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Abstract
In this paper, we present a distributed action recognition

framework that minimizes power consumption of the sys-
tem subject to a lower bound on the classification accuracy.
The system utilizes computationally simple template match-
ing blocks that perform classifications on individual sensor
nodes. A boosting approach is employed to enhance ac-
curacy by activating only a subset of sensors optimized in
terms of power consumption and can achieve a given lower
bound accuracy criterion. Our experimental results on real
data shows more than 85% power saving while maintaining
80% sensitivity to detected actions.
Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Pur-

pose and Application-Based Systems—Real-time and em-
bedded systems; J.3 [Computer Applications]: Life and
Medical Science—Health; H.1.2 [Information Systems]:
Models and Principles—User/Machine Systems Human in-
formation processing; Human factors.
General Terms
Design, Algorithms, Experimentation.

Keywords
Action Recognition, Collaborative Classification, Ad-

aBoost, Power Optimization
1 Introduction
With the growing interest in wireless health technologies

and their potential applications, efficient design and devel-
opment of wearable medical devices is becoming unprece-
dentedly important to researchers in both academia and in-
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dustry. The main driving factors include cost, power con-
sumption, and wearability, with power consumption being
the center of many research efforts due to its dramatic influ-
ence on other design objectives. An important angle of the
low-power design is development of efficient signal process-
ing and data reduction algorithms that reduce computation
load of the processing units. Designing power-aware signal
processing algorithms for action recognition is challenging
as special care needs to be taken to maintain acceptable clas-
sification accuracy while minimizing the energy consump-
tion.
In this paper, we propose a novel power-aware action

recognition framework that is designed to minimize power
consumption of the system while guaranteeing a lower
bound on the classification accuracy of the system. The
low-power signal processing is accomplished by: 1) using
lightweight classifiers that operate based on template match-
ing on sampled inertial data; and 2) eliminating sensors that
are irrelevant to the action recognition. The high classifica-
tion performance is maintained using a boosting approach
that combines results obtained from distributed sensors and
enhances the accuracy by taking into account contribution of
individual sensors. Our approach is novel in the sense that
it combines two concepts 1) classifier boosting to enhance
classification performance 2) sensor selection to minimize
power consumption of the system. To the best of our knowl-
edge, this approach has not been investigated previously.

2 Related Work
Reducing amount of active nodes is a common approach

for power optimization and wearability enhancement in
BSNs. Authors in [1] formulate coverage problem in the
context of movement monitoring using inertial on-body sen-
sors to minimize the number of sensor nodes that produces
full action coverage set. Authors in [2] propose to optimize
the system energy consumption by selecting the required
subset of sensors with the help of the meta-classifier sensor
fusion. Therefore it is sufficient to turn on sensors only when
their values are needed to ensure correctness.
The idea of combining simple classifiers to achieve higher

accuracy is discussed in [3] where authors suggest using a
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Figure 1. Template matching and boosting approaches
for action recognition.

single accelerometer for activity monitoring and combining
classifiers using Plurality Voting. In [4] AdaBoost is used
to select a small number of features in order to ensure fast
classification. The algorithm automatically selects the best
features and ranks them based on their classification perfor-
mance.
3 Collaborative Action Recognition
Our first contribution in this paper is an effective algo-

rithm for detecting human actions. The algorithm takes into
consideration collaboration between sensor nodes to make a
classification decision. A block diagram of our classification
process is illustrated in Figure 1. Each sensor stream is as-
sociated with a binary classifier that runs on the sensor node.
The classifier performs coarse analysis on the motion signals
by comparing the incoming signal with a predefined tem-
plate associated with the target action. The template match-
ing generates a similarity score between the signal and the
target template. The calculated score is compared against a
threshold in order to classify the incoming signal into one of
the true/false values. A true class indicates that the current
action is classified as target while a false decision infers a
non-target action.
We assume that, due to the nature of the application, the

sensor nodes do not require to know the classification results.
Furthermore, we note that the target action is an “a priori”
known class label. Thus, every node knows what target class
is going to be detected. The goal is to find out whether or not
the current action is the target action.
3.1 Template Matching
Our classification approach is based on template match-

ing as illustrated in Figure 1. The goal is to find portions of
the signal are most similar to a given template. There are dif-
ferent ways to calculate the similarity of a time series signal
with a predefined template. For this study, we use Normal-
ized Cross Correlation (NCC). While we have found NCC
effective in enabling template matching operations for action
recognition, our classification algorithms are completely in-
dependent of the choice of the similarity measure.
NCC is robust to different amplitudes of the signal and

less sensitive to the noise. In our case the time series are
represented by the data sampled from inertial sensors (ac-
celerometers and gyroscopes) whose signal characteristics

may vary from one action to another, or from one subject
to another. Let S(x) be the time series signal that is asso-
ciated with the signal segment generated by a given sensor.
Further, let TPL(x) be the time series signal corresponding
to the target template, the NCC value between these two sig-
nals is given by

γ(TPL,S) =

∑Mi=1∑Nj=1

(
(S(xi)− S̄)(TPL(x j)− ¯TPL)

)
√√√√∑Mi=1∑Nj=1

(
(S(xi)− S̄)2(TPL(x j)− ¯TPL)2

) (1)

where M and N denote lengths of S and TPL respectively
and S̄ and ¯TPL represent their mean values respectively.
3.2 Template Generation
The raw sensor readings are collected during the exper-

iment along with the video recording of the actions. The
collected signals are then segmented and labeled manually
for each experimental action. Video recording is used to seg-
ment the data in a more fine-grained manner. This manual
segmentation ensures precise segmentation and labeling of
the data, which would prevent injecting automatic segmenta-
tion errors to subsequent signal processing and pattern recog-
nition blocks. Our templates are generated by comparing ev-
ery pair of training instances and choosing the one which
is most similar to the others. As such, the NCC measure
is used to calculate similarity score between pairs of train-
ing instances. Furthermore a simple normalization is used
to make the incoming signal and target template uniform in
length.
3.3 Weak Classifiers
In-node classification is accomplished using a threshold

value for each axis of the sensors. This threshold is calcu-
lated during training and is set to a value between an upper
bound and a lower bound. The bounds are the average of
the cross correlation values by comparing the template with
target and non-target classes. Each weak classifier makes a
decision on the incoming signal as follows. For each axis
of the sensors (e.g. 3 for accelerometer and 2 for gyroscope
data used in our experiments), the corresponding signal is
used to perform the template matching and compare the in-
coming signal with the previously determined template. If
the result of the comparison is greater than the threshold, the
signal is labeled as target action. Otherwise, the signal is
classified as a non-target action.
3.4 Weighted Combiner
A decision fusion approach is used for final classifica-

tion. Our decision fusion algorithm is a classifier combiner
which takes into account the amount of contribution each
weak classifier can make to the overall accuracy of the sys-
tem. The algorithm works with a set of training instances
that are correctly labeled with the appropriate actions. Each
instance consists of a sensor reading (i.e. xi) and a label (i.e.
yi), and is associated with a weight that is equal for all the
instances of the same action. Let L be the learning algorithm
that generates the hypothesis ht(x). The algorithm L is the
method of finding the threshold, and ht(x) is the function of
our weak classifier that produces true/false labels. If the out-
come of the comparison between instance x and target action



Algorithm 1:Weighted Combiner Model
data: TS training set (x1,y1),(x2,y2), . . . ,(xN ,yN) ,

L learning algorithm generating hypothesis ht(x)
classifier,
N size of training set

initialize: dn weight of instance n (d is a distribution
with 1= ∑Nn=1 dn) dn = 1/N

input : T max number of hypotheses in the ensemble
begin
for t = 1, . . . , |T | do

1. Train weak learner and obtain hypothesis ht
2. Compute error εt = ∑Nn=1dnI(yn �= ht(xn))

3. Compute hypothesis weight βt = 1
2 ln

1−εt
εt

output: combined hypothesis fCom(x) = ∑Tt=1βt ht(x)

template is greater than or equal to the threshold value, a true
label is generated. Each weak classifier is associated with a
weight, depending on the classification error that is obtained
during training. The weak classifiers that achieve a smaller
error are assigned larger weights to signify their contribution
to the overall system performance.
4 Power-Aware AdaBoost
Classical AdaBoost learns from a set of weak classifiers

and boosts classification performance by allocating weights
to the individual local classifiers. There are two main draw-
backs with this approach: 1) AdaBoost examines all classi-
fiers even if they provide less informative data for classifi-
cation. Contribution of different sensors to action recogni-
tion varies depending on the placement of the sensor, type
of inertial information, and actions of interest. 2) AdaBoost
does not take into account the power requirements of the in-
dividual weak classifiers while learning from weak classi-
fiers. However, power consumption of the classifiers varies
depending on the type of sensors, computing complexity, and
data communication requirements. For example, gyroscopes
generally consume much more power than accelerometers.
Therefore, the optimal subset of the classifiers needs to be
selected by making appropriate design tradeoff between ac-
curacy and power consumption.
4.1 Problem Formulation
Let S={s1, s2, . . . , sn} be a set of n sensor nodes used to

distinguish between a target action, â, and a set of m non-
target actions, A={a1, a2, . . . , am}. A sensor node, si, is
a physical wearable node that has limited processing power
and storage and can communicate within certain range, and
is composed of l sensors that capture inertial data from hu-
man movements. The sensor node used for our experimen-
tal verification has l=5 sensors including three axes of ac-
celerometer and two axes of gyroscope readings.
DEFINITION 1 (WEAK CLASSIFIER). Each sensor node
si consists of l weak classifiers, Ci = {Ci1,Ci2, . . . ,Cil}. Each
classifier Cik is associated with one of the sensors avail-
able on si, and is a binary classifier that operates based on
template matching and makes a classification decision using
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Figure 2. Learning algorithm and classifier combiner
during training and test

the similarity score obtained from NCC. The classifier deter-
mines whether or not an incoming signal is classified as the
target action.
Given the n nodes and l sensors per node, the system has

a total of T = n× l weak classifiers. Figure 2 shows how
learning parameters (e.g. weights β11, . . . ,βnl) are generated
during training. The learning algorithm can also provide an
estimate of the expected accuracy of the entire classification,
β.
To calculate power consumption of the set of active clas-

sifiers, we consider two sources of power consumption,
namely computation and communication costs. We as-
sume that each classifier is associated with a specific sensor
(e.g. x-accelerometer, y-gyroscope) and therefore has a fixed
computation cost depending on whether or not it is activated.
DEFINITION 2 (COMPUTATION COST). For each classi-
fier Ci j, we define wi j as the computation cost associated
with power consumption of the corresponding sensor. This
value is a priori known and has a non-zero value for active
classifiers while it is zero for non-active ones. Thus, the total
computation costs is given by

Pcomp =
n

∑
i=1

l

∑
j=1
xi jwi j (2)

where xi j is a binary variable that denotes whether or not
classifier Ci j is active.
DEFINITION 3 (COMMUNICATION COST). For a set of
weak classifiers used for learning, the communication cost
is given by

Pcomm =
n

∑
i=1
f (

l

∑
j=1
xi jbi j) (3)

where f (.) denotes the communication cost due to transmis-
sion of certain amount of data, and xi j denotes if classifier
Ci j is activated, and bi j represents the amount of data that is
generated by classifier Ci j and needs to be transmitted to the
basestation.
We note that the communication costs are calculated for

each sensor node rather than individual sensors/classifiers.
This is mainly due to merging results of all active classifiers
at each node prior to transmission to the basestation. The
power consumption of the system due to activation of a set
of weak classifiers used for learning is then given by

Z = Pcomp+Pcomm (4)



PROBLEM 1. Given a set of T =
⋃
Ci = {C11,C12, . . . ,Cnl}

classifiers, and also data units bi j and computation cost wi j
for each classifier Ci j, the problem of Minimum Cost Classi-
fier Selection (MCCS) is to find a subset of Ci j with minimum
total cost while a lower bound of α≥ F on the overall accu-
racy is met.
Therefore, the optimization problem can be written as fol-

lows.

Minimize
n

∑
i=1

l

∑
j=1
xi jwi j+

n

∑
i=1
f (

l

∑
j=1
xi jbi j) (5)

Subject to:
α≥ F (6)

4.2 Problem Complexity
The optimization problem presented in (5) poses several

difficulties in arriving at an optimal solution: 1) The com-
munication cost in (3) is a concave function and minimizing
a concave function is considered to be hard in general [5]. 2)
The constraints of the optimization problem in (6) are non-
linear inequalities, which makes the minimization problem
even harder. In order to develop a polynomial-time algo-
rithm for the MCCS problem, we simplify some of the as-
sumptions made for our classification model. In particular,
transforming the concave communication cost function into
a linear function of the transmitted data can turn the objective
function into a convex function. One specific property of our
weak classifiers is that they produce very small amount of
data per classification. Therefore, local results can be com-
bined to form a small fixed-size packet. This would turn our
optimization problem into minimizing the overall computa-
tion cost. Thus, the objective function in our optimization
problem can be rewritten as follows.

Minimize
n

∑
i=1

l

∑
j=1
xi jwi j (7)

We note that the problem could be transformed to a cover-
ing problem if contribution of individual sensors was mutu-
ally exclusive. Unfortunately, information inferred from the
sensors are highly correlated. That is, the accuracy obtained
from combining two sensors is not equal to the summation
of the accuracy values from individual sensors.
4.3 Greedy Approach
In this section, we present a greedy heuristic algorithm

that takes power consumption and accuracy of the weak clas-
sifiers into account and finds a subset of least power consum-
ing classifiers that maintain an overall accuracy of at least
equal to a given value. Our greedy algorithm is a back-
ward elimination algorithm that starts with all classifiers be-
ing considered for AdaBoost-driven learning. The set of all
classifiers can potentially achieve a maximum accuracy that
might be much higher than the lower bound accuracy. How-
ever, this configuration is highly power consuming as it uses
all available sensors for action recognition. The algorithm
iterates through different steps until it stops given a condi-
tion on overall accuracy of the classification. At each stage
of the algorithm one of the classifiers is eliminated. The
elimination criterion is validated as a tradeoff between power
consumption and accuracy. Specifically, the classifier whose

(a) Transitional actions

21
3

4

(b) Subject

Figure 3. Experimental setup

wi j
βi j
is maximized is the candidate for elimination. We note

that wi j and βi j represent the power consumption and signif-
icance of the classifier Ci j. Yet, at each step, the algorithm
checks whether the overall accuracy is still above the mini-
mum desirable value. The algorithm stops if elimination of
the next classifier would decrease the overall accuracy to a
value below the given desirable threshold, F . The algorithm
is linear in the number of weak classifiers. Thus, the algo-
rithm has a complexity of O(n× l).
5 Experimental Verification
To demonstrate the effectiveness of our classification

framework and power-aware sensor selection algorithm, we
present in this section our results on both accuracy and power
consumption of the system under the developed models.
The data were collected in a single experimental session

from three male subjects all in good health conditions. The
data included acceleration and angular velocity for the 12
transitional actions listed in Figure 3(a). Each subject was
asked to perform each one of the actions 10 times while
wearing the four sensor nodes shown in Figure 3(b). The
sensor nodes were programmed to sample each sensor at 50
samples per second and transmit to a personal computer us-
ing a TDMA approach. The data were then segmented man-
ually with the help of video. The data collected from the
experiments were stored on a Laptop computer where we de-
veloped our signal processing algorithms and conducted the
performance evaluation.
A set of experiments were conducted to identify each ac-

tion listed in Figure 3(a). For each experiment, the particular
action was considered as target action and the rest of the ac-
tions formed a non-target class. For each target action, we
generate a template for parameter setting and threshold cal-
culation. During execution of the system, an incoming signal
is compared against the template.
To calculate the threshold, we compared the template with

the ‘true’ and ‘false’ instances. By taking an average over all
the similarity scores between the template and target action
instances, we obtained an upper bound as well as a lower
bound on the value of the threshold. For our experiments,
we use a threshold that is calculated as given by

Thr =
Thrupper+Thrlower

3
(8)
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Figure 4. Number of active classifiers reported by the
backward elimination greedy algorithm.
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Figure 5. Measured recall due to using only active classi-
fiers. Measured precision was 100%for all actions except
actions 3, 4, and 6.
The next step in development of our classification frame-

work is to build theWeighted Combiner Model. Inputs to this
model are the threshold values. It generates a set of weights
(βi j) as output, each of which is associated with a weak clas-
sifier. Lower error rates for a particular classifier would re-
sult in larger weights assigned to that classifier. Classifiers
that have larger weights would contribute more to the over-
all accuracy of the classification. This way, more accurate
weak classifiers are considered as more significant contribu-
tors. Each axis of the sensors could be more or less signifi-
cant depending on the location of the sensor node and move-
ment of interest. For example, the sensor readings of the
node placed on the ankle will carry more indicative informa-
tion to detect the ‘Moving Forward/Backward’, compared to
the action ‘Sit to Stand’.
5.1 Detecting ‘Sit to Stand’
In our first analysis, we trained the system for detecting

‘Sit to Stand’ as target action. The greedy algorithm was
used to find the best subset of the sensors that can detect this
action with a precision of P≥ 90% and a recall of R≥ 80%.
The backward elimination algorithm removed all weak clas-
sifiers except one sensor axis. The resulting active sensor
was the ‘Z-axis accelerometer’ of the ‘right thigh’ node. This
observation can be interpreted as follows. The Z-axis accel-
eration is the axis pointing the frontal plane of the subject
and has a unique pattern during ‘Sit to Stand’. This pattern
is not repeated for the rest of actions, and therefore, is a dis-
tinguishing pattern which can by itself distinguish between
this action and the others. This results in 95% reduction in
the number of active sensors (from 20 to 1).
5.2 Per-Action Results
In this section, we present the results for individual ac-

tions being considered as target. We analyzed these results

Table 1. List of active sensors (weak classifiers) for de-
tecting each target action.

Action Desired accuracy threshold values(P=Precision,R=Recall, wk=N. of weak classifiers)
wk P=0.8 R=0.7 wk P=0.85 R=0.75 wk P=0.9 R=0.8

1 1 AcZ-3 1 AcZ-3 1 AcZ-3
2 1 AcZ-3 1 AcZ-3 1 AcZ-3

3
1 AcZ-4 1 AcZ-4 3 AcX-1,AcY-2

AcZ-4

4
1 AcY-4 3 AcY-2,AcZ-3 3 AcY-2,AcZ-3

AcY-4 AcY-4

5
3 AcX-1,AcZ-2 3 AcX-1,AcZ-2 5 AcX-1,AcY-1

AcZ-3 AcZ-3 AcZ-2,AcZ-3
AcY-2

6 15 15 15

7
3 AcX-1,AcZ-1 3 AcX-1,AcZ-1 3 AcX-1,AcZ-1

AcY-4 AcY-4 AcY-4
8 14 14 17

9
5 AcX-2,AcY-3 5 AcX-2,AcY-3 10

AcX-4,AcY-4 AcX-4,AcY-4
AcZ-3 AcZ-3

10
3 AcZ-1,AcZ-2 3 AcZ-1,AcZ-2 3 AcZ-1,AcZ-2

AcY-3 AcY-3 AcY-3
11 10 10 10
12 14 14 14

for three scenarios where performance of the classification
varies. For each performance level, we found the minimum
set of weak classifiers that achieve the given sensitivity (or
recall) and precision values. The three performance levels
are: “precision=0.8, recall=0.7” (level 1), “precision=0.85,
recall=0.75” (level 2), and “precision=0.9, recall=0.8” (level
3).

5.2.1 Classifier Performance Analysis
Figure 4 shows the number of sensors (or weak classi-

fiers) that are required to obtain the desirable performance.
The number of active sensors clearly depends on the ac-
tion being recognized. In most cases, only few sensors are
enough to monitor the target action. However, there are cases
such as actions 6, 8, 11 and 12 where a larger number of ac-
tive sensors are needed. The list of the weak classifiers used
during the classification task, for different levels of accuracy,
are shown in Table 1. For visualization, the list of the active
sensors is eliminated from the table for those actions that
require a large number of active sensors. This is the case
for actions 6, 8, 11 and 12 (‘Kneeling’, ‘Turning’, ‘Move
backward’, and ‘Jumping’), which require 15, 17, 10 and 14
active sensors for the highest calculated performance respec-
tively. The first column in Table 1 refers to the actions listed
in Figure 3(a). The second and third columns show num-
ber and name of active sensors detected with the first perfor-
mance level (precision=0.8, recall=0.7) respectively. Simi-
larly, fourth and fifth columns refer to active sensor desired
performance is set to level 2. Finally, the last two columns
show the results for performance level 3.
Figure 5 illustrates the results of the classification, in

terms of the measured recall. The measured precision was
100% for 9 actions (all except actions 3, 4, and 6) in all the
three desired performance levels. When classifying action
3, the measured precision was 85%, 85% and 90% for per-
formance levels 1, 2, and 3 respectively. For action 4, the
precision values were 85%, 100%, and 100% for the three
performance levels respectively. Finally, when action 6 is
considered as target action, the actual precision of the sys-
tem was 85% in all the three performance levels.



Table 2. Power consumption due to power-aware learn-
ing

Mov. W/ Alg. [mW] W/o Alg. [mW] Saving [%]
1 0.88 135.96 99.3
2 0.88 135.96 99.3
3 2.64 135.96 98.0
4 2.64 135.96 98.0
5 4.4 135.96 96.7
6 47.02 135.96 65.4
7 2.64 135.96 98.0
8 88.93 135.96 35.4
9 8.8 135.96 93.5
10 2.64 135.96 98.0
11 8.8 135.96 93.5
12 41.91 135.96 69.2
Avg. 17.68 135.96 87

5.2.2 Power Analysis
Reducing power consumption of the system usually re-

sults in a decrease in accuracy. In order to calculate
the power consumption of individual sensors, we found
the nominal values of power used by the accelerometers
(LIS3LV02DQ) and gyroscopes (IDG-300) that are used in
building our motion sensor platform [1]. The power con-
sumption for each axis of the accelerometer is 0.88 mW
while for the gyroscope this value is 15.67 mW.
In Table 2, the power consumption of the classification

for each target action and for different values of accuracy
are reported. As shown, the values of the power consuming
remain very low (1-3 mW) for almost all the actions. The
power needed for the classification increases suddenly when
we start to use the weak classifiers associated with the gy-
roscope sensors. Such power consuming classifiers are acti-
vated in order to improve the accuracy of the classification
and to achieve the desirable classification performance as re-
quested by the user.
The algorithm described in Section 4 will drastically de-

crease the power consumption of the classification system.
The amount of power savings achieve by using our power-
aware action recognition framework is reported in Table 2.
For this particular test, the performance level is set to P=90%
and R=80%. In the table, power consumption and percentage
of power savings are reported for each target action for a sys-
tem without intelligent sensor selection as well as a system
with our sensor activation approach.

6 Discussion and Ongoing Research
Our classification approach can be compared with several

previous studies in terms of accuracy, number of classified
actions and amount of sensors used in the study. [6] reports
85% accuracy for classifying 4 actions using one sensor node
placed in the pocket. It also achieves 86%, 87%, 87%, 89%,
and 92% accuracy when the sensor node is placed on neck-
lace, belt, wrist, shirt, and bag respectively. [7] reports 84%
accuracy for classifying 4 actions with a sensor node placed
on the chest.
Currently, our classification approach is based on tem-

plate matching. Most previously studied classification ap-
proaches rely on feature extraction and either parametric or
non-parametric classification algorithms. As part of our fu-
ture work, we will explore feasibility of the approach where

the cost associated with each feature (rather than each sen-
sor) is considered.
As an alternative for sensor selection, one may consider

a feature selection approach to find significant features and
their associated sensor nodes. However, we note that feature
selection algorithms may not take advantage of our classifier
boosting methodology.
At the current stage of our research, we use a greedy

heuristic algorithm to select active sensors for classification.
As part of our ongoing research we derive analytical bounds
on the performance of the proposed algorithm.
Currently, we perform static analysis of the power-

accuracy trade-offs. Thus, our greedy sensor selection al-
gorithm is running offline. In future, we will investigate a
combinatorial algorithm that can run in real-time and selects
active sensors dynamically.
In this study, we demonstrated the effectiveness of our

classification algorithms on a small experimental population
(3 subjects). In future, we will investigate generalizability of
our results to larger populations.
7 Conclusion
In this paper, we designed a novel classification approach

that incorporate two design criteria, energy consumption and
classification accuracy. Our system uses simple template
matching blocks to perform coarse classification of human
movements on wearable sensor nodes. Only a subset of the
sensors is activated for classification purposes where active
sensors are determined according to their power consump-
tion as well as their contribution to the overall classification
performance of the system. The results obtained by active
sensors are further combined through a boosting approach to
achieve high classification accuracy.
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