
BCIBench: A Benchmarking Suite for EEG-Based
Brain Computer Interface

Abstract— Increased demands for applications of brain

computer interface (BCI) have led to growing attention towards
their low-power embedded processing architecture design. Most
clinical, wellness, and entertainment applications of BCI require
wearable and portable devices. Better understanding of
application characteristics in terms of computational complexity,
memory usage, and power consumption can lead to more
effective system designs for future wearable BCIs. In this paper,
we introduce BCIBench, a benchmarking suite which includes a
wide range of algorithms used for pre-processing, feature
extraction and classification in BCI applications. We analyze the
architectural characteristics of these algorithms such as
performance, parallelism, data-intensiveness and memory
behavior. We provide insights into architectural components that
can enhance the performance and reduce the power consumption
of BCI embedded systems using these applications.

Keywords—brain computer interface; wearable; low-power;
signal processing algorithms; benchmarking;

I. INTRODUCTION
Recently, embedded systems have been deployed in many

applications and become an integral part of daily life. Cell-
phones, music players, electronics in cars and patient
monitoring devices are some examples of the widely used
embedded systems. Real-time computing and signal processing
are the principal requirements of these systems. On the other
hand, they have limited available resources such as memory,
computational resources, screen size, key inputs, etc. This is a
crucial property to consider during the design, development
and assessment of these systems.

Wearable computers are embedded systems positioned on
the body that have the capability of sensing, processing, and
communication. Wearable computers promise novel uses in
healthcare, wellness, and entertainment. Physiological sensors
are one category of sensors deployed with wearable computers
that can measure blood pressure, blood oxygenation,
electrocardiography (ECG), and electroencephalography
(EEG). EEG-based brain computer interface (BCI) is an
example of wearable computers where EEG sensors provide
communication channels to translate brain rhythms of an
individual into application-specific signals for external devices.
BCI systems allow a person to use mental processes to
communicate with external devices without relying on
neuromuscular control [1, 2].

Recently, there has been a dramatic growth in BCI research
which demonstrates its application potentials from clinical
domains to gaming and entertainment applications [2, 3]. There
has been also a growing interest in developing real-time
wearable embedded BCIs [4]. In BCI systems, signal
processing algorithms and several other parameters such as
sampling frequency, number of channels, processing window,
and number of features are determined by application

requirements. Thus, besides managing the limited available
resources, it is crucial to use programmable architectures to
amortize cost of a design for many related applications while
considering the aforementioned parameters.

There are several platforms that can be used to implement a
BCI embedded system. In an ASIC design, designers optimize
their design based on the target algorithm specification.
Microcontroller-based architecture is another technique which
requires benchmarks to accomplish the optimization and
evaluation of a design. Another promising approach that
recently attracts much research interest is using hardware
accelerator along with microcontrollers in order to reduce the
power consumption. In this approach, a hardware accelerator is
dedicated to the power hungry processing blocks and a
microcontroller is used to handle the rest of the processing
blocks. The hardware accelerator is employed in many research
studies such as in seizure detection system [5], or cardiac
monitoring system [6]. In order to optimize an implementation
design, all the above-mentioned approaches require taking into
account the characteristics of the target BCI application.

The ASIC design requires computation and memory
behaviors of the application. In microcontroller-based
techniques, parallelism, efficient cache configuration and
resource usage of the application are required for the design
optimization. In the accelerator-based method, detailed
characteristics of each individual algorithm in the processing
flow are required to identify the bottleneck of power
consumption in the processing flow. Thus, regardless of the
implementation platform, a suitable benchmarking suite is
necessary to address these demands to optimize and evaluate
the embedded BCI designs. Benchmarking not only can
facilitate architecture customization based on application
specifications, but also can empower hardware/software co-
design. In the hardware/software co-design methodology, the
computations are assigned to various processing elements such
as general purpose processors and hardware accelerators.
Target objectives on power consumption and throughput
requirements will drive decisions on hardware/software co-
design.

Currently, a number of benchmarking suites are developed
targeting a variety of domains. SPEC [7] is one of the most
widely used benchmarking suites that evaluates the
performance of general purpose computers. With the extensive
growth in the use of embedded systems, several benchmarking
suites for embedded systems have been introduced such as
Mibench [8]. The authors introduced embedded applications in
six different categories and compared several characteristics
such as instruction distribution and memory behaviors of their
benchmark suite to those of the SPEC benchmarks. There are
other domain-specific benchmarking suites developed for of
embedded systems such as ImpBench [9] for implantable

architectures, PARSEC [10] for Chip-Multiprocessors (CMPs),
MEVBench [11] for mobile computer vision applications.

Although a few of the BCI signal processing algorithms
were presented as part of larger benchmarks, there is no
domain-specific benchmarking suite that covers different
components of the BCI signal processing algorithms.
Moreover, to identify the challenges and bottlenecks of a BCI
application, power and performance analysis of end-to-end
signal processing flow is necessary which to our knowledge is
not investigated in previous benchmarking suites. Also
researchers in the BCI area primarily focus on high-level
optimization to improve the system accuracy. Thus, there is a
lack of benchmark suites for power and computational analysis
of the signal processing algorithms in BCI embedded systems.

In this paper, we introduce BCIBench as a benchmarking
suite that includes the most widely used BCI signal processing
components for wearable embedded applications. We also
include several end-to-end signal processing algorithms such as
motor imagery and P300 detector BCIs. To the best of our
knowledge, BCIBench is the first benchmarking suite
dedicated to BCI. Our key contributions in this paper are listed
in the following:

• We introduce a new benchmark suite, which covers a set of
applications and signal processing algorithms in the BCI
domain.

• We perform a detailed micro-architectural analysis of the
benchmark indicating performance and memory
characteristics.

• Based on the breakdown analysis of individual blocks in the
end-to-end applications, we identify the power hungry
blocks for further optimization. This analysis shows how
future embedded architectures can better serve BCI
applications and enhance their power and performance.

The rest of the paper is organized as follows. In section 2,
we briefly describe applications of BCIBench. Benchmark
characterization with a detailed analysis is covered in section 3.
Section 4 covers breakdown analysis of the BCI applications.
A brief discussion presented in section 5. Finally, section 6
concludes the paper.

II. BENCHMARK DETAILS

Fig. 1. The overview of a typical BCI application.

BCI applications consist of several signal processing
components as shown in Figure 1. First, recorded brain signals
are enhanced with filters or re-referencing algorithms. Then
discriminative time and frequency features are extracted from
the filtered signals. Extracted features are fed to the classifier
to produce corresponding output control signal which depends
on the specific BCI application. Several studies summarize a

comprehensive survey of signal processing methods in BCI
applications [12, 13]. Considering the feasibility requirements
of low power implementation and limited available resources
for wearable embedded BCIs, we selected algorithms with
medium to low computational complexity for each of the
components. Table I, summarizes the BCIBench programs and
applications.

TABLE I. PROGRAMS IN THE BCIBENCH

Pre-processing
Common Average Referencing (CAR)
FIR Filter (FIR)
Surface Laplacian Referencing (Lap)
Feature Extraction
Autoregressive (AR)
Band-Power (BP)
Fast Fourier Transform (FFT)
Higuchi
Hjorth
Wavelet Packet Decomposition (WPD)
Classification
K-Nearest Neighbor (KNN)
Linear Discriminant Analysis (LDA)
Multilayer Perceptron (MLP)
Support Vector Machine (SVM)
End-to-end Applications
BCI1: Motor Imagery BCI
BCI2: VEP BCI
BCI3: Motor Imagery BCI
BCI4: P300 BCI

A. Pre-Processing
In most BCI applications, pre-processing is performed on

the recorded brain signal prior to the feature extraction due to
low signal-to-noise ratio of the signal. In common average
referencing (CAR), average value of the samples of all
channels at the current time is subtracted from each sample.
Laplacian reference adjusts the signal of each channel by
removing the average of neighbor channels. Filtering is a very
common pre-processing in BCI applications. FIR filters are
very popular because of their simple architecture for hardware
and software implementation.

B. Feature Extraction
Features are the key characteristics of brain data that

encode the intent of the user. Typical features of the brain
signals include time domain features such as amplitudes or
latencies of event-related potentials and frequency domain
features such as power spectra and power of different
frequency bands. BCIBench includes Autoregressive (AR)
algorithm [14], Band-Power (BP) [15], Fast Fourier Transform
(FFT), Higuchi Algorithm [16], Hjorth Algorithm [17], and
Wavelet Packet Decomposition (WPD). For more details of the
algorithms and implementations, please see to the references.

C. Feature Classification
The last component in BCI applications is the classifier.

The classifier usually employs previously recorded data (online
or offline) to generate a model. Then, during the real-time
process, they use the trained model to classify the unseen input
data. BCIBench comprises four different classifiers that are
widely used in BCI applications: 1) Support Vector Machine

 Brain
Signal

Acquisition

Feature
Extraction

Control
Signal

Pre-
processing

Classification

Feature Generation

(SVM), 2) Linear Discriminant Analysis (LDA), 3) K-Nearest
Neighbor (K-NN), 4) Multilayer Perceptron (MLP): MLP. For
more details, please refer to [18].
D. End-to-end BCI Applications

BCI applications may utilize different algorithms in the pre-
processing, feature extraction and classification stages to
interpret the brain signals. There are three major applications
that are widely used for BCIs:

• SensoriMotor Rhythm (SMR) classification:
Comprise mu and beta rhythms, which are the oscillations
in the brain activities localized in the mu (7-13 Hz) and the
beta bands (13 – 30 Hz). The amplitude of these rhythms
varies during cerebral activity of the brain. Cerebral activity
is related to motor tasks such as moving a cursor on a
screen or controlling a robot [19]. In BCIBench, BCI 1 and
BCI 3 end-to-end applications are from this category.

• Visual Evoked Potential (VEP) detection:
VEPs reflect processing of visual information in the brain.
For instance, when the user looks at a light flashing with a
constant frequency, the flashing frequency is induced in his
EEG signal. The goal is to detect this frequency reliably
while the user looks at the stimulus. This paradigm can be
used for wheelchair or robot control. BCI2 in the BCIBench
is a VEP-based system illustrated that presented in [20].

• P300-Evoked Potential detection:
When infrequent auditory or visual stimuli are combined
with routine stimuli, a positive peak in the EEG is evoked
at about 300ms, called “P300”, which has been first used as
a BCI control signal in [21]. BCI4 in BCIBench is a P300-
based BCI for an image selection task. Feature extraction
includes down sampling and noise removal.

Table II shows preprocessing, feature extraction and
classifier that is implemented for each of the BCI applications.

TABLE II. END-TO-END BCI APPLICATIONS IN BCIBENCH.

System BCI1 BCI2 BCI3 BCI4
BCI category Motor Imagery VEP Motor Imagery P300
Pre-processing CAR FIR Lap FIR
Feature extraction BP FFT AR DownSample
Classifier LDA LDA MLP LDA

III. BENCHMARK CHARACTERISTICS

A. Why BCIBench?
Most clinical, wellness, and entertainment applications of

BCI require wearable and portable devices. Therefore, there
has been a growing interest towards their low-power embedded
architecture design. There are many efforts in developing such
devices from g.tec system [22] which is a dry electrode real-
time EEG acquisition system to neural dusts [23], which are
tiny electronic sensors the size of dust particles scattered onto
the cerebral cortex.

As discussed in section II, BCI systems comprise specific
signal processing components that may vary for different BCI
applications. There are also other parameters such as sampling
frequency, number of channels, processing window, and

number of features that are determined by application
requirements. Better understanding of application
characteristics in terms of computational complexity, memory
usage, and power consumption can lead to more effective
system designs for future wearable BCIs. It is also crucial to
use programmable architectures to minimize the cost of a
design for many related applications.

Researchers in the BCI area primarily focus on high-level
optimization to improve the system accuracy. Thus, there is a
lack of benchmark suites for power and computational analysis
of the signal processing algorithms in BCI embedded systems
to identify the challenges and bottlenecks of a BCI application.
Therefore, a domain-specific benchmarking suite that covers
different components of the BCI signal processing algorithms
is necessary to analyze power and performance of end-to-end
signal processing flow which to our knowledge is not
investigated in previous benchmarking suites.

B. Experimental Setup
In order to evaluate the components that constitute

BCIBench, we use MARSS x86 simulator [24]. MARSS is an
open source simulation tool built on QEMU. All components in
BCIBench were compiled using GNU gcc compiler suite
version 4.5. MARSS provides a cycle-accurate simulation
model for Intel Atom core. Each simulated core is configured
as 2-wide in-order machine with 16 load/store buffer entries.
Each core has a private 32KB, 2-way set associative L1 cache
for instruction and data, and shared L2 cache of size 512KB.
We use 100MHz as core frequency. All private caches are kept
coherent using the write back protocol on an on-chip split-
phase bus.

BCIBench applications are designed to have the parametric
property which enables us to run them with any desired
configuration. These parameters vary according to the BCI
application. For example, clinical epilepsy detection needs 128
channels with 1 KHz sampling frequency while EEG headsets
which are used for gaming have 1-4 channels with 128 samples
per second. We set the application parameters for our analysis
according to Table III. In a BCI application, a trial is a window
of time that is required to process brain signals to detect a
desired pattern. In this work, each EEG trial has one second of
data for 8 channels. With the configuration described in Table
III, each trial has 4096 samples. All simulations are repeated
for 100 trials of input data to ensure that a stable behavior in
simulator is obtained.

TABLE III. BCIBENCH APPLICATION PARAMETERS.

Parameter Pre-processing Feature extraction Classifier
sampling frequency 512 512 NA
#of channels 8 8 NA
processing window 1 1 NA
of features NA 40 40
of training vector NA NA 100

In the previous benchmarking suites, all the analysis
belongs to running algorithms as well as loading input data to
the main memory. This results in incorrect information because
I/O file transfer has excessive latency and a significant part of
the execution time goes to reading input data files. To resolve
this issue, we modified MARSS to collect statistics of any

region of interest in the implementation. This enables us to start
collecting statistics after the input data is completely loaded
into the main memory.
C. Data Set

Providing data sets corresponding to the applications of a
benchmark suite is extremely valuable. In this work, instead of
using standard data sets, we use real EEG data which was
recorded from a state-of-the-art EEG machine during the P300
spell checker, motor imagery and VEP paradigms.

D. Computational Complexity Analysis
In ultra-low power design methodology, voltage scaling is a

popular approach to reduce energy consumption. In this
approach, the supply voltage adjusts according to the peak
frequency of the application. Execution time in terms of the
number of cycles per second as the peak frequency is a good
representation of an algorithm or application requirement.
Figure 4 shows the number of cycles per second for BCIBench
applications. It also illustrates the difference between the
computational complexities of various BCI signal processing
components (e.g., filters). In our previous work, we
investigated high-level optimization considering computational
cost as well as classification accuracy in feature selection
process [25].

 Instruction level parallelism (ILP) is a measure of “how
many” operations can be performed simultaneously and is
represented using instructions per cycle (IPC). This parameter
depends on several factors such as the issue width of the
processor, branch prediction accuracy, number of resources,
cache configuration (size, number of read/write ports, miss
rate, etc.), and instruction dependencies. Figure 5 shows the
IPC of the BCIBench applications for the simulated core. It
shows the variation of the IPC values among BCIBench
applications. The variations show the architectural implications
of the instruction dependency and branch prediction accuracy
for each program.

 Overlap processing is very popular in real-time analysis.
In this method, the processing window should be able to slide a
variable amount from the current window. For example, if we
assume 80% overlapping, five windows will process during
one second. Thus, it is desirable to measure the throughput of a

BCI signal processing flow. Figure 6 shows the throughput for
BCIBench algorithms and applications. For an end-to-end
application, throughput is measured as the number of trials that
can be processed per second, and for a single algorithm it
shows how frequently the core can process that algorithm in
one second. In the BCI domain, throughput requirement
depends on the application. For instance, gaming and
entertainment applications require high throughput while the
spell checker application has lower throughput requirement.

E. Memory Characteristics
Embedded systems typically use Reduced Instruction Set

Architecture (RISC) processors which require higher memory
due to low code density and load/store architecture of RISC
processors. In an embedded system, memory system occupies a
large portion of power budget and area. Therefore, in order to
properly design low-power wearable systems, the memory
demands of application must be served efficiently. Access time
and energy per access are two key metrics in memory system
of any application. However, in low-power wearable
applications, data rate is low and due to power constraints,
energy per access is more important. In a memory system,
cache miss translates to a larger energy per access due to
accessing slower and larger memories in the higher level.
Figure 7 shows the miss rate for instruction cache. The
instruction cache miss rate depends on the instruction
sequence, e.g., number of jump and branches, branch
predication accuracy and cache configuration. AR and BP
algorithms have similar number of instructions, but due to the
lower branch prediction accuracy in the AR, it has a higher
instruction miss rate. Figure 8 shows the miss rate for L1 data
cache. Data cache miss rate mainly depends on how the
program accesses the data. Programs which access data with
spatial and temporal locality have lower data cache miss rate.
FIR and CAR are both preprocessing algorithms that operate
on a matrix of data (rows correspond to various channels and
columns correspond to samples acquired from each channel).
FIR algorithm is applied to each channel individually, so it
benefits from a suitable locality in data accesses. In CAR
algorithm, it requires the current sample from all channels (i.e.
accesses to the data matrix is column based and not row based).
Therefore, data cache miss rate is higher than that of the FIR.

As mentioned earlier, in voltage scaling which is a
promising method for power reduction, it is important to
determine the activity level of the unit of interest to adjust the
supply voltage accordingly. In the cache design, the average
number of accesses per second is a measure of the activity
level. Therefore, we measured data cache accesses per second
for BCIBench applications as shown in Figure 9.

IV. ARCHITECTURE IMPROVEMENT
Regardless of the implementation platform, a benchmark

suite can be used in order to optimize a design in terms of
power and performance. In the design of wearable computers, a
new trend that has recently become popular is to use a
microcontroller along with a hardware accelerator to meet
power constraints. In this method, the block which consumes
the majority of power in the signal processing flow is detected.
Then, a special purpose hardware accelerator is used to
implement the block to reduce the application power
consumption. Thus, it requires a breakdown analysis of
individual algorithms in the processing flow. BCI signal
processing flow may change by changing the target
application. Therefore, developing a hardware accelerator for a
specific algorithm restricts the design only to the underlying
application. This motivates the designers to use reconfigurable
hardware accelerator. These accelerators include some general
functional units (FUs) and several specific FUs that can be
configured using configurable interconnections.

 According to Figure 1, a BCI application comprises three
major blocks, including pre-processing, feature extraction and
classification. We analyze each individual block of the BCI
end-to-end applications for power, performance and memory
behaviors. For this purpose, we use metrics such as the number
of instructions, throughput, resource usage, and resource
utilization. Table IV shows the breakdown analysis for the end-
to-end BCI applications. According to the Intel document [27],
Atom core consumes 3.6W power for 1GHz clock. We
calculate power consumption of each algorithm according to its
execution time ((cycles_per_second/1e+9)*3.6). Information
reported in Table IV can be used for variety of purposes. For
instance, one important application parameter is the sampling

frequency that needs to be carefully selected based on the
requirements of the algorithms. In Table IV, we investigate
cycles per sample and instructions per sample as the
complexity measures of processing one input sample.
Therefore, one can use these measures to estimate
computational complexity of each block of the BCI application
for different sampling frequency, as well as different number of
channels, processing window, etc. These measures can also be
used to calculate the peak computational requirements of each
algorithm to adjust the proper supply voltage. Table IV also
shows power and performance bottlenecks of the signal
processing flow. As shown for BCI1, 2, and 3, feature
extraction (i.e. BP, FFT, and AR) is the most computationally
expensive block while in BCI4, preprocessing (i.e. FIR) is the
bottleneck. This investigation is a guideline for designers to be
able to reduce power consumption of specific blocks.

Response time is the amount of time that the core takes to
complete the processing. Number of accesses to L1 data cache
per second is an estimate of frequency of usage for L1 data
cache. Resource utilization is the percentage of the time that a
functional unit is actually occupied, as compared with the total
time that the unit is available for use (Atom core has two
integer ALUs, two Floating-point units and two address
generation units (AGUs)). The last three columns show the
absolute usage of those six ALUs. As we can see from Table
IV, the utilization of AGUs is 30% larger than that of floating-
point ALUs and 65% larger than the utilization of integer
ALUs that shows high memory activity in BCI applications.
Therefore, a functional unit for address generation purpose can
improve both the performance and power consumption of the
architecture. Another observation is that the maximum
utilization of functional units of Atom core by BCI applications
is 18%. Therefore, embedded BCI applications do not require
complex architectures with several ALUs. Therefore,
architectures with single ALU in the data path will results in
higher utilization and very low power consumption. An
example of those architectures that might be potential
architectures for BCI can be found in [28].

Parallelization and multi-core processing is an effective
approach to reduce the power consumption for several
applications [29]. However, for wearable embedded BCI

TABLE IV. BREAKDOWN ANALYSIS OF END-TO-END BCI APPLICATIONS.

A
pp

lic
at

io
n

A
lg

or
ith

m

Po
w

er

(m
W

)

C
yc

le
s

pe
r

sa
m

pl
e

C
yc

le
s

pe
r

se
co

nd

(M
ill

io
ns

)

In
st

ru
ct

io
n

pe
r

sa
m

pl
e

In
st

ru
ct

io
n

pe
r

se
co

nd

(M
ill

io
ns

)

L
1D

_a
cc

es

pe
r

sa
m

pl
e

R
es

po
ns

e
tim

e(
Se

co
nd

)

T
hr

ou
gh

pu
t

IN
T

_A
L

U

ut
ili

za
tio

n
(%

)

FP
_A

L
U

ut

ili
za

tio
n

(%
)

A
G

U

ut
ili

za
tio

n
(%

)

IN
T

_A
L

U

us
ag

e
(T

ho
us

an
ds

)

FP
_A

L
U

us

ag
e

(T
ho

us
an

ds
)

A
G

U
 u

sa
ge

(T

ho
us

an
ds

)

B
C

I1
 CAR 2.76 188 0.77 64 0.26 36 0.0077 130 0.475 0.089 0.482 131 4 133

BP 46.82 3175 13 1280 5.24 863 0.13 8 6.906 2.856 12.514 1903 131 3448
LDA 0.01 1 0.003 1 0.001 1 0.0001 10000 0.001 0.001 0.002 0.4 0.05 0.5
Total 49.59 3364 13.77 1345 5.5 900 0.1377 7 7.382 2.946 12.998 2034 135 3581

B
C

I2
 FIR 4.33 293 1.20 101 0.41 102 0.012 83 0.183 0.317 0.681 85 25 317

FFT 79.43 5387 22 1505 6.17 703 0.22 5 5.551 18.634 6.059 2583 1445 2820
LDA 0.01 1 0.003 1 0.001 1 0.0001 10000 0.001 0.001 0.001 0.4 0.05 0.5
Total 83.77 5681 23.2 1607 6.58 806 0.232 4 5.735 18.952 6.741 2668 1470 3137

B
C

I3
 Lap 9.59 650 2.66 251 1.03 139 0.027 38 1.663 0.082 1.761 499 4 528

AR 44.30 3004 12.3 1101 4.51 601 0.123 8 6.783 4.499 7.798 2035 225 2339
MLP 0.11 7 0.03 1 0.01 1 0.0003 3333 0.018 0.006 0.018 5 0.3 5
Total 54 3661 14.99 1353 5.55 741 0.1503 7 8.464 4.587 9.577 2539 229 2873

B
C

I4
 FIR 4.33 293 1.20 101 0.41 102 0.012 83 3.152 5.464 11.737 85 25 317

DS 0.52 35 0.143 14 0.06 8 0.0014 698 1.023 0.001 1.088 28 0.005 29
LDA 0.02 1 0.003 1 0.001 1 0.0001 10000 0.024 0.019 0.036 0.6 0.09 1
Total 4.87 329 1.35 116 0.47 111 0.0134 74 4.199 5.484 12.861 114 25 347

systems with low operating frequency, multi-core architecture
may increase power consumption. Because, a small portion of
power consumption goes to the processing in these
applications. Thus, multi-core architecture which requires extra
complexity for dispatching processing among cores and
handles communications of cores, increases the power
consumption. Also, due to low operating frequency of these
applications, the operation frequency of cores will be
consequently low that extra leakage power will dominate
dynamic power reduction.

Our observations illustrate the implementation of BCI
signal processing algorithms with Atom architecture. However,
the benchmarks provided in this study may be analyzed in
conjunction with other architectures of interest. We will
continue to expand our investigations with other open-source
low-power cores. The BCIBench suite will be available on our
website and a link will be provided in the camera-ready
version.

V. CONCLUSION
Wearable BCI applications are gaining popularity due to

the advances in creating small electronic circuits and
processing units, as well as easy-to-wear EEG electrodes. In
this work, we presented BCIBench as a novel benchmarking
suite for wearable BCI applications. BCIBench provided a
range of BCI algorithms for pre-processing, feature extraction
and classification to evaluate BCI wearable embedded
architectures. We evaluated memory behavior and performance
of BCIBench using MARSS simulator for Intel Atom core. Our
analysis was a guideline for designers to be able to design
efficient memory system and reduce power consumption of
specific blocks. For further architecture improvement to meet
power constraints of low power BCIs, we analyzed individual
blocks of the signal processing flow. One can use these
measures to estimate computational complexity of each block
of the BCI applications with different parameters. It can also be
used to measure the peak computational requirements of each
algorithm to adjust the proper supply voltage.

VI. ACKNOWLEDGMENT
This work was supported in part by the TerraSwarm

Research Center, one of six centers supported by the STARnet
phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

REFERENCES
[1] G. Schalk, K. Miller, N. Anderson, J. Wilson, M. Smyth, J. Ojemann, D.

Moran, J. Wolpaw, and E. Leuthardt, “Two-dimensional movement
control using electrocorticographic signals in humans,” Journal of neural
engineering, vol. 5, p. 75, 2008.

[2] B. Rebsamen, C. Teo, Q. Zeng, M. Ang Jr, E. Burdet, C. Guan, H.
Zhang, and C. Laugier, “Controlling a wheelchair indoors using
thought,” IEEE Intelligent Systems, pp. 18–24, 2007.

[3] A. Nijholt, D. P.-O. Bos, and B. Reuderink, “Turning shortcomings into
challenges: Brain–computer interfaces for games,” Entertainment
Computing, vol. 1, no. 2, pp. 85–94, 2009.

[4] Chin-Teng Lin et. al, “Development of Wireless Brain Computer
Interface With Embedded Multitask Scheduling and its Application on
Real-Time Driver's Drowsiness Detection and Warning,” Biomedical
Engineering, IEEE Transactions on , vol. 55, no. 5, pp.1582,1591, 2008

[5] N. Verma et al., “A micro-power eeg acquisition soc with integrated
feature extraction processor for a chronic seizure detection system,”
JSSC, vol. 45, no. 4, pp. 804–816, 2010.

[6] M. Shoaib, N. Jha, and N. Verma, “A low-energy computation platform
for data-driven biomedical monitoring algorithms,” in DAC. IEEE,
2011, pp. 591–596.

[7] B. Case, “Spec2000 retires spec92,” The Microprocessor Report, vol. 9,
1995.

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC. IEEE, 2001, pp. 3–14.

[9] C. Strydis, C. Kachris, and G. Gaydadjiev, “Impbench: A novel
benchmark suite for biomedical, microelectronic implants,” in SAMOS.
IEEE, 2008, pp. 82–91.

[10] C. Bienia, S. Kumar, J. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in PACT. ACM, 2008,
pp. 72–81.

[11] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “Mevbench: A mobile
computer vision benchmarking suite,” in IISWC., 2011, pp. 91–102.

[12] A. Bashashati, M. Fatourechi, R. Ward, G. Birch, “A survey of signal
processing algorithms in brain–computer interfaces based on electrical
brain signals,” Journal of Neural engineering, vol. 4, p. R32, 2007.

[13] P. Brunner, L. Bianchi, C. Guger, F. Cincotti, and G. Schalk, “Current
trends in hardware and software for brain–computer interfaces (bcis),”
Journal of Neural Engineering, vol. 8, p. 025001, 2011.

[14] C. Anderson, E. Stolz, and S. Shamsunder, “Multivariate autoregressive
models for classification of spontaneous electroencephalographic signals
during mental tasks,” Biomedical Engineering, IEEE Transactions on,
vol. 45, no. 3, pp. 277–286, 1998.

[15] D. Allen and C. MacKinnon, “Time-frequency analysis of movement-
related spectral power in EEG during repetitive movements: A
comparison of methods,” Journal of neuroscience methods, vol. 186, no.
1, pp. 107–115, 2010

[16] T. Higuchi, “Approach to an irregular time series on the basis of the
fractal theory,” Physica D: Nonlinear Phenomena, vol. 31, no. 2, pp.
277–283, 1988.

[17] B. Hjorth, “Time domain descriptors and their relation to a particular
model for generation of eeg activity.” Computerized EEG analysis, pp.
3–8, 1975.

[18] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A
review of classification algorithms for EEG-based brain–computer
interfaces,” Journal of neural engineering, vol. 4, p. R1, 2007.

[19] C. Neuper, G. Müller-Putz, R. Scherer, and G. Pfurtscheller, “Motor
imagery and eeg-based control of spelling devices and neuroprostheses,”
Progress in brain research, vol. 159, pp. 393–409, 2006.

[20] X. Gao, D. Xu, M. Cheng, and S. Gao, “A bci-based environmental
controller for the motion-disabled,” Neural Systems and Rehabilitation
Engineering, IEEE Transactions on, vol. 11, no. 2, pp. 137–140, 2003.

[21] L. Farwell, E. Donchin, “Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials,”
Electroencephalography and clinical Neurophysiology, vol. 70, no. 6,
pp. 510–523, 1988.

[22] g.tec - guger technologies. http://www.gtec.at - GugerTechnologies
[23] S. Dongjin, M.C. Jose , M.R. Jan , Z. Elad, M Michel, “Neural dust: an

ultrasonic, low power solution for chronic brainMachine interfaces”,
arXiv:1307.2196 [q-bio.NC].

[24] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: A full system
simulator for multicore x86 cpus,” in DAC. ACM, 2011, pp. 1050–1055.

[25] A. Ahmadi, O. Dehzangi, and R. Jafari, “Brain-computer interface signal
processing algorithms: A computational cost vs. accuracy analysis for
wearable computers,” in BSN. IEEE, 2012, pp. 40–45.

[26] G. Reinman and N. Jouppi, “Cacti 2.0: An integrated cache timing and
power model,” WRL Research Report, vol. 7, 2000.

[27] I. Inc. Atom processor, in
download.intel.com/embedded/processors/prodbrief/324100.pdf.

[28] N. Ickes, Y. Sinangil, F. Pappalardo, E. Guidetti, and A. P.
Chandrakasan, “A 10 pj/cycle ultra-low-voltage 32-bit microprocessor

system-on-chip,” in ESSCIRC (ESSCIRC), 2011 Proceedings of the.
IEEE, 2011, pp. 159–162.

[29] Y. Tanabe, M. Sumiyoshi, M. Nishiyama, I. Yamazaki, S. Fujii, K.
Kimura, T. Aoyama, M. Banno, H. Hayashi, T. Miyamori, “A 464gops

620gops/w heterogeneous multi-core soc for image-recognition
applications,” IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2012, pp. 222–223.

	I. Introduction
	II. BENCHMARK DETAILS
	A. Pre-Processing
	B. Feature Extraction
	C. Feature Classification
	D. End-to-end BCI Applications

	III. BENCHMARK CHARACTERISTICS
	A. Why BCIBench?
	B. Experimental Setup
	C. Data Set
	D. Computational Complexity Analysis
	E. Memory Characteristics

	IV. ARCHITECTURE IMPROVEMENT
	V. conclusion
	VI. Acknowledgment
	References

