
Global Resource Sharing for Synthesis of Control Data
Flow Graphs on FPGAs

ABSTRACT
In this paper we discuss the global resource sharing prob-
lem during synthesis of control data flow graphs for FPGAs.
We first define the Global Resource Sharing (GRS) problem.
Then, we introduce the Global Inter Basic Block Resource
Sharing (GIBBS) technique to solve the GRS problem. We
develoDed five heuristics to solve the GRS Droblem. The
first tries to minimize the number-of connections between
modules; the second considers the area gain, the third uses
the criticality of operations assigned to resources as a mea-
sure for deciding on merging any given pair of resources, the
fourth tries to capture common resource chains and over-
lap those to minimize both area and delay, and the fifth is
the combination of these heuristics. While applying resource
sharing, we also consider the execution frequency of the basic
blocks. Using our techniques we synthesized several CDFGs
representing applications from MediaBench suite. Our re-
sults show that, we can reduce the total area requirement by
44% on average (up to 59%) while increaking the execution
time by 6% on average.
Categories and Subject Descriptors
B. [Hardware]: Register-Transfer-Level Implementation
General Terms

Seda Ogrenci Memik Gokhan Memik
Computer Science Department Dept. of Electrical Engineering

UCLA UCLA
seda@cs.ucla.edu memik@ ee.ucla.edu

Roozbeh Jafari, Eren Kursun
Computer Science Department

UCLA
rjafari @I cs.ucla.edu, kursun @I cs.ucla.edu

Algorithms,Design
Keywords
Resource Sharing, FPGA, Control Data Flow Graph

1. INTRODUCTION
In this paper, we present Global Inter Basic Block Re-

source Sharing (GIBBS), a method for global resource shar-
ing during automatic synthesis of control data flow graphs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003. June 2-3 2003, Anaheim, Califomia USA
Copyright 2003 ACM 1-581 13-688-9/03/0006 ... $5.00.

(CDFGs). This method is integrated within the automatic
synthesis of high-level application descriptions targeting pro-
grammable hardware.

Over the past decade, Field Programmable Gate Arrays
(FPGAs) have evolved at a racing pace. Designers are now
able to use these devices to implement complex circuitry.
Traditionally, designs were mapped onto FPGAs manually.
However, with changes in the nature of designs and the in-
creasing complexity of FPGA hardware, manual mapping
is becoming cumbersome. As a result, increasing the level
of abstraction for designers and automating the mapping
process emerges as an attractive option. We believe that
GIBBS will be an integral part of such automated synthesis
tools for next generation FPGAs. In this paper, we pro-
pose a global resource sharing technique to complement an
automatic hardware compilation flow with high-level syn-
thesis integration. We particularly focus on the impact of
high-level planning for resource sharing on the quality and
feasibility of the final designs. The compiler stage in such
flows performs several optimizations to leverage the transi-
tion from algorithmic descriptions to hardware. Neverthe-
less, many possible optimizations require knowledge from
low-level tools. Performing resource sharing considering de-
lay and interconnect is one such optimization. Therefore, we
implement our optimizations within the high-level synthesis.

For many target applications, resource sharing must be
performed in order to achieve feasible designs. Assuming
infinite resources and mapping each computation to a dedi-
cated module may be infeasible for devices with a fixed area
such as FPGAs. On the other hand, applying aggressive re-
source sharing strategies may degrade the design quality, be-
cause resource sharing introduces multiplexer components,
which can introduce additional delay on the critical path
of execution. If resource sharing is too aggressive, these
multiplexer may also increase the amount of interconnect.
Naturally, ASIC technology can benefit from a well planned
resource sharing strategy as well. Synthesis for FPGAs dis-
tinguishes from ASICs in the following aspect. Possable sau-
angs an area and anterconnect through resource sharang as
a n assue of manufacturang cost f o r synthesazang ASICs whzle
there as always strangent desagn constraants. However, for
FPGAs thas 2s really a n assue of feasabalaty wath so much
pre-characterazataon and pre-fabracated features existing 2n

604

mailto:seda@cs.ucla.edu
http://ee.ucla.edu
http://cs.ucla.edu
http://cs.ucla.edu

the target technology.
Specifically, our contributions in this paper are:

We introduce the concept of inter basic block resource
sharing during automatic synthesis of CDFGs target-
ing FPGAs.

0 We provide heuristics for global inter basic block re-
source sharing. We incorporate profling information
into our optimization process.

0 We present experimental results for representative ap-
plications measuring the effectiveness of the proposed
techniques.

The rest of this paper is organized as follows. Section 2
gives an overview of existing automatic synthesis paths from
high-level descriptions to programmable hardware. We also
summarize some existing work on the problem of resource
sharing in the global sense. We provide background infor-
mation related to our work in Section 3. The problem of
global resource sharing will be formally defined in Section 4.
We will describe our algorithm for global resource sharing
in Section 5 . In Section 6 we present experimental results.
Section 7 concludes the paper with a summary.

2. RELATED WORK
Early efforts in automatic mapping of computation onto

programmable logic dealt with extracting customized in-
structions from an input program and assigning those to a
programmable co-processor while the remainder of the pro-
gram is compiled targeting a CPU. Computationally inten-
sive kernels were considered for hardware implementation
and it was the task of the compiler to identify those portions
of the input code. Compilers accompanied by their respec-
tive novel processor architectures like PRISM [13], Garp [3],
[2], NAPA C compiler [5], and Chimaera 1141 were proposed.

Other projects proposed automatic datapath generation
from high level descriptions such as Match [6], Cameron [7],
and DEFACTO [lo].

Resource sharing in the global context, i.e., with respect
to a CDFG has not been incorporated into existing hard-
ware compilers targeting programmable systems. There are
some proposed techniques for efficient resource sharing in
high-level synthesis of ASICs. Kim et al. [8], proposed
a technique to transform a data flow graph with condi-
tional branches into an equivalent representation without
conditional branches. This transformation involves resource
sharing between operations from mutually exclusive parts
of conditional branches. The execution model of this tech-
nique treats the complete data flow graph with conditional
branches as a flattened entity. As we will describe our execu-
tion model in Section 3, it will be clear that it is fundamen-
tally different than their model. Kim et al. do not consider
neither the input dependent behavior of the control flow nor
the interconnect complexity of the resource sharing decisions
in their technique. Raje and Bergamaschi [ll] proposed an
algorithm to perform resource sharing for both registers and
functional units taking interconnect and multiplexer costs
into account. Their execution model is similar to that of
Kim et al. and again the fact that different execution paths
can be executed with different frequencies is not considered.
In their work, they aimed to combine interconnect and area
within a single cost function, while we explored the ben-
efits and shortcomings of different optimization objectives

including, but not limited to interconnect and area within a
variety of heuristics.

3. BACKGROUND
In a generic flow for automatic mapping of application

onto programmable hardware, the application described in
a high-level programming language is processed by the com-
piler. The compiler generates an internal representation
(IR). While internal representations in different compilers
take different forms and names, essentially they capture two
basic pieces of information about an application: control
flow and data dependency. A control data flow graph pro-
duced by the compiler stage provides this information to
the high-level synthesis step. Next, high-level synthesis gen-
erates a Register Transfer Level (RTL) description of the
design. Back-end tools perform logic synthesis and physical
synthesis on this RTL description and create the bit-stream
data to program the target device.

In this work on our focus is within the high-level synthesis
stage. This stage contains major tasks related to generation
of datapath and control logic based on the information pro-
vided by the compiler. The input to the high-level synthesis
stage is a CDFG. Figure 1 (a) gives an example of a CDFG.
This computation model contains both data and control de-
pendencies within a computation. In our CDFG represen-
tation, each node corresponds to a basic block. The edges
of the CDFG represent the control precedence between the
basic blocks. In turn, each basic block node has an internal
DFG representation. These DFGs capture the actual com-
putation and the data dependencies within the application.

Our execution model is based on the sequential execution
of basic blocks. Our synthesis methodology generates dat-
apaths for each individual basic block while exploiting the
parallelism within basic blocks. ' When the execution pro-
ceeds from basic block bbi to basic block bbj , basic block
bbi is responsible for generating an enable signal that will
initiate the execution of basic block bbj. Each basic block
starts execution when its enable signal is asserted. If a ba-
sic block is reachable through multiple possible execution
paths, then enable signals from corresponding basic blocks
preceding the basic block in control flow are OR-ed together
to generate the enable signal. Finally, a global control unit
is used for the remaining global control signals such as reset,
initializations, etc.

There are certain practical reasons behind our choice of
this particular execution model. First, we are attempting to
map a significantly large and complex portion of an appli-
cation (even there may be complete complete applications
in some cases) onto hardware. Hence, the intermediate rep-
resentation is bound to contain tens, even hundreds of ba-
sic blocks. Using a flat CDFG representation, scheduling,
binding and synthesizing control efficiently both in terms of
design quality and run-time is challenging.

Since our target hardware is an FPGA, logic and routing
area is restricted. Under these circumstances, resource shar-
ing is not an optimization option, instead a requirement. We
need an efficient way of sharing functional units among data-
paths of basic blocks. However, sharing should not introduce
large critical path delays and a larger demand on intercon-

'In order to increase parallelism, entities containing multiple
basic blocks (e.g., hyperblocks 191) can be equivalently given
to our high-level synthesis tool as input.

605

Internal DFG of
Basic Block bb3

Figure 1: (a) An example CDFG: each node is a
basic block containing an internal DFG. (b) Illus-
tration of our execution model.
nect and logic resources due to additional multiplexers to
overshadow the anticipated benefit. Moreover, not every ex-
ecution path is invoked in equal frequency. Resource sharing
should consider the criticality of individual basic blocks. In
addition, resource sharing may reduce the overall execution
time by reducing the average interconnect length.

4. PROBLEM FORMULATION
In this section we present a formal definition of GRS. GRS

refers to reusing a functional unit within datapaths of multi-
ple basic blocks. We formulate the GRS problem as follows:

Input: a CDFG, a library of functional modules and mul-
tiplexers M = {milmodule - delay(d,), module - area(a i)} ,
and the execution frequency of each basic block.
GSR is to find a set of modules to be shared among multiple
basic blocks, such that the decrease in area requirement is
maximized while the increase in the expected latency of the
CDFG i s less than A.

A, the increase in the expected latency of a CDFG is equal
to A = Ci fj x Sj, where fj is the execution frequency of
basic block bbj and dj is the increase in the critical path of
basic block bbj .

Ultimately we aim to synthesize a CDFG with smaller
area via sharing. However, we need to insert steering logic
into basic block datapaths to achieve this. Each multiplexer
component mux i will introduce an additional delay of d i
into the datapath. This delay can cause the critical path of
a basic block to increase and hence the expected latency of
the CDFG.

4.1 On the Complexity of Global Resource
Sharing

It can be shown that the GRS problem is NP-Hard by
transformation of an arbitrary Knapsack Problem instance
to a GRS instance in polynomial time. We'omit the details
of this proof due to space considerations.

5. GIBBS: GLOBAL INTER BASIC BLOCK
RESOURCE SHARING

In this section we present five heuristics to solve the GRS
problem. All heuristics require an initial datapath for each
basic block. In addition, they use a library of modules anno-
tated with delay and area estimates. Note that the modules
for a basic block might already be shared among different op-
erations of that individual block. In addition, all heuristics

are iterative algorithms. In each iteration only two resources
from different basic blocks are merged together.

Let us f i s t defme the criticality of a resource. The idea
behind criticality is to establish a relationship between the
time spent to complete an operation and its effect on the
overall execution time of the application. Specifically, we
measure the criticalitv as

basicblock-f requency is the execution frequency of the
basic block containing the operation and s l a c k s f -resource
is the slack of the operation in the initial schedule. Using
the slack of the operations, GIBBS calculates the critical-
ity of a resource. If multiple operations axe assigned to a
resource, the criticality of the resource equals to the maxi-
mum of the criticalities of the operations. Criticality is used
by all heuristics to estimate the negative effects of resource
sharing.

The f i s t heuristic (Heu-I) tries to minimize the number
of connections between the modules. This is achieved by
examining the input and output connections of each mod-
ule. During this examination, Heu-I determines a pair of
resources with the most number of common inputs and out-
puts. To break ties, Heu-I considers the criticality of the
resources and selects the least critical pair of resources. The
least critical pair is the pair with the smallest cr value for the
resource having the larger cr within the pair, i.e., minimum
of maximums.

The second heuristic (Heu-A) pursues area minimization
aggressively. Heu-A considers the estimated area gain for
each sharing and selects the pair with the highest expected
area reduction. Similar to Heu-I, ties are broken by the
criticality rule.

The third heuristic (Heu-P) approaches the interconnect
optimization by trying to capture common chains of re-
sources with direct data communication. Consider an ap-
plication with a frequent case of addition operation followed
by a multiplication operation in several basic blocks. Heu-
P checks the entire application and captures such common
source-destination pairs. Once such combinations are found,
they are prioritized to be shared as a chain of modules with
other symmetric chains in different basic blocks.

The fourth heuristic (H-S) is based on criticality of re-
sources defined earlier as an auxiliary measure for the pre-
vious heuristics. The mobility of operations assigned on a
resource is an indication on how much extra delay can be tol-
erated along the path through that resource. This in turn,
signifies opportunities to perform resource sharing such that
the resulting increase in the path delay due to multiplex-
ers can be absorbed within the operation mobilities without
worsening the overall performance.

The last heuristic (Heu-C) combines Heu-I, Heu-A, Heu-
P, and Heu-S. When comparing pairs of modules, Heu-C
calculates the gain function for all three schemes. Then,
it combines them in a weighted sum and merges the re-
source pair with the highest combined gain. For example,
the gain for Heu-A is the expected fraction of area reduced
by performing the sharing. Similarly, the gain of Heu-I is
the fraction of interconnects avoided with resource sharing.
The gain function for Heu-P is the avoidance of extra delay
due to multiplexer insertion between consecutive modules in
a chain. Specifically, the gain is the delay of the multiplexer
that with other techniques would have been used, divided

606

Figure 2: Initial datapath synthesized for a sample
CDFG consisting of two basic blocks.

Figure 3: Datapath after applying one iteration of
Interconnect-driven Heuristic Heu-I. Modules M1
and M2 are merged.

by the length of the critical path of the corresponding basic
blocks.

The completion criteria for all heuristics are determined
with a user-defined constant limit on the estimated extra
delay. When each heuristic selects resources to be shared, it
calculates the estimated increase in execution delay (using
the multiplexer delays and the execution frequencies of the
basic blocks). If the increase is above the threshold (A in
Section 4), then the resource sharing halts without merging
the last candidate pair. The iteratively transformed (par-
tially merged) datapaths of the basic blocks are combined
in a single CDFG datapath for generation of the final RTL
VHDL by the high-level synthesis tool.

Let us demonstrate how our heuristics that deal with the
input circuit topology, i.e., either target interconnect and/or
area, perform resource sharing with an illustrative example.
Consider the datapaths of two basic blocks (BB1 and BB2)
depicted in Figure 2. They represent a portion of a larger
design, and inputs/outputs at their interfaces are omitted
for simplicity. When we apply Heu-I on these datapaths, re-
source pairs (Ml,M2) and (A3, A6) are recognized to have
the most number of common connections. M1, and M2 have
the same destination, whereas A3, and A6 have one common
source, which means they both share a common neighboring
resource. Note that, there is a direct connection between M2
and A6. There is another connection between M2 and A3
going through the multiplexer module. Although there is a
multiplexer inbetween, we treat this connection as a direct
connection between M2 and A3, from the perspective of data

Figure 4: Datapath after applying one iteration of
Area-driven Heuristic Heu-A. Modules D1 and D2
are merged.

1 tiY
Figure 5: Datapath after applying one iteration of
Pattern-based Heuristic Heu-P. Modules M1 and
M2, and A3 and A6 are merged respectively.

communication. Sharing, i.e., merging A3 and A6 will result
in a single connection between M2 and the merged module
going through the multiplexer. The direct connection be-
tween M2 and A6 will be eliminated. At this point to break
the tie between the pairs (Ml , M2) and (A3, A6), Heu-I
compares max(crM1, cr-M2} and max(crA3, crA6). As-
sume, max(crhl1, cr-M2} > max(crA3, crAG}. Then,
Heu-I decides to share M 1 and M2. The resulting datapath
is shown in Figure 3. Heu-A, on the other hand, checks the
area of the modules. The divider modules will clearly result
in the best area reduction. Hence, Heu-A selects to merge
D1 and D2 modules. The datapath after Heu-A is depicted
in Figure 4. Note that, this decision forces two more mul-
tiplexers to be included on the critical paths of both basic
blocks. Heu-P, on the other hand, counts the number of
common pairs of connected resources. In Figure 2, there are
four multiply-add, three add-divide, and two add-multiply
chains. Hence, Heu-P will select mul-add pairs to be merged
together if possible. M1 and M2 as well as A3 and A6 will
be merged in a single iteration. The datapath after this
sharing is shown in Figure 5 . In our simulations, we put
equal weight to all three heuristics within Heu-C. In this
case, since the merging of dividers will result in significantly
more area reduction than the other merging strategies, Heu-
C will perform sharing of the dividers first. Figure 5 depicts
the overall summary of the steps in the GIBBS technique.

6. RESULTS
To evaluate the effects of resource sharing, we have cre-

ated an automated path from programs written in C to RTL

607

GIBBSfinit ial datapath f o r CDFG, module library, block-execution-frequencies, A,
heuristic-SEL ={Heu-I, Heu-A, Heu-P, Heu-S, Heu-C})

if (heuristic-SEL == Heu-A)
place module types used in the CDFG datapath in a sorted list according to their area
while (exec-delay-increase 5 A) do

if (l ist not empty)
module type T = head of sorted list
module-pair(mi, mj) = execute Heu-A(modu1e library, T, CDFG datapath, block-executionfrequencies)
if (module-pair(mi, mj) == NULL)

remove head of sorted list of types

merge (mi, mj) by combining the operations assigned to either resources on a single module
insert multiplexer modules at the input pins of the merged modules if necessary
update datapaths for affected basic blocks

else

else

exec-delay-increase += Expected-Delay-Increase {module library, basic block pair (ai, b j) , fi, fj)
r e t u r n

end while
undo last resource sharing move

else
while (exec-delay-increase 5 A) do

module-pair(mi, mj) = execute heuristic-SEL
merge (mi, mj) by combining the operations assigned to either resources on a single module
insert multiplexer modules at the input pins of the merged modules if necessary
update datapaths for affected basic blocks
return

exec-delay-increase += Expected-Delay-Increase(modu1e library, basic block pair (ai, bj) , fi , fj)
end while
undo last resource sharing move

~ ~~

Figure 6: Overall execut ion of the GIBBS technique.

VHDL. We use 9 MediaBench [l] applications for our exper-
iments. The SUIF compiler infrastructure is used to per-
form the compiler optimizations and generate the IR, which
is then transformed into a CDFG. We annotate the CDFG
with basic block execution frequencies obtained through pro-
filing. We have implemented our own high-level synthesis
tool to perform the initial scheduling and binding for each
basic block, which assumes that each instruction type in the
CDFG can be mapped to a distinct module type. The initial
scheduling and binding minimizes the number of modules re-
quired for each basic block. However, it does not perform
any resource sharing among basic blocks. Then, separately
we apply our resource sharing algorithms. Generation (and
removal) of necessary modules while resource sharing is per-
formed within our tool chain. After the resource sharing is
completed, the tool generates an RTL VHDL description of
the datapath for the complete CDFG including the insertion
of necessary register and multiplexers. This VHDL code is
then synthesized using Synplify Pro 7.0 from Synplicity and
placed and routed by Xilinx Design Manager. We obtain
area, wirelength and delay information after physical syn-
thesis.

We have performed two sets of experiments. In the fist
set of experiments, we measure the effects of resource shar-
ing on the area and execution delay of the design. The
results for area are summarized in Figure 7. Overall, we see
that the Heu-S and Heu-C perform the best, reducing the
area by as much as 58% (42% on average) and 59% (44% on
average), respectively. For most benchmarks, Heu-P did not
bring significant improvement. However, for the gsm bench-
mark, it reduces the area by 24%. For the gsm application,

we have combined the basic blocks from the gsm-decoder
and gsm-encoder programs in one CDFG. These programs
exhibit similar structures, hence Heu-P is able to capture
large amounts of symmetry.

The effect on the execution time for all the heuristics is
presented in Figure 8. We see that, for most benchmarks, re-
source sharing increases the delay. However, in some bench-
marks we observe the benefit of having reduced the overall
area, hence the wirelenght. We see that the Heu-S algorithm
causes the largest increase in the delay. The reason lies in
the fact that, Heu-S is the heuristic that performs the most
resource sharing without considering the effects on the in-
terconnect. In other words, Heu-S replaces large blocks with
several smaller, but highly connected modules. Therefore,
in most benchmarks it has a negative overall impact.

We were also interested in the relationship between the
aggressiveness of resource sharing and delay penalty. To ex-
plore this, we have performed several experiments with the
convolve benchmark varying the A value. Figure 9 summa-
rizes the results for reduction in area as we change A value
between 1% and 100% of the initial delay value. We see
that, most heuristics increase their area efficiency as we al-
low larger delay penalties. The Heu-S, on the other hand, is
not effected by the A value. The reason lies in the compo-
sition of the initial design. All heuristics estimate the area
improvement for a sharing decision. Since extra multiplex-
ers should be added to perform sharing, in practice only
larger blocks (e.g., multipliers, dividers, adders) are consid-
ered for sharing. Therefore, for each benchmark, there is a
hard limitation on the possible area reduction.

608

I 'O I I -1
n I

50

40

30

20

10

0

Figure 7: Reduction in area using resource sharing.

I 2 0 1 I I

I -50 1 1 1

Figure 8: Increase in execution time due to resource
sharing.

5 10 25 50 100

Delta 1x1

7. CONCLUSIONS
In this paper, we presented a technique to perform global

resource sharing for automatic synthesis of CDFGs. First,
we proved that the global resource sharing problem is NP-
Complete. Next, within the GIBBS framework we developed
five heuristics. Each targeted a different aspect of resource
sharing, e.g. number of connections, estimated area reduc-
tion, estimated increase in latency, etc. We synthesized nine
benchmark applications from the MediaBench suite within
our framework. Applying our global resource sharing strate-
gies we were able to reduce the area of designs by 44% on
average (using the criticality-driven heuristic) by allowing a
6% delay penalty.

REFERENCES
W. H. Maneione-Smith C. Lee. M. Potkoniak. Mediabench:
A tool for evaluating and synthesizing multimedia and
communications systems, November 1997. International
Symposium on Microarchitecture.
T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The garp
architecture and c compiler, April 2000. IEEE Computer.
T. J. Callahan and J. Wawrzynek. Instruction level
parallelism for reconfigurable computing, September 1998.
Field-Programmable Logic and Applications, 8th
International Workshop.
M. R. Garey and D. S. Johnson. Computers and
Zntractabilitg. W.H. Freeman and Company, 1999.
M. B. Gokhale and J. M. Stone. Napa c: Compiling for a
hybrid risc/fpga architecture, April 1998. IEEE Symposium
on Field-Programmable Custom Computing Machines.
M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee. A
system for synthesizing optimized fpga hardware from
matlab, November 2000. IEEE International Conference on
Computer Aided Design.
J. Hammes, R. Rinker, W. Bohm, W. Najjar, B. Draper,
and R. Beveridge. Cameron: High-level language
compilation for reconfigurable systems, October 1999.
Conference on Parallel Architectures and Compilation
Techniques.
T. Kim, N. Yonezawa, J.W.S. Liu, and C.L. Liu. A
scheduling algorithm for conditional resource sharing - a
hierarchical reduction approach. TCAD, 13(4):425-438,
1994.
S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. Effective compiler support for predicated
execution using the hyperblock, 1992. International
Symposium on Microarchitecture.
P. Moisset, J. Park, and P. Diniz. Very high-level synthesis
of control and datapath structure for reconfigurable logic
devices, October 1999. Workshop on Compiler and
Architecture Support for Embedded Systems.
S. Raje and R. A. Bergamaschi. Generalized resource
sharing, November 1997. International Conference on
Computer-Aided Design.
B. So, M. W. Hall, and P. C. Diniz. A compiler approach to
fast design space exploration in fpga-based systems, June
2002. ACM Conference on Programming Language Design
and Implementation.
M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam,
P. Athanas, H. Silverman, and S. Gosh. Prism-ii compiler
and architecture, 1993. IEEE Workshop on FPGAs for
Custom Computing Machines.
A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera:
A high-performance architecture with a tightly-coupled
reconfigurable functional unit, 2000. IEEE Symposium on
Computer Architecture.

Figure 9: Effect of delta value on area improvement
for convolve application.

609

