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Abstract-Analysis of Event Related Potentials (ERPs) pro­
duced by brain activities can provide insight into the timing 
of underlying brain function. ERPs can be classified by their 
time/frequency characteristics and spatial location on the scalp. 
Traditionally, ERPs are manually located by temporally and 
spatially averaged EEG signals. This process is error prone 
and sensitive to a priori assumptions. Our proposed algorithm 
is a general neuroscience-focused data mining algorithm that 
performs time and frequency analysis on ERPs and automatically 
extracts templates corresponding to Spectral Spatio-Temporal 
(SST) regions exhibiting significant differences between experi­
mental outcomes. The method uses time-aligned templates, which 
preserve the characteristics of the signal important to cognitive 
researchers. The ability of the selected signal templates to 
differentiate between stimulus responses has been verified using a 
pattern recognition procedure. SST template extraction is tested 
on data taken from a GoINoGo task and shown to both find 
relationships consistent with published neuroscience literature as 
well as novel relationships. 

I. INT RODUCTION 

The electrical activities of brain can be recorded by means 
of Electroencephalography (EEG) from the scalp. Extracting 
informative and discriminative features from these EEG sig­
nals is a crucial step in documenting and classifying patterns 
of brain activity. Some brain activities produce characteris­
tic EEG signals, called Event Related Potentials (ERP), in 
reaction to an internal or external stimulus [1]. Stimulus syn­
chronous averaging [2] emphasizes the event-related response 
by raising the inherently low SNR of EEG signals. 

Analyzing EEG signals to find meaningful patterns is the 
subject of ongoing research. Traditionally, one method of 
interpreting EEG data is measuring peaks and their timing in 
ERP averages. These peaks are identified by visual inspection 
of averaged EEG. Then, some standard statistical techniques, 
such as ANOVA, are applied to validate the observations 
across segments of EEG data [3]. However, visual inspection 
of EEG signals to find the important ERP patterns is sensitive 
to a priori assumptions and ignores trial-to-trial variabilities. 
Recently, techniques from the signal processing community 
have been used for EEG pattern recognition. Two primary 
application areas are signal analysis and data visualization. 

Signal analysis techniques, such as single-sweep analysis, 
automatically locate statistically significant patterns in EEG 
data using signal processing and pattern recognition method­
ologies. Single-sweep analysis deals with the estimation and 
parameterization of the event-related response in a single 

trial for the investigation of the ERP variabilities. Various 
algorithms for ERP single-sweep analysis have been reported 
in the literature [4]. 

Data visualization tools help researchers to explore datasets 
by creating visual representation of underlying relationships. 
Authors in [5] studied individual trials with a custom visu­
alization tool, and then used leA to separate ERPs, Non­
event related potentials, and artifacts. In [6], authors have 
developed a toolbox and graphical user interface, EEGLAB, 
for processing and visualization of collections of single-trials 
from any number of channels. 

These signal processing methods create an alternate repre­
sentation of EEG data. However, many analysis techniques 
in the neuroscience community depend on a signal-based 
representation. Also, studies show that ERPs appear in specific 
spatial regions of the brain at specific times and may be most 
prominent in certain frequency bands [7]. In the currently 
available single-sweep analysis methods, either the spatial or 
temporal regions of interest must be known in advance. The 
visualization tools offer an efficient and tailored method of 
exploring the dataset, but locating regions containing discrim­
inative ERPs is still a time consuming process. 

We address these issues by proposing a Spectral Spatio­
Temporal (SST) template extraction algorithm that automat­
ically searches for SST regions exhibiting significant dif­
ferences among experimental outcomes. To the best of our 
knowledge, no other research automatically finds a discrimi­
native time-domain representation of ERPs without a priori 

knowledge of regions of interest. Our method is further 
distinguished by time-aligned templates used to preserve im­
portant characteristics of the signal. The ability of the selected 
signal templates to differentiate between stimulus responses is 
verified using a pattern recognition procedure. 

II. VALIDATION DATASET 

The proposed algorithm is a general neuroscience-focused 
data mining algorithm to extract templates for finding spectral 
temporal-spatial differences between sets of EEG signals. We 
validate this algorithm with data taken from the standard 
GolNoGo task [8] in which the subject is instructed to push a 
button if shown Go, or to do nothing if shown NoGo. Stimuli 
are presented for 300 ms followed by 1700 ms of blank screen. 
The GolNoGo stimuli are shown in Fig. 1a. 
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Fig. 3: SST template extraction algorithm 

A. Data Collection and Preprocessing 

Continuous EEG was recorded using a 64-electrode Neu­

roscan Quickcap (shown in Fig. Ib) with a Neuroscan ampli­

fier and Scan 4.3.2 software sampled at 1 kHz. Fifteen subjects 

between the age of 18 and 31 completed the Go/NoGo task 

with 20 trials for the Go outcome and 20 trials for the NoGo 

outcome. The average of aU Go and all NoGo trials for the 

Fz electrode is shown in Fig. 2. 

B. Hypothetical Results 

Neuroscientists have found two significant ERP components 

elicited in the NoGo condition of a Go/Nogo task related to 

response inhibition: NoGo-N2 and NoGo-P3. NoGo-N2 is a 

negative deflection constrained to the frontal scalp locations. 

The NoGo-P3 is a large positive deflection and is present in 

frontal, central, and parietal regions [8]. Both ERPs are shown 

in Fig. 2. 

III. SST TEMPLATE EXTRACTION ALGORITHM 

The proposed algorithm extracts representative signals, 

called templates, from each stimulus response for a given 

spectral spatio-temporal (SST) region. This collection of tem­

plates is called a template set. The templates are time-aligned 

averaged signals of all EEG template extraction trials. A tem­

plate selection algorithm based on AdaBoost selects the most 

discriminative template sets from a list of semi-exhaustively 

extracted SST regions. 

In order to cover all spectral, spatial and temporal regions 

of the EEG signals, we propose an algorithm to generate 

different SST regions and then extract template sets from 

(a) Stimuli 

(b) EEGchannels 

Fig. 1: (a) Standard Go/NoGo task stimuli, (b) Modified 10-20 

standard EEG electrode position 

each region as shown in Fig. 3. In the time domain, the 

EEG signals are segmented by sliding rectangular windows 

of various duration over the signal with small step size. In the 

spatial domain, the EEG is recorded from 64 electrodes with 

different spatial location over the scalp. The electrodes are 

grouped together to study the effect of different spatial regions. 

There are 264 different combinations of electrodes. Making 

an exhaustive enumeration of spatial regions is impractical. 

Instead, a clustering algorithm is used to group electrodes into 

mutually exclusive clusters as explained in Section III-B. 

The signals in each cluster are averaged together to increase 

SNR. Then, a Discrete Time Wavelet (DTW) is applied to the 

averaged signal to decompose it into different frequency bands. 

Section III-C explains the frequency analysis algorithm. The 

output of several wavelet levels feeds to the SST template 

extraction part that is explained in Section III-A. 

A test trial can be labeled as an experimental outcome 

by finding closest matching template from the template set. 

The most discriminative template sets extracted from different 

SST regions can be selected in order of importance by using 

AdaBoost. AdaBoost selects templates in a way that minimize 

information overlap. The procedure to find the most discrim­

inative template sets is explained in Section III-D. 

The EEG signals from 64 electrodes are split into the 

training dataset and the test dataset. The training dataset 

is used for SST template extraction and AdaBoost training 

and the test dataset is used for validation of the results. 

The classification accuracy of selected SST templates on test 

dataset is demonstrated in Section IV. 

A. Temporal Analysis 

EEG signals have low SNR, therefore SST templates are 

created using an averaging technique because averaging de-

Fig. 2: EEG grand mean for aU subjects on the Fz channel 

(bandpass filtered from 0.5 Hz to 30 Hz) 
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creases uncorrelated noises. Fig. 4 shows the full SST template 
extraction technique for a single outcome. Each template in 
the template set is created in an identical manner. First, SST 
windowed EEG signals are extracted as described in Fig. 3. 
Next, an initial template is created by averaging the entire 
training set. Then each signal is time-aligned to the template 
and averaged once more to obtain the final template. This is 
done for each experimental outcome in a SST region to create 
a template set. 

1) Time Alignment: It is well recognized that ERPs are 
time-varying signals reflecting the averaged time courses of 
underlying neural events during cognitive processing. The 
cognitive processing and response mechanisms are reflected by 
distinct components that depended on a subject's psychologi­
cal state and may exhibit on different time onsets in different 
trials. 

Time-alignment can compensate for these offsets and is 
critical to template matching, as misalignment can reduce 
the apparent similarity between the template and the signals. 
Signals are aligned by maximizing a scoring function over a 
set of possible time offsets. Each template is expected to match 
in the time interval equals to 20% of template window size. 

2) Template Matching: With template matching, a similar­
ity measure is used to compare the template to a portion of the 
source signal. A common similarity measure is the Euclidean 
distance between the signal and template. The Euclidean 
distance is computed between the template, 'I, and a portion 
of the signal, I, equal in duration, starting at time T. 

Matching the signal shape is more important than matching 
exact amplitudes, which vary due to subject differences, qual­
ity of the electrode contacts, etc. Normalizing the template and 
signal vector to zero-mean unit vectors constrains the matching 
to the surface of a hypersphere of unit radius. This constrained 
matching is more shape-oriented than the simple Euclidean 
distance. We will show that this measure produces equivalent 
ranking to the standard normalized cross-correlation (NeC) 
measure, "/ described by Lewis [9]. 

Theorem 1. The normalized Euclidean distance produces 

measures with equivalent ordering to the normalized cross 

correlation. 

Proof" In and 'In refer to the normalized versions of I 
and 'I. 

do ('In, In, T) Normalized Euclidean distance 

� d6('Jn,ln,T) Equivalent with respect to ordering 

SST Template Extraction 

Fig. 4: Procedure for generating SST templates 

= L [In(t + T) - 'In(t)f 

= L [I�(t + T) - 2ln(t + T)'Jn(t) + 'J;(t)] 
t 

The next step follows because In and 'In are normalized. 

= 2 - 2 L [In(t + T)'Jn(t)] 
t 

� L In(t + T)'Jn(t) Reversed order equivalent 
t 

V'Lt[l(t + T) - ItP Et['J(t) - TtP 
= ,,/('J, I, T) Normalized cross-correlation 

B. Spatial Clustering 

(1) 

• 

Electrodes in a given region often observe similar responses. 
The temporally windowed EEG signals are bandpass filtered 
from 0.5 Hz to 100 Hz and for each electrode are averaged 
on all trials. Averaging EEG signals recorded from these 
electrodes can increase SNR. Hierarchical agglomerative clus­
tering [10] is used to group electrodes based on similarity 
of observed signals. The clustering initially assigns each 
electrode to a unique cluster. In each iteration, the closest 
clusters are combined until a stopping criterion is reached. 

We used a complete linkage inter-cluster distance measure. 
The distance between clusters A and B is defined as: 

L(A,B) = maxdist(ei,ej) i E A,j E B (2) 
t.) 

where dist( ei, ej) is the distance between electrodes ei and 
ej and ,,/(ei,ej,O) is the normalized cross correlation function 
that is defined in (1) without any time-alignment. 

(3) 

The termination criterion used in this experiment was 
L = 0.8. All the EEG electrodes that belong to a cluster are 
averaged together as input for the spectral analysis. 

C. Spectral Alalysis 

Typically, ERP analysis is performed in the time domain, 
where the amplitudes and latencies of prominent peaks in 
the averaged potentials are measured and correlated using 
information processing mechanisms. However, analysis in the 
frequency domain has revealed that EEGIERP frequency com­
ponents in different frequency ranges (delta, theta, alpha, beta, 
gamma) are functionally related to information processing and 
behavior [11]. 

The wavelet transform (WT) is an efficient time-frequency 
decomposition method. For discrete time signals like EEG, 
the Discrete Wavelet Transform (DWT) is found to yield a fast 
computation of the Wavelet Transform. The DWT is computed 
by successive lowpass and highpass filtering of the discrete­
time signal. We used eight levels of Daubechies wavelet order 
3 that has fewer sharp edges to take advantage of the similarity 
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Algorithm 1 Generating semi-exhaustively SST template sets 

for w = W min to W max by Ws do {Select window sizes} 
for t = Tmin to Tmax - w by Ts do {Select start times} 

for f = Fmin to Fmax by 2', i E {2 , ... , 7} do {Select frequency 
bands} 

for all Ri E ::R do {Each spatial cluster} 
'Jw,t,f,i = 0 
for all Aj E A do {For each experimental outcome} 

'Jw,t,J,i,j = createTemplate(w, t, f, Ri Aj, datatrain) 
'Jw,t,f,i +- 'Jw,t,f,i U {'Jw,t,J,i,j} 

end for 
aCCi,w,t = test('Jw,t,J,i, datatest> 

end for 
end for 

end for 
end for 

between the typical shape of ERPs and the wavelet function. 
To preserve the signal shape and length, we omitted the 
decimation step for each filter level from the standard wavelet 
transformation procedure. 

D. Locating the Most Discriminative Template Sets 

Finding the most discriminative template sets is a two­
step process. The first step is creating a large group of 
template sets from various SST regions. The second step is 
choosing the most relevant SST regions .. The original list of 
template sets is created semi-exhaustively by the procedure in 
Algorithm 1. For our study, the eight frequency bands start at 
Fmax = 512 Hz then go to Fmin = 0 Hz in step of 2i Hz, 
i E {2, ... ,8}. Window sizes range from Wmin = lOO ms to 
W max = 400 ms in steps of Ws = 50 ms. Times range from 
T min = 0 ms to T max = 1000 ms in steps of Ts = 10 ms. It 
is important to try different window sizes: too small a window 
may miss relevant details, while too large a window may 
contain irrelevant or inconsistent signals. 

Choosing the most discriminative SST regions is achieved 
by applying the AdaBoost algorithm on the template sets. 
The template matching procedure for each template set is 
considered as a weak classifier. A weak classifier labels a trial 
as one of the experimental outcomes based on the similarity 
measure between the trial and the templates of that outcome. 
In the GolNoGo experiment, we label a given trial, f, 1 if it 
is "Go" and -1 if it is "NoGo": 

label(f) = sign (scoreGo(f) - scoreNOGO(f)) (4) 
For each experimental outcome, Ai, scoreA; (.) is defined 

as: 

scoreA;(f) = ')'(TA;,f,Ti), Ti E [-R,R] (5) 

where ,),(.) is the normalized cross correlation function be­
tween the trial and the template of that outcome with time 
offset Ti. We consider R = 0.2 x IITAJlo, that means the 
maximum time shifting is equal to 20% of template length. 

AdaBoost is applied on all weak classifiers to locate the 
most discriminative template sets in training portion of data 
set. The details of AdaBoost algorithm are described by 
Schapire and Freund [12]. 

IV. EXPE RIMENTAL RESULTS 

For template extraction, the trials from the GolNoGo ex­
periment were split into training and test sets. The training 
set contains 15 Go and 15 NoGo trials per subject. The test 
set contains 5 Go and 5 NoGo trials per subject. The template 
sets were built based on the SST template extraction algorithm 
described in Section III. The most discriminative template sets 
were selected with AdaBoost as described in Section III-D. 
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Fig. 5: AdaBoost classification accuracy at different rounds on 
training and test dataset 

A. General SST Template Extraction Results 

Table I shows the selected templates with their spectral and 
temporal information that were selected by AdaBoost in the 
first fifteen rounds. As described in Section III-D, AdaBoost 
will greedily select template sets based on performance on the 
training set. The "Acc trn each" shows the classification accu­
racy of individual template set on training set in each round 
and "Acc trn Ada" shows the overall AdaBoost performance 
after that round. 

We choose to terminate after round r = 15 to avoid 
overfitting. In Table I, the "Acc tst each" and "Acc tst Ada" 
show the classification accuracy of individual template set 
on the test set in each round and the overall AdaBoost 
performance after that round, respectively. Also, Fig. 5 shows 
the learning rate of AdaBoost on the training data as well as 

TABLE I: Selected templates by using AdaBoost 

Rnd Window Start Frq. Acc tm Acc lSt Acc tm Acc lSt 
# (ms) (ms) (Hz) each each Ada. Ada. 
I 300 161 4-8 70% 59% 70% 59% 
2 350 21 0-4 69% 63% 70% 60% 
3 300 I 8 -16 57% 53% 73% 52% 
4 200 101 8 -16 62% 54% 74% 57% 
5 350 381 8 -16 60% 57% 74% 60% 
6 300 561 0-4 63% 59% 76% 58% 
7 150 101 4-8 59% 60% 77% 63% 
8 200 61 0-4 57% 56% 78% 62% 
9 350 81 4-8 59% 53% 78% 64% 
10 350 361 16 -32 61% 58% 78% 60% 
II 250 621 4 -8 54% 53% 78% 66% 
12 400 461 4 -8 61% 57% 79% 64% 
13 100 521 8 -16 57% 58% 79% 70% 
14 100 101 4 -8 62% 57% 80% 64% 
15 350 61 16 -32 55% 54% 80% 65% 
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Fig. 6: The most discriminative template sets selected by 
AdaBoost (dash: NoGo, solid: Go) 

corresponded classification accuracy on test data. The final 
classification accuracy after round r = 15 is 65%. The 
statistical significance of this result (x = 0.65, n = 60) was 
verified using the Student's t test. This accuracy cannot be 
attributed to chance alone for our test set (p = 0.008). 

It can be seen from Fig. 5, the maximum classification 
accuracy in the test dataset occurs after round r = 13. After 
this round, because of overfitting, the performance on the 
training dataset still increases while the performance on test 
dataset levels off until r = 21, and after that becomes worse. 

B. Comparison to Hypothetical Results 

The first five most discriminative template sets for Go and 
NoGo and their spatial regions are shown in Fig. 6. Recall 
from Section II-B, N2 is strongest over the frontal region, 
and P3 is strong for most other locations. The presence or 
absence of N21P3 can be ascertained by visually inspecting 
Fig. 6 and comparing the template window location to the 
temporal locations specified for N2 and P3 in Fig. 2. There 
is a large difference between amplitudes of Fig. 2 and Fig. 6. 
The grand mean is produced from an average of signals which 
have not been aligned, and therefore have significantly less 
coherence than aligned signals. Less coherence results in lower 
amplitudes. 

The first selected template set that is shown in the first row 
of Fig. 6 is in the Fronto-Center (FC) region and clearly shows 
N2 and P3 in Theta band (4 - 8 Hz). The second template 
set almost covers the Central (C) region. The NoGo-P3 and 
the Go-P3 in this template appear in Delta band (up to 4 Hz) 
and the NoGo-P3 has larger amplitude in comparison to Go­
P3. The next three template sets in Fig. 6 are in a higher 
frequency band (8 - 16 Hz). This frequency band contains the 
whole Alpha band (8 - 12 Hz) and early part of Beta band 
(12 - 30 Hz). These template sets do not contain N2 or P3 
but as Fig. 5 shows, their contribution in recognition results 
in increasing classification accuracy. 

These results are consistent with the hypothesis, and further 
show one of the strengths of proposed template extraction 
algorithm for finding unexpected regions of interest. When 
visually inspecting the grand mean, it is tempting to choose 
places where the grand mean shows the most significant 
variation between outcomes, such as at P3 and N2. However, 
sometimes smaller variations are more consistent between 
subjects and trials. Our method is capable of locating such 
ERPs. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a signal-based template ex­
traction algorithm to datamine relationships in EEG signals. 
The proposed method generates templates from each stimulus 
response for different time windows, spatial locations and 
frequency bands by using a matching algorithm based on 
normalized cross correlation. A template selection algorithm 
based on AdaBoost selects the most discriminative template 
sets from a list of semi-exhaustively extracted SST regions for 
the recognition purpose. Experiments on data from a GolNoGo 
task show that it not only highlights known relationships, but 
also picks up differences that have significant discriminating 
power, even when they appear less pronounced on the grand 
mean. The next step in this research could be using data 
mining and regression technique to find a predictive equation 
for an independent value observed for each trial. 
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