
Global Resource Sharing for Synthesis of Control Data 
Flow Graphs on FPGAs 

ABSTRACT 
In this paper we discuss the global resource sharing prob- 
lem during synthesis of control data flow graphs for FPGAs. 
We first define the Global Resource Sharing (GRS) problem. 
Then, we introduce the Global Inter Basic Block Resource 
Sharing (GIBBS) technique to  solve the GRS problem. We 
develoDed five heuristics to solve the GRS Droblem. The 
first tries to minimize the number-of connections between 
modules; the second considers the area gain, the third uses 
the criticality of operations assigned to resources as a mea- 
sure for deciding on merging any given pair of resources, the 
fourth tries to capture common resource chains and over- 
lap those to minimize both area and delay, and the fifth is 
the combination of these heuristics. While applying resource 
sharing, we also consider the execution frequency of the basic 
blocks. Using our techniques we synthesized several CDFGs 
representing applications from MediaBench suite. Our re- 
sults show that, we can reduce the total area requirement by 
44% on average (up to 59%) while increaking the execution 
time by 6% on average. 
Categories and Subject Descriptors 
B. [Hardware]: Register-Transfer-Level Implementation 
General Terms 

Seda Ogrenci Memik Gokhan Memik 
Computer Science Department Dept. of Electrical Engineering 

UCLA UCLA 
seda@cs.ucla.edu memik@ ee.ucla.edu 

Roozbeh Jafari, Eren Kursun 
Computer Science Department 

UCLA 
rjafari @I cs.ucla.edu, kursun @I cs.ucla.edu 

Algorithms,Design 
Keywords 
Resource Sharing, FPGA, Control Data Flow Graph 

1. INTRODUCTION 
In this paper, we present Global Inter Basic Block Re- 

source Sharing (GIBBS), a method for global resource shar- 
ing during automatic synthesis of control data flow graphs 
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(CDFGs). This method is integrated within the automatic 
synthesis of high-level application descriptions targeting pro- 
grammable hardware. 

Over the past decade, Field Programmable Gate Arrays 
(FPGAs) have evolved at a racing pace. Designers are now 
able to use these devices to implement complex circuitry. 
Traditionally, designs were mapped onto FPGAs manually. 
However, with changes in the nature of designs and the in- 
creasing complexity of FPGA hardware, manual mapping 
is becoming cumbersome. As a result, increasing the level 
of abstraction for designers and automating the mapping 
process emerges as an attractive option. We believe that 
GIBBS will be an integral part of such automated synthesis 
tools for next generation FPGAs. In this paper, we pro- 
pose a global resource sharing technique to complement an 
automatic hardware compilation flow with high-level syn- 
thesis integration. We particularly focus on the impact of 
high-level planning for resource sharing on the quality and 
feasibility of the final designs. The compiler stage in such 
flows performs several optimizations to leverage the transi- 
tion from algorithmic descriptions to hardware. Neverthe- 
less, many possible optimizations require knowledge from 
low-level tools. Performing resource sharing considering de- 
lay and interconnect is one such optimization. Therefore, we 
implement our optimizations within the high-level synthesis. 

For many target applications, resource sharing must be 
performed in order to achieve feasible designs. Assuming 
infinite resources and mapping each computation to a dedi- 
cated module may be infeasible for devices with a fixed area 
such as FPGAs. On the other hand, applying aggressive re- 
source sharing strategies may degrade the design quality, be- 
cause resource sharing introduces multiplexer components, 
which can introduce additional delay on the critical path 
of execution. If resource sharing is too aggressive, these 
multiplexer may also increase the amount of interconnect. 
Naturally, ASIC technology can benefit from a well planned 
resource sharing strategy as well. Synthesis for FPGAs dis- 
tinguishes from ASICs in the following aspect. Possable sau- 
angs an area and anterconnect through resource sharang as 
a n  assue of manufacturang cost f o r  synthesazang ASICs  whzle 
there as always strangent desagn constraants. However, for 
FPGAs  thas 2s really a n  assue of feasabalaty wath so much 
pre-characterazataon and pre-fabracated features existing 2n 
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the target technology. 
Specifically, our contributions in this paper are: 

We introduce the concept of inter basic block resource 
sharing during automatic synthesis of CDFGs target- 
ing FPGAs. 

0 We provide heuristics for global inter basic block re- 
source sharing. We incorporate profling information 
into our optimization process. 

0 We present experimental results for representative ap- 
plications measuring the effectiveness of the proposed 
techniques. 

The rest of this paper is organized as follows. Section 2 
gives an overview of existing automatic synthesis paths from 
high-level descriptions to programmable hardware. We also 
summarize some existing work on the problem of resource 
sharing in the global sense. We provide background infor- 
mation related to our work in Section 3. The problem of 
global resource sharing will be formally defined in Section 4. 
We will describe our algorithm for global resource sharing 
in Section 5 .  In Section 6 we present experimental results. 
Section 7 concludes the paper with a summary. 

2. RELATED WORK 
Early efforts in automatic mapping of computation onto 

programmable logic dealt with extracting customized in- 
structions from an input program and assigning those to a 
programmable co-processor while the remainder of the pro- 
gram is compiled targeting a CPU. Computationally inten- 
sive kernels were considered for hardware implementation 
and it was the task of the compiler to identify those portions 
of the input code. Compilers accompanied by their respec- 
tive novel processor architectures like PRISM [13], Garp [3], 
[2], NAPA C compiler [5], and Chimaera 1141 were proposed. 

Other projects proposed automatic datapath generation 
from high level descriptions such as Match [6], Cameron [7], 
and DEFACTO [lo]. 

Resource sharing in the global context, i.e., with respect 
to a CDFG has not been incorporated into existing hard- 
ware compilers targeting programmable systems. There are 
some proposed techniques for efficient resource sharing in 
high-level synthesis of ASICs. Kim et al. [8], proposed 
a technique to transform a data flow graph with condi- 
tional branches into an equivalent representation without 
conditional branches. This transformation involves resource 
sharing between operations from mutually exclusive parts 
of conditional branches. The execution model of this tech- 
nique treats the complete data flow graph with conditional 
branches as a flattened entity. As we will describe our execu- 
tion model in Section 3, it will be clear that it is fundamen- 
tally different than their model. Kim et al. do not consider 
neither the input dependent behavior of the control flow nor 
the interconnect complexity of the resource sharing decisions 
in their technique. Raje and Bergamaschi [ll] proposed an 
algorithm to perform resource sharing for both registers and 
functional units taking interconnect and multiplexer costs 
into account. Their execution model is similar to that of 
Kim et al. and again the fact that different execution paths 
can be executed with different frequencies is not considered. 
In their work, they aimed to combine interconnect and area 
within a single cost function, while we explored the ben- 
efits and shortcomings of different optimization objectives 

including, but not limited to interconnect and area within a 
variety of heuristics. 

3. BACKGROUND 
In a generic flow for automatic mapping of application 

onto programmable hardware, the application described in 
a high-level programming language is processed by the com- 
piler. The compiler generates an internal representation 
(IR). While internal representations in different compilers 
take different forms and names, essentially they capture two 
basic pieces of information about an application: control 
flow and data dependency. A control data flow graph pro- 
duced by the compiler stage provides this information to 
the high-level synthesis step. Next, high-level synthesis gen- 
erates a Register Transfer Level (RTL) description of the 
design. Back-end tools perform logic synthesis and physical 
synthesis on this RTL description and create the bit-stream 
data to program the target device. 

In this work on our focus is within the high-level synthesis 
stage. This stage contains major tasks related to generation 
of datapath and control logic based on the information pro- 
vided by the compiler. The input to the high-level synthesis 
stage is a CDFG. Figure 1 (a) gives an example of a CDFG. 
This computation model contains both data and control de- 
pendencies within a computation. In our CDFG represen- 
tation, each node corresponds to a basic block. The edges 
of the CDFG represent the control precedence between the 
basic blocks. In turn, each basic block node has an internal 
DFG representation. These DFGs capture the actual com- 
putation and the data dependencies within the application. 

Our execution model is based on the sequential execution 
of basic blocks. Our synthesis methodology generates dat- 
apaths for each individual basic block while exploiting the 
parallelism within basic blocks. ' When the execution pro- 
ceeds from basic block bbi to basic block bbj ,  basic block 
bbi is responsible for generating an enable signal that will 
initiate the execution of basic block bbj. Each basic block 
starts execution when its enable signal is asserted. If a ba- 
sic block is reachable through multiple possible execution 
paths, then enable signals from corresponding basic blocks 
preceding the basic block in control flow are OR-ed together 
to generate the enable signal. Finally, a global control unit 
is used for the remaining global control signals such as reset, 
initializations, etc. 

There are certain practical reasons behind our choice of 
this particular execution model. First, we are attempting to 
map a significantly large and complex portion of an appli- 
cation (even there may be complete complete applications 
in some cases) onto hardware. Hence, the intermediate rep- 
resentation is bound to contain tens, even hundreds of ba- 
sic blocks. Using a flat CDFG representation, scheduling, 
binding and synthesizing control efficiently both in terms of 
design quality and run-time is challenging. 

Since our target hardware is an FPGA, logic and routing 
area is restricted. Under these circumstances, resource shar- 
ing is not an optimization option, instead a requirement. We 
need an efficient way of sharing functional units among data- 
paths of basic blocks. However, sharing should not introduce 
large critical path delays and a larger demand on intercon- 

'In order to increase parallelism, entities containing multiple 
basic blocks (e.g., hyperblocks 191) can be equivalently given 
to our high-level synthesis tool as input. 
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Internal DFG of 
Basic Block bb3 

Figure 1: (a) An example CDFG: each node is a 
basic block containing an internal DFG. (b) Illus- 
tration of our execution model. 
nect and logic resources due to additional multiplexers to  
overshadow the anticipated benefit. Moreover, not every ex- 
ecution path is invoked in equal frequency. Resource sharing 
should consider the criticality of individual basic blocks. In 
addition, resource sharing may reduce the overall execution 
time by reducing the average interconnect length. 

4. PROBLEM FORMULATION 
In this section we present a formal definition of GRS. GRS 

refers to reusing a functional unit within datapaths of multi- 
ple basic blocks. We formulate the GRS problem as follows: 

Input: a CDFG, a library of functional modules and mul- 
tiplexers M = {milmodule - delay(d,), module  - area(a i )} ,  
and the execution frequency of each basic block. 
GSR is  to  find a set of modules to  be shared among multiple 
basic blocks, such that the decrease in area requirement is 
maximized while the increase in the expected latency of the 
CDFG i s  less than A. 

A, the increase in the expected latency of a CDFG is equal 
to A = Ci fj x Sj, where fj is the execution frequency of 
basic block bbj and dj  is the increase in the critical path of 
basic block bbj . 

Ultimately we aim to synthesize a CDFG with smaller 
area via sharing. However, we need to insert steering logic 
into basic block datapaths to  achieve this. Each multiplexer 
component mux i  will introduce an additional delay of d i  
into the datapath. This delay can cause the critical path of 
a basic block to increase and hence the expected latency of 
the CDFG. 

4.1 On the Complexity of Global Resource 
Sharing 

It can be shown that the GRS problem is NP-Hard by 
transformation of an arbitrary Knapsack Problem instance 
to a GRS instance in polynomial time. We'omit the details 
of this proof due to space considerations. 

5. GIBBS: GLOBAL INTER BASIC BLOCK 
RESOURCE SHARING 

In this section we present five heuristics to solve the GRS 
problem. All heuristics require an initial datapath for each 
basic block. In addition, they use a library of modules anno- 
tated with delay and area estimates. Note that the modules 
for a basic block might already be shared among different op- 
erations of that individual block. In addition, all heuristics 

are iterative algorithms. In each iteration only two resources 
from different basic blocks are merged together. 

Let us f i s t  defme the criticality of a resource. The idea 
behind criticality is to  establish a relationship between the 
time spent to complete an operation and its effect on the 
overall execution time of the application. Specifically, we 
measure the criticalitv as 

basicblock-f requency is the execution frequency of the 
basic block containing the operation and s l a c k s  f -resource 
is the slack of the operation in the initial schedule. Using 
the slack of the operations, GIBBS calculates the critical- 
ity of a resource. If multiple operations axe assigned to a 
resource, the criticality of the resource equals to the maxi- 
mum of the criticalities of the operations. Criticality is used 
by all heuristics to estimate the negative effects of resource 
sharing. 

The f i s t  heuristic (Heu-I) tries to minimize the number 
of connections between the modules. This is achieved by 
examining the input and output connections of each mod- 
ule. During this examination, Heu-I determines a pair of 
resources with the most number of common inputs and out- 
puts. To break ties, Heu-I considers the criticality of the 
resources and selects the least critical pair of resources. The 
least critical pair is the pair with the smallest cr  value for the 
resource having the larger cr within the pair, i.e., minimum 
of maximums. 

The second heuristic (Heu-A) pursues area minimization 
aggressively. Heu-A considers the estimated area gain for 
each sharing and selects the pair with the highest expected 
area reduction. Similar to Heu-I, ties are broken by the 
criticality rule. 

The third heuristic (Heu-P) approaches the interconnect 
optimization by trying to capture common chains of re- 
sources with direct data communication. Consider an ap- 
plication with a frequent case of addition operation followed 
by a multiplication operation in several basic blocks. Heu- 
P checks the entire application and captures such common 
source-destination pairs. Once such combinations are found, 
they are prioritized to be shared as a chain of modules with 
other symmetric chains in different basic blocks. 

The fourth heuristic (H-S) is based on criticality of re- 
sources defined earlier as an auxiliary measure for the pre- 
vious heuristics. The mobility of operations assigned on a 
resource is an indication on how much extra delay can be tol- 
erated along the path through that resource. This in turn, 
signifies opportunities to perform resource sharing such that 
the resulting increase in the path delay due to multiplex- 
ers can be absorbed within the operation mobilities without 
worsening the overall performance. 

The last heuristic (Heu-C) combines Heu-I, Heu-A, Heu- 
P, and Heu-S. When comparing pairs of modules, Heu-C 
calculates the gain function for all three schemes. Then, 
it combines them in a weighted sum and merges the re- 
source pair with the highest combined gain. For example, 
the gain for Heu-A is the expected fraction of area reduced 
by performing the sharing. Similarly, the gain of Heu-I is 
the fraction of interconnects avoided with resource sharing. 
The gain function for Heu-P is the avoidance of extra delay 
due to multiplexer insertion between consecutive modules in 
a chain. Specifically, the gain is the delay of the multiplexer 
that with other techniques would have been used, divided 
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Figure 2: Initial datapath synthesized for a sample 
CDFG consisting of two basic blocks. 

Figure 3: Datapath after applying one iteration of 
Interconnect-driven Heuristic Heu-I. Modules M1 
and M2 are merged. 

by the length of the critical path of the corresponding basic 
blocks. 

The completion criteria for all heuristics are determined 
with a user-defined constant limit on the estimated extra 
delay. When each heuristic selects resources to be shared, it 
calculates the estimated increase in execution delay (using 
the multiplexer delays and the execution frequencies of the 
basic blocks). If the increase is above the threshold (A in 
Section 4), then the resource sharing halts without merging 
the last candidate pair. The iteratively transformed (par- 
tially merged) datapaths of the basic blocks are combined 
in a single CDFG datapath for generation of the final RTL 
VHDL by the high-level synthesis tool. 

Let us demonstrate how our heuristics that deal with the 
input circuit topology, i.e., either target interconnect and/or 
area, perform resource sharing with an illustrative example. 
Consider the datapaths of two basic blocks (BB1 and BB2) 
depicted in Figure 2. They represent a portion of a larger 
design, and inputs/outputs at their interfaces are omitted 
for simplicity. When we apply Heu-I on these datapaths, re- 
source pairs (Ml,M2) and (A3, A6) are recognized to have 
the most number of common connections. M1, and M2 have 
the same destination, whereas A3, and A6 have one common 
source, which means they both share a common neighboring 
resource. Note that, there is a direct connection between M2 
and A6. There is another connection between M2 and A3 
going through the multiplexer module. Although there is a 
multiplexer inbetween, we treat this connection as a direct 
connection between M2 and A3, from the perspective of data 

Figure 4: Datapath after applying one iteration of 
Area-driven Heuristic Heu-A. Modules D1 and D2 
are merged. 

1 tiY 
Figure 5: Datapath after applying one iteration of 
Pattern-based Heuristic Heu-P. Modules M1 and 
M2, and A3 and A6 are merged respectively. 

communication. Sharing, i.e., merging A3 and A6 will result 
in a single connection between M2 and the merged module 
going through the multiplexer. The direct connection be- 
tween M2 and A6 will be eliminated. At this point to break 
the tie between the pairs (Ml ,  M2) and (A3, A6), Heu-I 
compares max(crM1, cr-M2} and max(crA3, crA6). As- 
sume, max(crhl1, cr-M2} > max(crA3, crAG}. Then, 
Heu-I decides to share M 1  and M2. The resulting datapath 
is shown in Figure 3. Heu-A, on the other hand, checks the 
area of the modules. The divider modules will clearly result 
in the best area reduction. Hence, Heu-A selects to merge 
D1 and D2 modules. The datapath after Heu-A is depicted 
in Figure 4. Note that, this decision forces two more mul- 
tiplexers to be included on the critical paths of both basic 
blocks. Heu-P, on the other hand, counts the number of 
common pairs of connected resources. In Figure 2, there are 
four multiply-add, three add-divide, and two add-multiply 
chains. Hence, Heu-P will select mul-add pairs to be merged 
together if possible. M1 and M2 as well as A3 and A6 will 
be merged in a single iteration. The datapath after this 
sharing is shown in Figure 5 .  In our simulations, we put 
equal weight to all three heuristics within Heu-C. In this 
case, since the merging of dividers will result in significantly 
more area reduction than the other merging strategies, Heu- 
C will perform sharing of the dividers first. Figure 5 depicts 
the overall summary of the steps in the GIBBS technique. 

6. RESULTS 
To evaluate the effects of resource sharing, we have cre- 

ated an automated path from programs written in C to RTL 
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GIBBSfinit ial  datapath f o r  CDFG, module library, block-execution-frequencies, A, 
heuristic-SEL ={Heu-I, Heu-A, Heu-P, Heu-S, Heu-C}) 

if (heuristic-SEL == Heu-A) 
place module types used in the CDFG datapath in a sorted list according to their area 
while (exec-delay-increase 5 A) do 

if (l ist  not empty) 
module type T = head of sorted list 
module-pair(mi, mj) = execute Heu-A(modu1e library, T, CDFG datapath, block-executionfrequencies) 
if (module-pair(mi, mj) == NULL) 

remove head of sorted list of types 

merge (mi, mj) by combining the operations assigned to either resources on a single module 
insert multiplexer modules at the input pins of the merged modules if necessary 
update datapaths for affected basic blocks 

else 

else 

exec-delay-increase += Expected-Delay-Increase {module library, basic block pair (ai, b j ) ,  fi, fj) 
r e t u r n  

end while 
undo last resource sharing move 

else 
while (exec-delay-increase 5 A) do 

module-pair(mi, mj) = execute heuristic-SEL 
merge (mi, mj) by combining the operations assigned to either resources on a single module 
insert multiplexer modules at the input pins of the merged modules if necessary 
update datapaths for affected basic blocks 
return 

exec-delay-increase += Expected-Delay-Increase(modu1e library, basic block pair (ai, bj ) ,  fi , fj) 
end while 
undo last resource sharing move 

~ ~~ 

Figure 6: Overall execut ion of the GIBBS technique. 

VHDL. We use 9 MediaBench [l] applications for our exper- 
iments. The SUIF compiler infrastructure is used to per- 
form the compiler optimizations and generate the IR, which 
is then transformed into a CDFG. We annotate the CDFG 
with basic block execution frequencies obtained through pro- 
filing. We have implemented our own high-level synthesis 
tool to perform the initial scheduling and binding for each 
basic block, which assumes that each instruction type in the 
CDFG can be mapped to a distinct module type. The initial 
scheduling and binding minimizes the number of modules re- 
quired for each basic block. However, it does not perform 
any resource sharing among basic blocks. Then, separately 
we apply our resource sharing algorithms. Generation (and 
removal) of necessary modules while resource sharing is per- 
formed within our tool chain. After the resource sharing is 
completed, the tool generates an RTL VHDL description of 
the datapath for the complete CDFG including the insertion 
of necessary register and multiplexers. This VHDL code is 
then synthesized using Synplify Pro 7.0 from Synplicity and 
placed and routed by Xilinx Design Manager. We obtain 
area, wirelength and delay information after physical syn- 
thesis. 

We have performed two sets of experiments. In the fist 
set of experiments, we measure the effects of resource shar- 
ing on the area and execution delay of the design. The 
results for area are summarized in Figure 7. Overall, we see 
that the Heu-S and Heu-C perform the best, reducing the 
area by as much as 58% (42% on average) and 59% (44% on 
average), respectively. For most benchmarks, Heu-P did not 
bring significant improvement. However, for the gsm bench- 
mark, it reduces the area by 24%. For the gsm application, 

we have combined the basic blocks from the gsm-decoder 
and gsm-encoder programs in one CDFG. These programs 
exhibit similar structures, hence Heu-P is able to capture 
large amounts of symmetry. 

The effect on the execution time for all the heuristics is 
presented in Figure 8. We see that, for most benchmarks, re- 
source sharing increases the delay. However, in some bench- 
marks we observe the benefit of having reduced the overall 
area, hence the wirelenght. We see that the Heu-S algorithm 
causes the largest increase in the delay. The reason lies in 
the fact that, Heu-S is the heuristic that performs the most 
resource sharing without considering the effects on the in- 
terconnect. In other words, Heu-S replaces large blocks with 
several smaller, but highly connected modules. Therefore, 
in most benchmarks it has a negative overall impact. 

We were also interested in the relationship between the 
aggressiveness of resource sharing and delay penalty. To ex- 
plore this, we have performed several experiments with the 
convolve benchmark varying the A value. Figure 9 summa- 
rizes the results for reduction in area as we change A value 
between 1% and 100% of the initial delay value. We see 
that, most heuristics increase their area efficiency as we al- 
low larger delay penalties. The Heu-S, on the other hand, is 
not effected by the A value. The reason lies in the compo- 
sition of the initial design. All heuristics estimate the area 
improvement for a sharing decision. Since extra multiplex- 
ers should be added to perform sharing, in practice only 
larger blocks (e.g., multipliers, dividers, adders) are consid- 
ered for sharing. Therefore, for each benchmark, there is a 
hard limitation on the possible area reduction. 
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Figure 7: Reduction in area using resource sharing. 
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Figure 8: Increase in execution time due to resource 
sharing. 

5 10 25 50 100 

Delta 1x1 

7. CONCLUSIONS 
In this paper, we presented a technique to  perform global 

resource sharing for automatic synthesis of CDFGs. First, 
we proved that the global resource sharing problem is NP- 
Complete. Next, within the GIBBS framework we developed 
five heuristics. Each targeted a different aspect of resource 
sharing, e.g. number of connections, estimated area reduc- 
tion, estimated increase in latency, etc. We synthesized nine 
benchmark applications from the MediaBench suite within 
our framework. Applying our global resource sharing strate- 
gies we were able to  reduce the area of designs by 44% on 
average (using the criticality-driven heuristic) by allowing a 
6% delay penalty. 
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