy to vz , there is
also an edge from vx to vz . We use Gt to represent the transitive
graph of G.

Definition 3: Let Gain = OPT(G,T ) denote the maximum
amount of delay budget that can be added to graph G under
timing constraint T . Let Graph Gb be the new graph that is
formed by adding the delay budgets to the edges of G.

Lemma 3: For a given instance of the edge budgeting prob-
lem with critical path equal to T

Gain = OPT(G,T + ∆T )

= OPT(G,T ) + OPT(Gb,∆T )

= OPT(G,T ) + ∆T

∣∣MIS
(
Gt∗

b

)∣∣
= OPT(G,T ) + ∆T

∣∣MIS
(
Gt∗)∣∣

i.e., if the timing constraint T is increased by ∆T , the budget
of the edges that form a max-cut (a cut with the maximum
cardinality) will be increased by ∆T . Such edges correspond
to the maximum independent set in the transitive intersection
graph of the problem instance and can be found using existing
methods (Fig. 7) [8]. Therefore, incremental calculation of the
budget assignment and edge delay budgets for various values of
T can be performed optimally.

The following lemma assists in performing budget reassign-
ment and incremental budget management.

Fig. 9. Area characteristic of Xilinx CoreGen sequential multiplier cores.

Lemma 4: Let Gb denote the graph after budget assignment.
Let c1 and c2 represent two cuts in Gb, where all edges in c1

are assigned at least δ units of budget. Decreasing the budget of
all of the edges in c1 by δ and increasing the budget of all of
the edges in c2 by δ lead to another maximal feasible solution
(one that does not violate the timing constraint and all paths
take exactly T ).

VIII. DELAY BUDGET ASSIGNMENT

DURING LIBRARY MAPPING

A. Experimental Setup

We applied delay budgeting during library mapping for a
given data path. Fig. 8 illustrates our synthesis flow for mapping
an application to an FPGA device. The application DFGs are
extracted from MediaBench [6] test suite using SUIF compiler
[23] and Machine-suif [21]. We selected ten of the largest DFGs
as our benchmarks. The characteristics of the benchmarks are
shown in Table I. For experimentation purposes, we assumed
that each of the operands is 8-bits wide. We also assumed that
the timing constraint for each application is equal to its critical
path latency plus four extra cycles. The extra cycles are allowed
to better separate different budgeting policies and highlight
their differences.

We used Xilinx CoreGen [17] to generate parameterized
hardware modules (cores) with different latencies. Xilinx syn-
thesis (XST) and placement and routing tools [17] have been
used in our experimental flow to implement the designs and
measure their area requirement and timing. We also recorded
the runtime for solving the budgeting instance and placement
and routing of the synthesized design to the FPGA. Our FPGA
target platform is Xilinx VirtexE device XCV3200V with
FG1156 package and speed grade −8. The Xilinx Integrated
Software Environment (Xilinx ISE) version 6.3 was used for
the experiments.

The major operations in the selected application DFGs are
addition, subtraction, multiplication, division, and shifting. We
synthesized the CoreGen library modules corresponding to the
aforementioned operations to characterize their area variations
with respect to latency. Fig. 9 demonstrates the area character-
istics of the CoreGen sequential multiplier core. The CoreGen



2372 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

shifting, division, addition, and subtraction cores implement
latency variation by inserting registers and pipelining the oper-
ation. Therefore, slower implementations of shifting, division,
addition, and subtraction consume more area. Consequently,
in our experiment, we assigned the timing budget only to
multipliers of the application DFG.

The library cores generated by CoreGen do not provide a
continuous range of latencies to choose from. CoreGen sequen-
tial multipliers can have the latency of 5, 6, 7, or 11 cycles.
The points corresponding to available latencies are illustrated in
Fig. 9. The figure also demonstrates the tradeoff between area
and latency of the multipliers in the library. The discontinuity in
core latency motivates the bounded budget assignment to limit
the amount of timing budget that a library core can accept. For
example, more than two units of delay budget on the fastest
multiplier core is likely to be “wasted” because the next choice
of multiplier core requires four more delay units (multiplier
with 11 cycle latency).

We have implemented seven different budget assignment
policies to compare their impact on datapath area. They include
maximum budgeting, maximum budgeting with upper bounds,
three variations of fair budgeting (minimizing the maximum
budget with a lower-bound constraint on the total budget),
weighted budgeting, and ZSA [27]. ZSA is widely used in
industrial tools and is considered to be the major competitor
for our algorithms.

For bounded budgeting, we impose the upper bound of
two units of delay for assigning delay budgets to each multiplier
core. Fair budgeting, described in Section VI-C, minimizes
the maximum budget assigned to the nodes while meeting the
lower-bound constraint on the total budget assigned to the DFG.
In our experiment, fair budgeting has been implemented to
minimize the maximum budget while allowing 10%, 25%, or
40% degradation in total budget as compared with maximum
budgeting.

B. Experimental Results

The results of our experiments are summarized in Table II.
For each benchmark, area requirement in terms of both lookup
tables and slices, design timing in nanoseconds, and tool run-
time (synthesis, placement and routing tools) in seconds are
reported. In addition, the total delay relaxation and the number
of nodes whose delay is relaxed are also reported in the table.
The last two columns of the table compare the improvement
of our best budgeting technique (max, bounded, and fair) with
ZSA and no budgeting. The optimization runtime to solve the
generated budgeting problem instance according to our formu-
lation was less than 0.3 s for our benchmarks and, therefore,
was neglected in comparison to large physical design time. The
runtimes are recorded on a PC running Linux on a Pentium
processor at 2.8 GHz with 512-MB memory.

Table II shows no single budgeting algorithm that generates
the minimum area results for all ten benchmarks; the fair
distribution with 75% lower bound on total budget produces
the best results on the average. This highlights the fact that
distribution of delay budget along with maximization of total
budget leads to the best results. Conventional methods often try

to maximize the total budget and neglect the effect of budget
distribution. Our techniques improve the LUT count by 28.7%
and 13.3% as compared to not using budgeting or using the
ZSA, respectively. The improvements are 25.8% and 11.5% in
terms of slice count.

Note that some DFGs have many unrelated operations that
can be slowed down as much as the application timing con-
straint. For example, DFG9 has many unrelated multiplication
operations. For these cases, bounded and fair budgeting do not
perform as well as the maximum budgeting because they do
not assign maximum latency to unrelated tasks. In the case
of DFG9, ZSA performs as well as the maximum budgeting
technique and better than the bounded or fair budgeting. This
is due to the fact that ZSA algorithm distributes delay budgets
similar to maximum budgeting for unrelated operations.

For benchmarks that are dominated with unrelated opera-
tions, maximum budgeting performs similar to or better than
other policies due to its maximization objective and distribu-
tion biproduct for unrelated operations. Because it is easy to
detect and handle such situations, we decided not to differen-
tiate between unrelated/related operations and did not process
these benchmarks differently. Our algorithms can be further
optimized if they are tuned to adopt the appropriate budget
assignment policy according to DFG topology.

Table II illustrates the timing and tool runtime associated
with each design. The variations in timing numbers are small
among different budgeting algorithms, ZSA, and no budgeting.
Therefore, the small difference in timing can be neglected and
attributed to noise. However, the benchmarks that are processed
by some budget assignment algorithm (either ZSA or one of
our algorithms) slow down the synthesis process by about
82% on average as compared with original designs that do not
go through component delay relaxation. The additional tool
runtime overhead can be attributed to the fact that relaxed
operations diversify the type of operations existing in the de-
sign, and each of them requires additional time for physical
design. On the other hand, there is only one type of core in
the original designs, and the physical synthesizer can reuse
the placement and/or routing information for each core. Note
that our budgeting techniques incur no additional cost when
compared with ZSA, in terms of required tool runtime.

Our methodology provides a framework to find the proper
budget assignment policy that is suitable for a particular
application and objective function. After exploration of the
budget assignment policies, the suggested policy constantly
outperforms ZSA, which is widely used in today’s industrial
tools. The “Budgeting vs. ZSA” column in Table II shows the
improvement of the best budgeting policy, found through our
methodology, over ZSA.

IX. CONCLUSION

We presented a theoretical framework that unifies a large
class of existing time-management paradigms. We developed
a totally combinatorial framework through which we optimally
solved several time budgeting problems, including maximizing
total budget, weighted, bounded, and fair budgeting. In addi-
tion, our technique is applicable to time management for edges,



GHIASI et al.: UNIFIED THEORY OF TIMING BUDGET MANAGEMENT 2373

TABLE II
AREA, RUNTIME, TIMING, AND BUDGET DISTRIBUTION COMPARISON AMONG DIFFERENT DELAY BUDGETING ALGORITHMS

nodes, and hybrid combination of these two elements in a graph
representation of the applications. We performed experimental
results on mapping some applications onto Xilinx FPGAs.
We generated the applications’ datapath components using
CoreGen intellectual property cores. We compared different

time budgeting policies in terms of the design area under equal
timing constraints. Experimental results exhibit significant sav-
ings in design quality (area in our experiments) and advocate
our theoretical results. Future works include extension of the
idea to discrete and incremental time budgeting.



2374 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

REFERENCES

[1] A. Kahng, S. Mantik, and I. L. Markov, “Min-Max placement for large-
scale timing optimization,” in Proc. ACM Int. Symp. Phys. Design, 2002,
pp. 143–148.

[2] A. Srivastava, “Simultaneous Vt selection and assignment for leak-
age optimization,” in Proc. Int. Symp. Low Power Electron. Design, 2003,
pp. 146–151.

[3] C. Chen, E. Bozorgzadeh, A. Srivastava, and M. Sarrafzadeh, “Budget
management with applications,” Algorithmica, vol. 34, no. 3, pp. 261–
275, Jul. 2002.

[4] C. Chen, X. Yang, and M. Sarrafzadeh, “Potential slack: An effective
metric of combinational circuit performance,” in Proc. ACM/IEEE Int.
Conf. Computer-Aided Design, 2000, pp. 198–201.

[5] C. Kuo and A. C. H. Wu, “Delay budgeting for a timing-closure-design
method,” in Proc. ACM/IEEE Int. Conf. Computer-Aided Design, 2000,
pp. 202–207.

[6] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench:
A tool for evaluating and synthesizing multimedia and communications
systems,” in Proc. Int. Symp. Microarchitecture, 1997, pp. 330–335.

[7] C. Yeh and M. Marek-Sadowska, “Delay budgeting in sequential cir-
cuit with application on FPGA placement,” in Proc. ACM/IEEE Design
Automation Conf., 2003, pp. 202–207.

[8] D. Kagaris and S. Tragoudas, “Maximum independent sets on transitive
graphs and their applications in testing and CAD,” in Proc. Int. Conf.
Computer-Aided Design, 1997, pp. 736–740.

[9] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ:
Princeton Univ. Press, 1963.

[10] E. Boros, P. Hammer, and R. Shamir, “A polynomial algorithm for bal-
ancing acyclic data flow graphs,” IEEE Trans. Comput., vol. 41, no. 11,
pp. 1380–1385, Nov. 1992.

[11] E. Boros, P. Hammer, M. Hartmann, and R. Shamir, “Balancing problems
in acyclic networks,” Discr. Appl. Math., vol. 49, no. 1–3, pp. 77–93,
Mar. 1994.

[12] E. Bozorgzadeh, S. Ghiasi, A. Takahashi, and M. Sarrafzadeh, “Optimal
integer delay budgeting on directed acyclic graphs,” in Proc. Design
Automation Conf., Jun. 2003, pp. 920–925.

[13] ——, “Optimal integer delay budget assignment on directed acyclic
graphs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23,
no. 8, pp. 1184–1199, Aug. 2004.

[14] E. Felt, E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli,
“An efficient methodology for symbolic compaction of analog IC’s
with multiple symmetry constraints,” in Proc. Conf. Eur. Design Automa-
tion, Nov. 1992, pp. 148–153.

[15] F. Xie, M. Martonosi, and S. Malik, “Intraprogram dynamic voltage scal-
ing: Bounding opportunities with analytic modeling,” ACM Trans. Archit.
Code Optimization, vol. 1, no. 3, pp. 323–367, Sep. 2004.

[16] H. R. Lin and T. Hwang, “Power reduction by gate sizing with path-
oriented slack calculation,” in Proc. IEEE ASPDAC, 1995, pp. 7–12.

[17] Xilinx Inc., (2006). Xilinx Documentations and Online Manuals. [Online].
Available: http://www.xilinx.com

[18] J. Luo and N. Jha, “Battery-aware static scheduling for distributed real-
time embedded systems,” in Proc. IEEE/ACM Design Automation Conf.,
2001, pp. 444–449.

[19] J. F. Lee and D. T. Tang, “VLSI layout compaction with grid and mixed
constraints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. CAD-6, no. 5, pp. 903–910, Sep. 1987.

[20] M. Sarrafzadeh, D. Knol, and G. E. Tellez, “Unification of budgeting
and placement,” in Proc. ACM/IEEE Design Automation Conf., Jun. 1997,
pp. 758–761.

[21] M. D. Smith and G. Holloway. (2005). “An introduction to machine
SUIF and its portable libraries for analysis and optimization,” Division
Eng. Appl. Sci., Harvard Univ. Cambridge, MA. [Online]. Available:
http://www.eecs.harvard.edu/hube/software/nci/overview.html

[22] M. Sarrafzadeh, D. A. Knol, and G. E. Tellez, “A delay budgeting algo-
rithm ensuring maximum flexibility in placement,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 16, no. 11, pp. 1332–1341,
Nov. 1997.

[23] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, L. Shih-
Wei, E. Bugnion, and M. S. Lam, “Maximizing multiprocessor perfor-
mance with the SUIF compiler,” Computer, vol. 29, no. 12, pp. 84–89,
Dec. 1996.

[24] O. Coudert, “Timing and design closure in physical design flows,” in Proc.
IEEE Int. Symp. Quality Electron. Des., 2002, pp. 511–516.

[25] P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac, “A gate
resizing technique for high reduction in power consumption,” in Proc.
Int. Symp. Low Power Electron. Design, 1997, pp. 281–286.

[26] T. Magnanti, R. Ahuja, and J. Orlin, Network Flows: Theory, Algorithms,
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[27] R. Nair, C. Berman, P. Hauge, and E. Yoffa, “Generation of perfor-
mance constraints for layout,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 8, no. 8, pp. 860–874, Aug. 1989.

[28] S. Bakshi and D. Gajski, “Component selection for high-performance
pipelines,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 181–194, Jun. 1996.

[29] S. Ghiasi, “Efficient implementation selection via time budgeting:
Complexity analysis and leakage optimization case study,” in Proc. Int.
Conf. Computer Design, 2005, pp. 127–129.

[30] S. Ghiasi, E. Bozorgzadeh, S. Choudhury, and M. Sarrafzadeh, “A unified
theory of timing budget management,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, 2004, pp. 653–659.

[31] S. Ghiasi, K. Nguyen, E. Bozorgzadeh, and M. Sarrafzadeh, “On com-
putation and resource management in networked embedded systems,” in
Proc. Int. Conf. Parallel Distrib. Computer Syst., 2003, pp. 445–451.

[32] S. Raje and M. Sarrafzadeh, “Scheduling with multiple voltages,”
Integration, vol. 23, no. 1, pp. 37–59, Oct. 1997.

[33] R. Rivest, T. Cormen, and C. Leiserson, An Introduction to Algorithms.
Cambridge, MA: MIT Press, 1990.

[34] T. Kong, “A novel net weighting algorithm for timing-driven
placement,” in Proc. ACM/IEEE Int. Conf. Computer-Aided Design, 2002,
pp. 172–176.

[35] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and
Y. Tsai, “Exploiting VLIW schedule slacks for dynamic and leakage en-
ergy reduction,” in Proc. ACM/IEEE Int. Symp. Microarchitecture, 2001,
pp. 102–113.

[36] Y. Liao and C. K. Wong, “An algorithm to compact a VLSI symbolic lay-
out with mixed constraints,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. CAD-2, no. 2, pp. 62–69, Apr. 1983.

Soheil Ghiasi (S’98–M’05) received the B.S. degree
in computer engineering from Sharif University of
Technology, Tehran, Iran, in 1998, and the M.S.
and Ph.D. degrees in computer science from the
University of California, Los Angeles (UCLA), in
2002 and 2004, respectively.

Currently, he is an Assistant Professor with the
Department of Electrical and Computer Engineer-
ing, University of California, Davis. His research
interests include different aspects of embedded and
reconfigurable system design.

Dr. Ghiasi received the Harry M. Showman prize from UCLA College of
Engineering in 2004.

Elaheh Bozorgzadeh (S’01–M’03) received the
B.S. degree in electrical engineering from Sharif
University of Technology, Tehran, Iran, in 1998, the
M.S. degree in computer engineering from North-
western University, Evanston, IL, in 2000, and the
Ph.D. degree in computer science from the Univer-
sity of California, Los Angeles, in 2003.

She is currently an Assistant Professor with the
Department of Computer Science, University of
California, Irvine. Her research interests include
computer-aided design for field-programmable gate

arrays, reconfigurable computing, and design automation for embedded sys-
tems. She has authored three book chapters and more than 30 journal and
conference papers.

Dr. Bozorgzadeh is a member of the Association for Computing Machinery.



GHIASI et al.: UNIFIED THEORY OF TIMING BUDGET MANAGEMENT 2375

Po-Kuan Huang (S’05) received the B.S. degree
in electrical engineering from National Cheng Kung
University, Taiwan, R.O.C., in 2002. He is currently
working toward the Ph.D. degree in computer engi-
neering at the Department of Electrical and Com-
puter Engineering, University of California, Davis.

His research interests include the areas of em-
bedded system design and design automation for
electronic system.

Roozbeh Jafari (S’99) received the B.Sc. degree
in electrical engineering from Sharif University of
Technology, Tehran, Iran, in 2000, the M.Sc. degree
in electrical engineering from the State University of
New York, Buffalo, in 2002, and the M.S. degree in
computer science from the University of California,
Los Angeles (UCLA), in 2004. He is currently work-
ing toward the Ph.D. degree in computer science
from UCLA.

He was with IBM, Endicott, NY, where he worked
on the development of IBM TestBench tool designed

for very large scale integration testing. His research is primarily in the area
of networked embedded system design and reconfigurable computing with
emphasis in medical/biological applications and their algorithm design.

Majid Sarrafzadeh (S’87–M’87–SM’91–F’96) re-
ceived the B.S., M.S., and Ph.D. degrees from the
University of Illinois, Urbana-Champaign, in 1982,
1984, and 1987, respectively, all in electrical and
computer engineering.

He joined Northwestern University as an As-
sistant Professor, in 1987. In 2000, he joined the
Department of Computer Science, University of
California, Los Angeles (UCLA). He has collab-
orated with many industries in the past 15 years
including IBM, Motorola, and many CAD industries.

He is the architect of the physical design subsystem of Monterey Design
Systems’ main product. He is a cofounder of Hier Design, Inc. He has published
approximately 250 papers and is the coeditor of the book Algorithmic Aspects
of VLSI Layout (World Scientific, 1994) and the coauthor of the book An
Introduction to VLSI Physical Design (McGraw-Hill, 1996). His recent research
interests include the area of embedded and reconfigurable computing, very
large scale integration (VLSI) computer-aided design (CAD), and design and
analysis of algorithms.

Dr. Sarrafzadeh is a Fellow of the IEEE for his contribution to theory and
practice of VLSI design. He has served on the technical program committee
of numerous conferences in the area of VLSI design and CAD, including
ICCAD, DAC, EDAC, ISPD, FPGA, and DesignCon. He has served as
Committee Chairs of a number of these conferences. He is on the executive
committee/steering committee of several conferences such as ICCAD, ISPD,
and ISQED. He is the Program Committee Chair of ICCAD 2004. He is
an Associate Editor of the ACM Transaction on Design Automation and an
Associate Editor of the IEEE TRANSACTION ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS. He received an NSF Engineering
Initiation Award, two Distinguished Paper Awards in ICCAD, and the Best
Paper Award in DAC.


