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ABSTRACT 

In this paper, we present a system that integrates inertial sensors 
and electromyogram (EMG) signals, which measures the 
muscular activities while performing motions. The objective of 
our study is to investigate the behaviour of the EMG signals to 
interpret the activity of standing balance. Quantitative parameters 
for balance are obtained from an inertial sensor through a body-
sensor network. These parameters are further used to find the 
prominent features in the EMG signal. The inertial sensor used in 
this system is an accelerometer. The implementation details and 
effectiveness of using EMG signals are also provided. 

Categories and Subject Descriptors 
J.3 [LIFE AND MEDICAL SCIENCES]: Health 
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1. INTRODUCTION 
Balance evaluation finds applications in rehabilitation, sports 
medicine, gait analysis and fall detection. Inertial sensor based 
systems have been in use for such applications. As in other 
physiological activities, standing involves the prominent use of 
muscles. EMG signals have been the most effective source for 
measuring muscle activity. In this paper, we investigate how 
parameters for balance obtained from inertial sensors correlate 
with that of measurements from EMG signals. 

We obtain the balance parameters mentioned in [1] from 
experiments conducted on different normal human subjects and 
classify each of the parameters as ‘low’, ‘medium’ and ‘high’. We 

find out if features measured from EMG signals can also be 
classified based on their correlation with the balance parameters. 
Linear Discriminant Analysis (LDA) is used for this purpose. 
Section 2 of this paper describes how the balance parameters are 
obtained from the accelerometer values. Section 3 provides the 
architecture of the system. The signal processing involved in the 
system to obtain this correlation is described in Section 4. Section 
5 describes how the experiments were conducted. Analysis and 
interpretation of the experimental results including LDA are 
provided in Section 6. 

2. EVALUATION MODEL 
We use the balance evaluation model described in [1] to derive 
performance metrics for standing balance. The system uses a 
single accelerometer placed at the approximate height of the 
centre of mass on the subject’s back. All three acceleration 
components are combined to build a vector and the path traced by 
this vector is recorded. 

The calculation of the coordinates of the path traced, as depicted 

in Figure 1, is as follows: if ��, �� , ��  are accelerations in each 

direction, and  � is acceleration of gravity, the combined 

accelerations,  �  is given by 
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The directional angles between A and X, Y, Z are 
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From Figure 1,  
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where D is the combined coordinates in the three directions, x, y 
and z and 	� represents the z coordinate of the end of A (distance 
to the ground from the sensor), which is assumed to be a constant. 

Hence the coordinates of A at floor level (	
, 	�) can be expressed 

as:  

 βα cos,cos DdDd yx ==  (4) 

 

 

Figure 1. Obtaining the projected path. 

Figure adopted from [1]. 

 

From this traced path, we can obtain the parameters used for 
evaluation. They are provided in Table 1. 

 

Table 1. Five Quantitative Features 

No. Quantitative Feature 

1 Mean Speed 

2 Mean Radius 

3 Mean Frequency 

4 Anterior/Posterior Displacement (A/P) 

5 Medial/Lateral Displacement (M/L) 

 

Mean Speed, Mean Radius, Mean Frequency, A/P displacement 
and M/L displacement can be calculated. These parameters in 
combination give the measure of balance. The calculation of these 
parameters depicted in Figure 2 is as follows: 

If the Total Distance covered in time t, is given by, 
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then Mean Speed can be expressed as, 
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Mean Radius is given by, 
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where N is the number of points in the traced path. 

Mean Frequency can be expressed as, 
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A/P and M/L displacements are respectively given by, 
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Figure 2. Extraction of features from the projected path 

Figure adopted from [1]. 

3. SYSTEM ARCHITECTURE 
The system consists of two subsystems operating in parallel - the 
inertial sensor subsystem and EMG sensor subsystem. The inertial 
sensor subsystem is a body-sensor network of two nodes. One 
node is on the body of the subject and the other is connected to a 
desktop PC. Accelerometer values are transmitted to the node 
connected to the PC by the node on the body. 

3.1 Inertial Sensor Subsystem 
Our inertial sensor subsystem is a body sensor network consisting 
two sensor nodes (Moteiv Tmote Sky). The node placed on the 



body has custom-designed sensor board with a tri
accelerometer as shown in Figure 3. It samples the sensor at 40Hz 
and sends data over a wireless channel to a base station. The base 
station is another mote that relays the information to a PC via 
USB port. The sensor readings are collected and processed in 
MATLAB.  

 

Figure 3. Mote with inertial sensors

 

3.2 EMG Sensor Subsystem 
We use several EMG sensors to measure the electric activity 
generated during muscle contractions that occur while performing 
the motions. In the EMG suit we use (Delsys Myomonitor III), 
shown in Figure 4, the EMG signals are acquired using surface 
electrodes attached at the skin surfaces. Each electrode measures 
the electric flow in the associated muscles.  

 

Figure 4. EMG system suit 

 

The electrodes sample muscle signals in 1000Hz. The signals are 
amplified and band-pass filtered (20-450Hz) by the EMG suit. 
The data are transferred to a PC for offline processing.

3.3 Balance Platform 
We use a balance ball as the platform for assessing the quality of 
standing balance. The platform is a “Both Sides Up” (BOSU) 
Balance Trainer which provides an unstable balance surface. This 
device has two functional surfaces integrating dynamic balance 
with functional or sports specific training. It can be used platform 
side up for push-up and seated exercises. We use this 
configuration which provides an unstable surface when subjects 

designed sensor board with a tri-axial 2g 
. It samples the sensor at 40Hz 

ase station. The base 
station is another mote that relays the information to a PC via 
USB port. The sensor readings are collected and processed in 
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The electrodes sample muscle signals in 1000Hz. The signals are 
450Hz) by the EMG suit. 

r offline processing. 

We use a balance ball as the platform for assessing the quality of 
standing balance. The platform is a “Both Sides Up” (BOSU) 
Balance Trainer which provides an unstable balance surface. This 

surfaces integrating dynamic balance 
with functional or sports specific training. It can be used platform 

up and seated exercises. We use this 
configuration which provides an unstable surface when subjects 

stand on the platform. Figure 5 shows the platform along with an 
experimental subject wearing motion and EMG sensors. We 
integrate a HUSKY Digital Level to control the experiment and 
for coaching purposes (i.e. the subject must tilt the ball 20 degree 
in an anterior direction). The digital level indicates the amount of 
inclination when swaying on the platform.

 

Figure 5. Balance platform and experimental subject wearing 

motion and EMG sensors 

 

4. SIGNAL PROCESSING FOR FEATURE 
ANALYSIS 
      Signal Processing involves extracting parameter
accelerometer and EMG signals, classifying the accelerometer 
parameters and analysis using LDA. These operations are divided 
into five stages as explained below. 

Data Collection:  Accelerometer values and EMG signals are 
continuously recorded for every trial for duration of 4 seconds. 
The sampling rates of the accelerometer and EMG signals are 
different. Data from accelerometer is sampled at 40Hz and that 
from the EMG sensors at 1000Hz. 

Parameter Extraction: Five quantitative features are measure
using accelerometer data as described in Table 1 of Section 2. 

Quantization: For each quantitative 
accelerometer values, the data obtained is divided into three 
classes-‘low’, ’medium’ and ‘high’. The set of values of a 
particular feature that is greater than the sum of the mean of the 
feature and standard deviation is categoriz
values less than the difference between the mean and
deviation is categorized as ‘low’ and the rest of the values as 
‘medium’. 

Feature Extraction on EMG: To interpret the behavior of the 
EMG signals depending on the classes defined from 
accelerometer values, we need to have exhaustive set of EMG 
features. An exhaustive set of statistical 
from each EMG signal such as Signal Energy
Number of Peaks, Average Peak Value
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SIGNAL PROCESSING FOR FEATURE 

Signal Processing involves extracting parameters from the 
accelerometer and EMG signals, classifying the accelerometer 
parameters and analysis using LDA. These operations are divided 

Accelerometer values and EMG signals are 
r every trial for duration of 4 seconds. 

The sampling rates of the accelerometer and EMG signals are 
different. Data from accelerometer is sampled at 40Hz and that 

Five quantitative features are measured 
using accelerometer data as described in Table 1 of Section 2.  
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‘low’, ’medium’ and ‘high’. The set of values of a 
lar feature that is greater than the sum of the mean of the 

ard deviation is categorized as ‘high’. The set of 
values less than the difference between the mean and standard 

ed as ‘low’ and the rest of the values as 

To interpret the behavior of the 
EMG signals depending on the classes defined from 
accelerometer values, we need to have exhaustive set of EMG 
features. An exhaustive set of statistical features are extracted 

ignal Energy, Maximum Peak, 
Average Peak Value, and Average Peak Rate. 



Feature Analysis: Significant features for EMG signals are 
extracted using Linear Discriminant Analysis (LDA). 
quantitative metrics measured from the accelerometer, the purpose 
of feature analysis is to find out if the EMG signals are 
representative of the quantitative features for balance evaluation.

 

Figure 6. Signal processing flow

 

5. EXPERIMENTAL PROCEDURE
Experiments were conducted on five male subjects aged between 
25 and 32 and height between 1.65m and 1.8m
history of disorders. Subjects with corrected vision wore their 
glasses. Normal footwear was used for all subjects.

 

Table 2. Test conditions 

Label Description 

S00  
Quiet standing with tilt limited to less than 10 degree 
on either side 

L10 
Tilt the ball to the left. Limit the angle of tilt between 
10 degree and 20 degree 

L20 
Tilt the ball to the left. Limit the angle of tilt to at 
least 20 degree 

R10 
 Tilt the ball to the right. Limit the angle of tilt 
between 10 degree and 20 degree 

R20 
 Tilt the ball to the right. Limit the angle of tilt to at 
least 20 degree 

F10 
Tilt the ball forward. Limit the angle of tilt between 
10 degree and 20 degree 

F20 
Tilt the ball forward. Limit the angle of tilt to at least 
20 degree 

B10 
 Tilt the ball backwards. Limit the angle of tilt 
between 10 degree and 20 degree 

B20 
 Tilt the ball backwards. Limit the angle of tilt to at 
least 20 degree 

A sensor node with a tri-axial accelerometer was attached to a belt 
which was worn around the waist of the subject. The belt was 
worn such that the sensor node was positioned on the lower back 
of the subject. This node communicated with another 
connected to the USB port of a desktop computer. 
tool was developed to read the data from mote conne
USB and process it. 

Although a number of muscles can be potentially active during 
and action, currently, we constrain our system in using only four 

Significant features for EMG signals are 
extracted using Linear Discriminant Analysis (LDA). Given the 

from the accelerometer, the purpose 
of feature analysis is to find out if the EMG signals are 
representative of the quantitative features for balance evaluation. 
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EXPERIMENTAL PROCEDURE 
five male subjects aged between 

m with no previous 
history of disorders. Subjects with corrected vision wore their 

Normal footwear was used for all subjects. 

Quiet standing with tilt limited to less than 10 degree 

Tilt the ball to the left. Limit the angle of tilt between 

Tilt the ball to the left. Limit the angle of tilt to at 

Tilt the ball to the right. Limit the angle of tilt 
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Tilt the ball backwards. Limit the angle of tilt to at 

was attached to a belt 
which was worn around the waist of the subject. The belt was 

was positioned on the lower back 
communicated with another node 
f a desktop computer. A MATLAB 

to read the data from mote connected to the 

Although a number of muscles can be potentially active during 
and action, currently, we constrain our system in using only four 

EMG electrodes on lower leg muscles. The EMG sensors were 
placed on Right-Front leg (Tibialis Anterior muscle), Right
leg (Gastrocnemius muscle), Left-Front leg (Tibialis Anterior 
muscle), and Left-Back leg (Gastrocnemius muscle). The Delsys 
“Trigger Module” enabled the EMG subsystem to work 
synchronously with accelerometer. MATLAB behaved as a main 
controller that sends a trigger to EMG and accelerometer to start 
acquisitions through the trigger module (for EMG) and USB (for 
accelerometer). 

The process of data collection was controlled and managed using 
our MATLAB tool. The EMG signals are obtained synchronously 
with the accelerometer signals. The data, however, are separately 
processed for the EMG and accelerometer.

The accelerometer and EMG data was recorded for 4
nine test conditions per subject. The test conditions are giv
Table 2. Two trials for each condition were conducted for every 
subject. The angle of the tilt was measured from th
mounted on the balance platform. 

 

Figure 7. M/L displacement measured from acceleration data 

and quantized into three classes

 

For every trial, the projection of the centre of mass (COM) on the 
ground was obtained using the expressions 
From the projections, five quantitative 
These features, listed in Table 1, are the features described
The calculation of these features from the pr
shown in Figure 2. For each feature, the data obtained is divided 
into three regions as we described in Section 4.

EMG data was recorded for each trial. For each trial four channels 
of EMG data are obtained with each channel corresponding to a 
particular muscle. The data obtained from each channel was 
passed through a low-pass filter with a cut
filtered data, a set of statistical features were extracted as was 
describer earlier in Section 4. 

6. EXPERIMENTAL RESULTS
In this section, we present our results on evaluation of standing 
balance using the performance metrics. The accelerometer data 
was obtained for ninety trials across five subjects as described 
previously. The three dimensional acceleration data was used to 
find projection of the center of mass on the plane. The five 
acceleration performance parameters were calculated based on the 
methods stated earlier. For each parameter, the ninety trials were 
mapped into three classes representing quality of observed action 
in terms of that given parameter. We subjectively quantized every 
trial into quality level ‘low’, ‘medium’ and ‘high’. For example, 

on lower leg muscles. The EMG sensors were 
Front leg (Tibialis Anterior muscle), Right-Back 

Front leg (Tibialis Anterior 
Back leg (Gastrocnemius muscle). The Delsys 

d the EMG subsystem to work 
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ection was controlled and managed using 
our MATLAB tool. The EMG signals are obtained synchronously 
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processed for the EMG and accelerometer. 
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nine test conditions per subject. The test conditions are given in 
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obtained with each channel corresponding to a 

particular muscle. The data obtained from each channel was 
filter with a cut-off of 35Hz. From this 

a set of statistical features were extracted as was 

EXPERIMENTAL RESULTS 
In this section, we present our results on evaluation of standing 

metrics. The accelerometer data 
was obtained for ninety trials across five subjects as described 
previously. The three dimensional acceleration data was used to 
find projection of the center of mass on the plane. The five 

rs were calculated based on the 
methods stated earlier. For each parameter, the ninety trials were 
mapped into three classes representing quality of observed action 
in terms of that given parameter. We subjectively quantized every 

‘low’, ‘medium’ and ‘high’. For example, 



with respect to the value of A/P displacement, measured for each 
trial, we assign a class label based on its magnitude. This process 
is done for every accelerometer parameter obtained in each trial. 
Each EMG feature set is given the same quality label as its 
corresponding accelerometer signal. The label assignment is 
accomplished because the accelerometer and EMG signals are 
available for the same duration of the trial. 

Figure 7 shows a sample distribution of performance parameters 
across different trials. The values were obtained for M/L 
displacement and were sorted for quantization. The statistical 
approach explained before was used to find thresholds on each 
metric.  

 

Table 2. Significant EMG features describing different 

performance metrics 

Performance Metric Significant Features 

Low Speed Maximum Amplitude (EMG2) 

Medium Speed Number of Peaks (EMG3) 

High Speed Maximum Amplitude (EMG2) 

Low Radius Number of Peaks (EMG4) 

Medium Radius Maximum Amplitude (EMG2) 

High Radius Number of Peaks (EMG4) 

Low Frequency Number of Peaks (EMG2) 

Medium Frequency Energy (EMG2) 

High Frequency Maximum Amplitude (EMG1) 

Low A/P Number of Peaks (EMG2) 

Medium A/P Number of Peaks (EMG2) 

High A/P Maximum Amplitude (EMG2) 

Low M/L Number of Peaks (EMG2) 

Medium M/L Average Peak Rate (EMG4) 

High M/L Maximum Amplitude (EMG2) 

 

The next step in our system is to make EMG signals 
representative of performance parameters for balance evaluation. 
To achieve this, we determine those features from EMG signals 
that are prominent for each class. We used 50% of the input trials 
(training set) to find significant features for EMG and remaining 
trials (test set) for evaluation of the system. Each EMG trial 
consists of four signals corresponding to the four muscles. We 
extracted five features (Signal Energy, Maximum Peak, Number 
of Peaks, Average Peak Value, and Average Peak Rate) for each 
EMG signal. These features form a 20 dimensional space which 
represent some properties of muscle activities during the 
performed action. The obtained features are fed to our feature 
analysis box (shown in Figure 6) where only the most prominent 
feature is selected. The feature analysis was performed for each 
performance parameter. LDA is then used to select the most 
prominent feature from the subset. The list of prominent features 
is listed in Table 3.  

To get insight into the effectiveness of the acquired EMG 
features, we used k-NN (k-Nearest Neighbor) classifier due to its 
simplicity and scalability. For each accelerometer parameter class, 
the corresponding significant feature (extracted from Table 3) was 
extracted. This feature was used in a binary classifier to 
differentiate between a certain quality levels from the rest. For 

example, to evaluate how accurate EMG sensors represent 
performance metric Low A/P, corresponding prominent feature 
(Number of Peaks by EMG2) was extracted and fed to the k-NN 
classifier to distinguish between Low A/P and other two levels of 
A/P displacement (Medium A/P and High A/P). The outcome of 
the classification for three values of k is illustrated in Figure 8 for 
a random set of classes. 

 

 

Figure 8. Classification accuracy for standing balance with 

respect to only EMG signals 

 

7. RELATED WORK 
Human performance in terms of quality of balance control system 
has been studied from different views each taking into account a 
certain model and its own evaluation metrics. Cybulski et al. [2] 
in their study of standing performance of paraplegia affected 
subjects, deduced and used statistical parameters from a center-of-
force monitoring platform. Few authors have used accelerometer 
to measure the parameters used in [2] and study balance and 
control [3], [4] and [5]. Kamen et al. [3] used two uni-axial 
accelerometers, one each on the forehead and back. Mayagoitia et 
al. [1] used a single tri-axial accelerometer placed on the back at 
approximate height of the center of mass to evaluate standing 
balance. Maithe et al. [6] used this evaluation model to classify 
basic daily movements. Other authors ([7] and [8]) have 
concentrated on providing audio and/or visual feedback on the 
model parameters presented in [1] to improve balance. Winter et 
al. [9] present a kinematic model of upper body balance where 
EMG sensors were obtained to reinforce the conclusions from the 
moment of force analyses. A study on comparison of EMG and 
kinetic parameters during balance responses in children was 
presented by Sundermier et al. [10]. According to their results, the 
correspondence of muscle activity with measurements of center-
of-pressure confirms that muscle activities contribute to the 
balance. In this paper, however, we investigate methods of 
learning from inertial sensors to interpret EMG signals for 
standing balance. To the best of our knowledge, this has not been 
studied before. 

8. CONCLUSION AND FUTURE WORK 
We introduced a physiological monitoring system that collects 
acceleration and muscle activity signals and performs analysis on 
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those signals during standing balance action. The system 
quantifies performance in terms of five metrics which can be 
directly measured from accelerometer data. For the EMG signals, 
however, the quality of performed action is represented using a set 
of prominent features obtained after processing the EMG signals 
in conjunction with the accelerometer parameters. To provide a 
complete evaluation of the system, we plan to investigate methods 
of integrating a gold standard balance system with our 
experiments. We are also working on the deployment of our data 
processing techniques in real-time. 
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