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Abstract— Increased demands for applications of brain 

computer interface (BCI) have led to growing attention towards 
their low-power embedded processing architecture design. Most 
clinical, wellness, and entertainment applications of BCI require 
wearable and portable devices. Better understanding of 
application characteristics in terms of computational complexity, 
memory usage, and power consumption can lead to more 
effective system designs for future wearable BCIs. In this paper, 
we introduce BCIBench, a benchmarking suite which includes a 
wide range of algorithms used for pre-processing, feature 
extraction and classification in BCI applications. We analyze the 
architectural characteristics of these algorithms such as 
performance, parallelism, data-intensiveness and memory 
behavior. We provide insights into architectural components that 
can enhance the performance and reduce the power consumption 
of BCI embedded systems using these applications. 

Keywords—brain computer interface; wearable; low-power; 
signal processing algorithms; benchmarking;  

I.  INTRODUCTION 
Recently, embedded systems have been deployed in many 

applications and become an integral part of daily life. Cell-
phones, music players, electronics in cars and patient 
monitoring devices are some examples of the widely used 
embedded systems. Real-time computing and signal processing 
are the principal requirements of these systems. On the other 
hand, they have limited available resources such as memory, 
computational resources, screen size, key inputs, etc. This is a 
crucial property to consider during the design, development 
and assessment of these systems.  

Wearable computers are embedded systems positioned on 
the body that have the capability of sensing, processing, and 
communication. Wearable computers promise novel uses in 
healthcare, wellness, and entertainment. Physiological sensors 
are one category of sensors deployed with wearable computers 
that can measure blood pressure, blood oxygenation, 
electrocardiography (ECG), and electroencephalography 
(EEG). EEG-based brain computer interface (BCI) is an 
example of wearable computers where EEG sensors provide 
communication channels to translate brain rhythms of an 
individual into application-specific signals for external devices. 
BCI systems allow a person to use mental processes to 
communicate with external devices without relying on 
neuromuscular control [1, 2].  

Recently, there has been a dramatic growth in BCI research 
which demonstrates its application potentials from clinical 
domains to gaming and entertainment applications [2, 3]. There 
has been also a growing interest in developing real-time 
wearable embedded BCIs [4]. In BCI systems, signal 
processing algorithms and several other parameters such as 
sampling frequency, number of channels, processing window, 
and number of features are determined by application 

requirements. Thus, besides managing the limited available 
resources, it is crucial to use programmable architectures to 
amortize cost of a design for many related applications while 
considering the aforementioned parameters.   

There are several platforms that can be used to implement a 
BCI embedded system. In an ASIC design, designers optimize 
their design based on the target algorithm specification. 
Microcontroller-based architecture is another technique which 
requires benchmarks to accomplish the optimization and 
evaluation of a design. Another promising approach that 
recently attracts much research interest is using hardware 
accelerator along with microcontrollers in order to reduce the 
power consumption. In this approach, a hardware accelerator is 
dedicated to the power hungry processing blocks and a 
microcontroller is used to handle the rest of the processing 
blocks. The hardware accelerator is employed in many research 
studies such as in seizure detection system [5], or cardiac 
monitoring system [6]. In order to optimize an implementation 
design, all the above-mentioned approaches require taking into 
account the characteristics of the target BCI application.  

The ASIC design requires computation and memory 
behaviors of the application. In microcontroller-based 
techniques, parallelism, efficient cache configuration and 
resource usage of the application are required for the design 
optimization. In the accelerator-based method, detailed 
characteristics of each individual algorithm in the processing 
flow are required to identify the bottleneck of power 
consumption in the processing flow. Thus, regardless of the 
implementation platform, a suitable benchmarking suite is 
necessary to address these demands to optimize and evaluate 
the embedded BCI designs. Benchmarking not only can 
facilitate architecture customization based on application 
specifications, but also can empower hardware/software co-
design. In the hardware/software co-design methodology, the 
computations are assigned to various processing elements such 
as general purpose processors and hardware accelerators. 
Target objectives on power consumption and throughput 
requirements will drive decisions on hardware/software co-
design. 

Currently, a number of benchmarking suites are developed 
targeting a variety of domains. SPEC [7] is one of the most 
widely used benchmarking suites that evaluates the 
performance of general purpose computers. With the extensive 
growth in the use of embedded systems, several benchmarking 
suites for embedded systems have been introduced such as 
Mibench [8]. The authors introduced embedded applications in 
six different categories and compared several characteristics 
such as instruction distribution and memory behaviors of their 
benchmark suite to those of the SPEC benchmarks. There are 
other domain-specific benchmarking suites developed for of 
embedded systems such as ImpBench [9] for implantable 



architectures, PARSEC [10] for Chip-Multiprocessors (CMPs), 
MEVBench [11] for mobile computer vision applications.    

Although a few of the BCI signal processing algorithms 
were presented as part of larger benchmarks, there is no 
domain-specific benchmarking suite that covers different 
components of the BCI signal processing algorithms. 
Moreover, to identify the challenges and bottlenecks of a BCI 
application, power and performance analysis of end-to-end 
signal processing flow is necessary which to our knowledge is 
not investigated in previous benchmarking suites. Also 
researchers in the BCI area primarily focus on high-level 
optimization to improve the system accuracy. Thus, there is a 
lack of benchmark suites for power and computational analysis 
of the signal processing algorithms in BCI embedded systems.  

In this paper, we introduce BCIBench as a benchmarking 
suite that includes the most widely used BCI signal processing 
components for wearable embedded applications. We also 
include several end-to-end signal processing algorithms such as 
motor imagery and P300 detector BCIs. To the best of our 
knowledge, BCIBench is the first benchmarking suite 
dedicated to BCI. Our key contributions in this paper are listed 
in the following: 

• We introduce a new benchmark suite, which covers a set of 
applications and signal processing algorithms in the BCI 
domain.  

• We perform a detailed micro-architectural analysis of the 
benchmark indicating performance and memory 
characteristics.  

• Based on the breakdown analysis of individual blocks in the 
end-to-end applications, we identify the power hungry 
blocks for further optimization. This analysis shows how 
future embedded architectures can better serve BCI 
applications and enhance their power and performance.   

The rest of the paper is organized as follows. In section 2, 
we briefly describe applications of BCIBench. Benchmark 
characterization with a detailed analysis is covered in section 3. 
Section 4 covers breakdown analysis of the BCI applications. 
A brief discussion presented in section 5. Finally, section 6 
concludes the paper. 

II. BENCHMARK DETAILS 

 
Fig. 1. The overview of a typical BCI application. 

BCI applications consist of several signal processing 
components as shown in Figure 1. First, recorded brain signals 
are enhanced with filters or re-referencing algorithms. Then 
discriminative time and frequency features are extracted from 
the filtered signals. Extracted features are fed to the classifier 
to produce corresponding output control signal which depends 
on the specific BCI application. Several studies summarize a 

comprehensive survey of signal processing methods in BCI 
applications [12, 13]. Considering the feasibility requirements 
of low power implementation and limited available resources 
for wearable embedded BCIs, we selected algorithms with 
medium to low computational complexity for each of the 
components. Table I, summarizes the BCIBench programs and 
applications.  

TABLE I.  PROGRAMS IN THE BCIBENCH 

Pre-processing 
Common Average Referencing (CAR) 
FIR Filter (FIR) 
Surface Laplacian Referencing (Lap) 
Feature Extraction 
Autoregressive (AR)  
Band-Power (BP)  
Fast Fourier Transform (FFT) 
Higuchi  
Hjorth  
Wavelet Packet Decomposition (WPD) 
Classification 
K-Nearest Neighbor (KNN) 
Linear Discriminant Analysis (LDA) 
Multilayer Perceptron (MLP) 
Support Vector Machine (SVM) 
End-to-end Applications 
BCI1: Motor Imagery BCI 
BCI2: VEP BCI 
BCI3: Motor Imagery BCI 
BCI4: P300 BCI 

A. Pre-Processing 
In most BCI applications, pre-processing is performed on 

the recorded brain signal prior to the feature extraction due to 
low signal-to-noise ratio of the signal. In common average 
referencing (CAR), average value of the samples of all 
channels at the current time is subtracted from each sample. 
Laplacian reference adjusts the signal of each channel by 
removing the average of neighbor channels. Filtering is a very 
common pre-processing in BCI applications. FIR filters are 
very popular because of their simple architecture for hardware 
and software implementation. 

B. Feature Extraction 
Features are the key characteristics of brain data that 

encode the intent of the user. Typical features of the brain 
signals include time domain features such as amplitudes or 
latencies of event-related potentials and frequency domain 
features such as power spectra and power of different 
frequency bands. BCIBench includes Autoregressive (AR) 
algorithm [14], Band-Power (BP) [15], Fast Fourier Transform 
(FFT), Higuchi Algorithm [16], Hjorth Algorithm [17], and 
Wavelet Packet Decomposition (WPD). For more details of the 
algorithms and implementations, please see to the references.     

C. Feature Classification 
The last component in BCI applications is the classifier. 

The classifier usually employs previously recorded data (online 
or offline) to generate a model. Then, during the real-time 
process, they use the trained model to classify the unseen input 
data. BCIBench comprises four different classifiers that are 
widely used in BCI applications: 1) Support Vector Machine 
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(SVM), 2) Linear Discriminant Analysis (LDA), 3) K-Nearest 
Neighbor (K-NN), 4) Multilayer Perceptron (MLP): MLP. For 
more details, please refer to [18].   
D. End-to-end BCI Applications 

BCI applications may utilize different algorithms in the pre-
processing, feature extraction and classification stages to 
interpret the brain signals. There are three major applications 
that are widely used for BCIs:  

• SensoriMotor Rhythm (SMR) classification:  
Comprise mu and beta rhythms, which are the oscillations 
in the brain activities localized in the mu (7-13 Hz) and the 
beta bands (13 – 30 Hz). The amplitude of these rhythms 
varies during cerebral activity of the brain. Cerebral activity 
is related to motor tasks such as moving a cursor on a 
screen or controlling a robot [19]. In BCIBench, BCI 1 and 
BCI 3 end-to-end applications are from this category.  

• Visual Evoked Potential (VEP) detection:  
VEPs reflect processing of visual information in the brain. 
For instance, when the user looks at a light flashing with a 
constant frequency, the flashing frequency is induced in his 
EEG signal. The goal is to detect this frequency reliably 
while the user looks at the stimulus. This paradigm can be 
used for wheelchair or robot control. BCI2 in the BCIBench 
is a VEP-based system illustrated that presented in [20].   

• P300-Evoked Potential detection:  
When infrequent auditory or visual stimuli are combined 
with routine stimuli, a positive peak in the EEG is evoked 
at about 300ms, called “P300”, which has been first used as 
a BCI control signal in [21]. BCI4 in BCIBench is a P300-
based BCI for an image selection task. Feature extraction 
includes down sampling and noise removal. 

Table II shows preprocessing, feature extraction and 
classifier that is implemented for each of the BCI applications. 

TABLE II.  END-TO-END BCI APPLICATIONS IN BCIBENCH. 

System BCI1 BCI2 BCI3 BCI4 
BCI category Motor Imagery VEP Motor Imagery P300 
Pre-processing CAR FIR Lap FIR 
Feature extraction BP FFT AR DownSample 
Classifier LDA LDA MLP LDA 

III. BENCHMARK CHARACTERISTICS 

A. Why BCIBench? 
Most clinical, wellness, and entertainment applications of 

BCI require wearable and portable devices. Therefore, there 
has been a growing interest towards their low-power embedded 
architecture design. There are many efforts in developing such 
devices from g.tec system [22] which is a dry electrode real-
time EEG acquisition system to neural dusts [23], which are 
tiny electronic sensors the size of dust particles scattered onto 
the cerebral cortex.  

As discussed in section II, BCI systems comprise specific 
signal processing components that may vary for different BCI 
applications.  There are also other parameters such as sampling 
frequency, number of channels, processing window, and 

number of features that are determined by application 
requirements. Better understanding of application 
characteristics in terms of computational complexity, memory 
usage, and power consumption can lead to more effective 
system designs for future wearable BCIs. It is also crucial to 
use programmable architectures to minimize the cost of a 
design for many related applications. 

Researchers in the BCI area primarily focus on high-level 
optimization to improve the system accuracy. Thus, there is a 
lack of benchmark suites for power and computational analysis 
of the signal processing algorithms in BCI embedded systems 
to identify the challenges and bottlenecks of a BCI application. 
Therefore, a domain-specific benchmarking suite that covers 
different components of the BCI signal processing algorithms 
is necessary to analyze power and performance of end-to-end 
signal processing flow which to our knowledge is not 
investigated in previous benchmarking suites.  

B. Experimental Setup 
In order to evaluate the components that constitute 

BCIBench, we use MARSS x86 simulator [24]. MARSS is an 
open source simulation tool built on QEMU. All components in 
BCIBench were compiled using GNU gcc compiler suite 
version 4.5. MARSS provides a cycle-accurate simulation 
model for Intel Atom core. Each simulated core is configured 
as 2-wide in-order machine with 16 load/store buffer entries. 
Each core has a private 32KB, 2-way set associative L1 cache 
for instruction and data, and shared L2 cache of size 512KB. 
We use 100MHz as core frequency. All private caches are kept 
coherent using the write back protocol on an on-chip split-
phase bus. 

BCIBench applications are designed to have the parametric 
property which enables us to run them with any desired 
configuration. These parameters vary according to the BCI 
application. For example, clinical epilepsy detection needs 128 
channels with 1 KHz sampling frequency while EEG headsets 
which are used for gaming have 1-4 channels with 128 samples 
per second. We set the application parameters for our analysis 
according to Table III. In a BCI application, a trial is a window 
of time that is required to process brain signals to detect a 
desired pattern. In this work, each EEG trial has one second of 
data for 8 channels. With the configuration described in Table 
III, each trial has 4096 samples. All simulations are repeated 
for 100 trials of input data to ensure that a stable behavior in 
simulator is obtained. 

TABLE III.     BCIBENCH APPLICATION PARAMETERS. 

Parameter Pre-processing Feature extraction Classifier 
sampling frequency 512 512 NA 
#of channels 8 8 NA 
processing  window 1 1 NA 
# of features NA 40 40 
# of training vector NA NA 100 

In the previous benchmarking suites, all the analysis 
belongs to running algorithms as well as loading input data to 
the main memory. This results in incorrect information because 
I/O file transfer has excessive latency and a significant part of 
the execution time goes to reading input data files.  To resolve 
this issue, we modified MARSS to collect statistics of any 



region of interest in the implementation. This enables us to start 
collecting statistics after the input data is completely loaded 
into the main memory. 
C. Data Set 

Providing data sets corresponding to the applications of a 
benchmark suite is extremely valuable. In this work, instead of 
using standard data sets, we use real EEG data which was 
recorded from a state-of-the-art EEG machine during the P300 
spell checker, motor imagery and VEP paradigms. 

D. Computational Complexity Analysis 
In ultra-low power design methodology, voltage scaling is a 

popular approach to reduce energy consumption. In this 
approach, the supply voltage adjusts according to the peak 
frequency of the application. Execution time in terms of the 
number of cycles per second as the peak frequency is a good 
representation of an algorithm or application requirement. 
Figure 4 shows the number of cycles per second for BCIBench 
applications. It also illustrates the difference between the 
computational complexities of various BCI signal processing 
components (e.g., filters). In our previous work, we 
investigated high-level optimization considering computational 
cost as well as classification accuracy in feature selection 
process [25]. 

   Instruction level parallelism (ILP) is a measure of “how 
many” operations can be performed simultaneously and is 
represented using instructions per cycle (IPC). This parameter 
depends on several factors such as the issue width of the 
processor, branch prediction accuracy, number of resources, 
cache configuration (size, number of read/write ports, miss 
rate, etc.), and instruction dependencies. Figure 5 shows the 
IPC of the BCIBench applications for the simulated core. It 
shows the variation of the IPC values among BCIBench 
applications. The variations show the architectural implications 
of the instruction dependency and branch prediction accuracy 
for each program.  

   Overlap processing is very popular in real-time analysis. 
In this method, the processing window should be able to slide a 
variable amount from the current window. For example, if we 
assume 80% overlapping, five windows will process during 
one second. Thus, it is desirable to measure the throughput of a 

BCI signal processing flow. Figure 6 shows the throughput for 
BCIBench algorithms and applications. For an end-to-end 
application, throughput is measured as the number of trials that 
can be processed per second, and for a single algorithm it 
shows how frequently the core can process that algorithm in 
one second. In the BCI domain, throughput requirement 
depends on the application. For instance, gaming and 
entertainment applications require high throughput while the 
spell checker application has lower throughput requirement. 

E. Memory Characteristics 
Embedded systems typically use Reduced Instruction Set 

Architecture (RISC) processors which require higher memory 
due to low code density and load/store architecture of RISC 
processors. In an embedded system, memory system occupies a 
large portion of power budget and area. Therefore, in order to 
properly design low-power wearable systems, the memory 
demands of application must be served efficiently. Access time 
and energy per access are two key metrics in memory system 
of any application. However, in low-power wearable 
applications, data rate is low and due to power constraints, 
energy per access is more important. In a memory system, 
cache miss translates to a larger energy per access due to 
accessing slower and larger memories in the higher level. 
Figure 7 shows the miss rate for instruction cache. The 
instruction cache miss rate depends on the instruction 
sequence, e.g., number of jump and branches, branch 
predication accuracy and cache configuration. AR and BP 
algorithms have similar number of instructions, but due to the 
lower branch prediction accuracy in the AR, it has a higher 
instruction miss rate. Figure 8 shows the miss rate for L1 data 
cache. Data cache miss rate mainly depends on how the 
program accesses the data. Programs which access data with 
spatial and temporal locality have lower data cache miss rate. 
FIR and CAR are both preprocessing algorithms that operate 
on a matrix of data (rows correspond to various channels and 
columns correspond to samples acquired from each channel). 
FIR algorithm is applied to each channel individually, so it 
benefits from a suitable locality in data accesses. In CAR 
algorithm, it requires the current sample from all channels (i.e. 
accesses to the data matrix is column based and not row based). 
Therefore, data cache miss rate is higher than that of the FIR.  

      

   



As mentioned earlier, in voltage scaling which is a 
promising method for power reduction, it is important to 
determine the activity level of the unit of interest to adjust the 
supply voltage accordingly. In the cache design, the average 
number of accesses per second is a measure of the activity 
level. Therefore, we measured data cache accesses per second 
for BCIBench applications as shown in Figure 9. 

IV. ARCHITECTURE IMPROVEMENT 
Regardless of the implementation platform, a benchmark 

suite can be used in order to optimize a design in terms of 
power and performance. In the design of wearable computers, a 
new trend that has recently become popular is to use a 
microcontroller along with a hardware accelerator to meet 
power constraints. In this method, the block which consumes 
the majority of power in the signal processing flow is detected. 
Then, a special purpose hardware accelerator is used to 
implement the block to reduce the application power 
consumption. Thus, it requires a breakdown analysis of 
individual algorithms in the processing flow. BCI signal 
processing flow may change by changing the target 
application. Therefore, developing a hardware accelerator for a 
specific algorithm restricts the design only to the underlying 
application. This motivates the designers to use reconfigurable 
hardware accelerator. These accelerators include some general 
functional units (FUs) and several specific FUs that can be 
configured using configurable interconnections. 

   According to Figure 1, a BCI application comprises three 
major blocks, including pre-processing, feature extraction and 
classification. We analyze each individual block of the BCI 
end-to-end applications for power, performance and memory 
behaviors. For this purpose, we use metrics such as the number 
of instructions, throughput, resource usage, and resource 
utilization. Table IV shows the breakdown analysis for the end-
to-end BCI applications. According to the Intel document [27], 
Atom core consumes 3.6W power for 1GHz clock. We 
calculate power consumption of each algorithm according to its 
execution time ((cycles_per_second/1e+9)*3.6). Information 
reported in Table IV can be used for variety of purposes. For 
instance, one important application parameter is the sampling 

frequency that needs to be carefully selected based on the 
requirements of the algorithms. In Table IV, we investigate 
cycles per sample and instructions per sample as the 
complexity measures of processing one input sample. 
Therefore, one can use these measures to estimate 
computational complexity of each block of the BCI application 
for different sampling frequency, as well as different number of 
channels, processing window, etc. These measures can also be 
used to calculate the peak computational requirements of each 
algorithm to adjust the proper supply voltage. Table IV also 
shows power and performance bottlenecks of the signal 
processing flow. As shown for BCI1, 2, and 3, feature 
extraction (i.e. BP, FFT, and AR) is the most computationally 
expensive block while in BCI4, preprocessing (i.e. FIR) is the 
bottleneck. This investigation is a guideline for designers to be 
able to reduce power consumption of specific blocks.  

Response time is the amount of time that the core takes to 
complete the processing. Number of accesses to L1 data cache 
per second is an estimate of frequency of usage for L1 data 
cache. Resource utilization is the percentage of the time that a 
functional unit is actually occupied, as compared with the total 
time that the unit is available for use (Atom core has two 
integer ALUs, two Floating-point units and two address 
generation units (AGUs)). The last three columns show the 
absolute usage of those six ALUs. As we can see from Table 
IV, the utilization of AGUs is 30% larger than that of floating-
point ALUs and 65% larger than the utilization of integer 
ALUs that shows high memory activity in BCI applications. 
Therefore, a functional unit for address generation purpose can 
improve both the performance and power consumption of the 
architecture. Another observation is that the maximum 
utilization of functional units of Atom core by BCI applications 
is 18%. Therefore, embedded BCI applications do not require 
complex architectures with several ALUs. Therefore, 
architectures with single ALU in the data path will results in 
higher utilization and very low power consumption. An 
example of those architectures that might be potential 
architectures for BCI can be found in [28].  

Parallelization and multi-core processing is an effective 
approach to reduce the power consumption for several 
applications [29]. However, for wearable embedded BCI 

TABLE IV. BREAKDOWN ANALYSIS OF END-TO-END BCI APPLICATIONS. 
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B
C

I1
 CAR 2.76 188 0.77 64 0.26 36 0.0077 130 0.475 0.089 0.482 131 4 133 

BP 46.82 3175 13 1280 5.24 863 0.13 8 6.906 2.856 12.514 1903 131 3448 
LDA 0.01 1 0.003 1 0.001 1 0.0001 10000 0.001 0.001 0.002 0.4 0.05 0.5 
Total 49.59 3364 13.77 1345 5.5 900 0.1377 7 7.382 2.946 12.998 2034 135 3581 

B
C

I2
 FIR 4.33 293 1.20 101 0.41 102 0.012 83 0.183 0.317 0.681 85 25 317 

FFT 79.43 5387 22 1505 6.17 703 0.22 5 5.551 18.634 6.059 2583 1445 2820 
LDA 0.01 1 0.003 1 0.001 1 0.0001 10000 0.001 0.001 0.001 0.4 0.05 0.5 
Total 83.77 5681 23.2 1607 6.58 806 0.232 4 5.735 18.952 6.741 2668 1470 3137 

B
C

I3
 Lap 9.59 650 2.66 251 1.03 139 0.027 38 1.663 0.082 1.761 499 4 528 

AR 44.30 3004 12.3 1101 4.51 601 0.123 8 6.783 4.499 7.798 2035 225 2339 
MLP 0.11 7 0.03 1 0.01 1 0.0003 3333 0.018 0.006 0.018 5 0.3 5 
Total 54 3661 14.99 1353 5.55 741 0.1503 7 8.464 4.587 9.577 2539 229 2873 

B
C

I4
 FIR 4.33 293 1.20 101 0.41 102 0.012 83 3.152 5.464 11.737 85 25 317 

DS 0.52 35 0.143 14 0.06 8 0.0014 698 1.023 0.001 1.088 28 0.005 29 
LDA 0.02 1 0.003 1 0.001 1 0.0001 10000 0.024 0.019 0.036 0.6 0.09 1 
Total 4.87 329 1.35 116 0.47 111 0.0134 74 4.199 5.484 12.861 114 25 347 

 



systems with low operating frequency, multi-core architecture 
may increase power consumption. Because, a small portion of 
power consumption goes to the processing in these 
applications. Thus, multi-core architecture which requires extra 
complexity for dispatching processing among cores and 
handles communications of cores, increases the power 
consumption. Also, due to low operating frequency of these 
applications, the operation frequency of cores will be 
consequently low that extra leakage power will dominate 
dynamic power reduction. 

Our observations illustrate the implementation of BCI 
signal processing algorithms with Atom architecture. However, 
the benchmarks provided in this study may be analyzed in 
conjunction with other architectures of interest. We will 
continue to expand our investigations with other open-source 
low-power cores. The BCIBench suite will be available on our 
website and a link will be provided in the camera-ready 
version. 

V. CONCLUSION 
Wearable BCI applications are gaining popularity due to 

the advances in creating small electronic circuits and 
processing units, as well as easy-to-wear EEG electrodes. In 
this work, we presented BCIBench as a novel benchmarking 
suite for wearable BCI applications. BCIBench provided a 
range of BCI algorithms for pre-processing, feature extraction 
and classification to evaluate BCI wearable embedded 
architectures. We evaluated memory behavior and performance 
of BCIBench using MARSS simulator for Intel Atom core. Our 
analysis was a guideline for designers to be able to design 
efficient memory system and reduce power consumption of 
specific blocks. For further architecture improvement to meet 
power constraints of low power BCIs, we analyzed individual 
blocks of the signal processing flow. One can use these 
measures to estimate computational complexity of each block 
of the BCI applications with different parameters. It can also be 
used to measure the peak computational requirements of each 
algorithm to adjust the proper supply voltage.  
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