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ABSTRACT— increased demands for applications of brain 
computer interface (BCI) have led to growing attention 
towards their more practical paradigm design. BCIs can 
provide motor control for spinal cord injured patients. BCIs 
based on motor imagery (MI) and steady-state visual evoked 
potentials (SSVEP) tasks are two well-established tasks that 
have been studied extensively. These two tasks can be combined 
in order for the users to realize more sophisticated paradigms. 
In this paper, a novel system is introduced for simultaneous 
classification of the MI and SSVEP tasks. It is an effort to 
inspire BCI systems that are more practical, especially for 
effective communication during more complex tasks. In this 
study, subjects performed MI and SSVEP tasks both 
individually and simultaneously (combining both tasks) and the 
electroencephalographic (EEG) data were recorded across 
three conditions. Subjects focused on one of the three flickering 
visual stimuli (SSVEP), imagined moving the left or right hand 
(MI), or performed neither of the tasks. Accuracy and 
subjective measures were assessed to investigate the capability 
of the system to detect the correct task, and subsequently 
perform the corresponding classification method. The results 
suggested that with the proposed methodology, the user may 
control the combination of the two tasks while the accuracy of 
task recognition and signal processing is minimally impacted. 

I . INTRODUCTION 

Brain-computer interface (BCI) technology is gaining 
popularity due to recent developments of inexpensive, easy-to-
wear, low profile and low power electroencephalography (EEG) 
acquisition systems. The applications of BCI are diverse with 
potential for large economic impact. For instance, monitoring 
brain activities with EEG sensory systems can be employed to 
help handicapped patients to move independently, or to develop 
entertainment and gaming applications, and also to design 
improved treatments for many disorders including neuro-
degenerative, depression, obesity, and drug addiction [1, 2, 3]. 

Recent developments in BCI have inspired investigations 
towards more practical BCI architectures, especially effective 
communication during complex tasks. We developed an 
integrated system featuring low cost, low power wireless data 
acquisition capability which is capable of interfacing with 
mobile devices. We particularly focused on creating BCI-
enabled systems for smart phones and tablets for application 
selection and menu navigation. In this paper, an application 
selection task is defined which can be accomplished via 
combining two different BCI tasks, based on steady-state visual 
evoked potential (SSVEP) [4] and motor imagery (MI) [5]. 
These two BCI tasks have been studied extensively and their 
combination can help enable a large number of applications in 
gaming, entertainment, navigation and rehabilitation with 
significant commercial relevance. The major challenge is the 
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requirement for simultaneous classification of MI and SSVEP 
EEG signals. Therefore, we propose a mechanism to 
simultaneously classify the MI and SSVEP tasks. The subjects 
participated in this study perform the MI and SSVEP tasks and 
their corresponding EEG data is recorded. We develop a task 
detection system to choose between the tasks and then feed the 
EEG signals to the detected target BCI task. To do so, we design 
discriminative measures based on CCA correlation values and 
support vector machine (SVM) classifier to accurately 
discriminate SSVEP/no SSVEP and MI/no MI, respectively. 

The organization of this paper is as follows. In section II, we 
describe the low-power Bluetooth EEG acquisition system, and 
also the SSVEP-based and the MI-based systems. In section III, 
the combined task is explained and the proposed strategy for 
simultaneous classification of MI and SSVEP EEG signals is 
presented. In section IV, the experimental results are illustrated 
and analyzed. Finally, section V concludes the paper. 

I I . METHOD AND ARCHITECTURE 

A. Signal acquisition system 
The data acquisition system, designed and developed in our 

lab, comprises a set of active dry-contact electrodes, a low-noise 
recording electronics including Texas Instruments ADS1299 and 
Bluetooth low energy (BLE) communication module. The 
overall system design features low cost, low power 
consumption, with low component count, and is capable of 
interfacing with mobile devices. 

(b) 

Figure 1. The proposed BCI system configuration: (a) is the conceptual 
diagram of the proposed system; (b) is the photograph of the EEG signal 
acquisition system. 
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Fig. 1 illustrates the system configurations: (a) is the 
conceptual diagram of our system, and (b) is the photograph of 
the EEG recording system. In the proposed BCI system, eight 
dry electrodes including C3, C4, FC3, FC4, P07, P08, Oz, and 
POz are placed as the EEG channels and Cz is used as the 
reference in the international 10-20 system. The EEG recording 
system transfers the collected EEG signals to the PC or the 
mobile handset, where the entire signal processing procedure is 
performed. The prototype EEG recording system shown in (b) is 
capable of recording 16 channels simultaneously, and is 
approximately 3x1.5 inches in size. The EEG signals were 
filtered between 0.5 and 30 Hz and recorded with a sample 
frequency of 250 Hz. 

B. SSVEP-based BCI task 
In the SSVEP-based system, an LCD display with a 60 Hz 

refresh rate was used as the stimulus source. There were four 
targets in the BCI system, with three flickering frequencies of 6 
Hz, 7.5 Hz, and 8.6 Hz which correspond to ten, eight and seven 
frames in one flicking period. There was also a non- flickering 
target in order to collect no SSVEP data. Fig. 2 shows the 
distribution of the four targets on the screen. We designed our 
experiments using the Psychophysics Toolbox [6]. 

Figure 2. The distribution of four targets in the monitor 

We employed the canonical correlation analysis (CCA) method 
for the SSVEP-based BCI. CCA is a multivariable statistical 
method used when there are two sets of data, which may have 
some underlying correlation [7]. It finds a pair of linear 
combinations, for two sets, such that the correlation between the 
two canonical variables is maximized. The use of the CCA 
method for multi-channel SSVEP detection was first proposed 
in [8]. Fig. 3 demonstrates the use of CCA to detect the 
frequency of the SSVEP-based BCI where there are K targets, 
with the stimulus frequencies being fi,f2, . . . ,fK, respectively. 
Xrefers to the set of multi-channel EEG signals and prefers to 
the set of reference signals which have the same length as X. 
The reference signals Yf is, 

(sm(2xft) sm(27tHfty 
cos(27ift} ■■■ cos(2ftHft) 

(1) 

where H is the number of harmonics (H = 3 in this study). The 
multi-channel EEG signals and each of the reference signals 
were used as an input of the CCA method. The output canonical 
correlation p can be used for frequency recognition. The user's 
command w is recognized as, 

w == arg max pi = 1,2,.. .,K (2) 

where pt are the CCA coefficients obtained with the frequency 
of reference signals being/[,/2, ■ ■ ■ ,/K-

Refer Signal Y 

Figure 3. Employing CCA in EEG signals analysis. Xis the multi-channel 
EEG signals. I/is the reference signals with/ Hz stimulus frequency [9]. 

C. MI task 
In the Mi-based system, each subject sat about one meter 

distance in front of the computer screen. The MI training 
paradigm consists of a repetitive process of triggered movement 
imagery trials. Each trial lasted 10 seconds and started with the 
presentation of a blank screen. At the 2nd second, a fixation 
cross appeared in the middle of the screen and lasted for two 
seconds. This period is considered for no MI data collection. 
From the fourth second to the seventh second, the subjects 
performed left or right-hand motor imagery according to an 
arrow (cue) on the screen. An arrow pointing either to the left or 
to the right indicated the imagination of a left hand or right hand 
movement. The order of appearance of the arrows was 
randomized and at the seventh second, the screen content was 
erased. The trial finished with a three second inter-trial period 
beginning at the seventh second. Each recording session 
consisted of 80 trials. Fig. 4 shows the timing scheme. 

Fixation cross Arrow 
to the left or right 

Blank screen 

time (s) 
0 1 2 3 4 5 6 7 8 9 10 

Figure 4. Training paradigm and time scheme for each recording 

In this section, we present a lightweight classification 
method for single trial EEG. First, the baseline was removed, 
that is, the average of baseline segment (0-500ms) was 
subtracted from all samples of each trial. Then, the data were re-
referenced to the average potential over the entire head. In the 
next step, we applied a band-pass filter (0.5 - 30 Hz) to 
eliminate high frequency and very low frequency noise. Then, 
we used band power (BP) [10], fractal dimension (FD) [11], and 
wavelet packet tree [12] to extract features. Extracted feature 
vectors are fed to the SVM classifier to distinguish the imaginary 
right and left hand movements. Fig. 5 shows the signal 
processing flow of the system. 
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III . COMBINING THE S S V E P AND M I BASED SYSTEMS 

Recent successful development of BCI systems has inspired 
studies and efforts towards more practical BCI architectures, 
especially effective communication during more complex tasks. 
For example, Fig. 6 shows the Tetris game application. As 
shown in Fig. 6, the task can be accomplished via combining the 
SSVEP task (left/right rotation and pause), and MI task 
(left/right movement). 

pause 

<T\ H:> 
SSVEP-based 

MI-based 

Figure 6. An application using SSVEP-based and MI-based BCI 

The major challenge in the application shown in Fig. 6 is the 
requirement of simultaneous classification of MI and SSVEP 
tasks with common EEG input signals. We design a task detector 
to simultaneously classify the MI and SSVEP tasks. The subjects 
in this study performed MI and SSVEP tasks and the 
corresponding EEG data were recorded and used for training. 
Then, the proposed task detector feeds the input EEG signal to 
the detected target BCI task, as shown in Fig. 7. The SSVEP 
detector in Fig. 7 is designed based on the CCA classifier 
explained in section II.B. First, the CCA correlation values are 
filtered to keep only the frequencies between 5-10 Hz to ignore 
unwanted frequencies. Then, the discriminative measure û i is 
calculated as follows, 

Pw / > ; * (3) 

where p is the output canonical correlation, w1 and w2 are the 
index of the first and second maximum CCA coefficients 
obtained with the frequency of the reference signals in Eq. (2), 
and 0 is the threshold on the difference between the first and the 
second maximum CCA coefficient leading to the best accuracy 
to distinguish the SSVEP/no SSVEP data for the subject i. If the 
input EEG signal is SSVEP-based, the measure A; tends to be 
higher, and vice versa. 

The MI detector is designed based on a two-class SVM 
classifier which is trained using the collected MI and no MI data 
as described in section II.C. 

/ (x) Vc^.y^.x + d (4) 

where yt ={1, -1} represents SSVEP and no SSVEP data 
respectively, the vectors x; are the support vectors, N is the 
number of support vectors, at are adjustable weights, and d is 
the bias term. In the detection phase, if f(x) is bigger than zero, 
the EEG signal is directed to the MI system. If the input EEG 
signal is MI-based, the SVM score tends to be positive towards 
1, and if it is no MI, the score tends to be negative towards -1. 
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Figure 7. Detection of the target B C I task 

There are 4 possible output combinations from the detector: 1) 
SSVEP, and no MI: The signal is detected as SSVEP and 
directed to the SSVEP-based system. 2) MI, and no SSVEP: The 
signal is detected as MI and directed to MI-based system. 3) no 
MI, and no SSVEP: The signal is considered as irrelevant and is 
skipped. 4) MI, and SSVEP: This is an invalid case in which the 
signal is directed to both systems and the right one is chosen 
based on the confidence level of the final decisions. 

IV . EXPERIMENTS 

Five healthy subjects participated in this study. Subjects 
ranged from 20 to 30 years old. We collected data from the 
subjects based on the methodology explained in section II.B and 
II.C for the SSVEP and MI BCI tasks. From the eight electrodes 
placed at C3, C4, FC3, FC4, PO7, PO8, Oz, and POz as the EEG 
channels, the first four were used as the input channels for the 
MI task and the remaining four were used for the SSVEP task. 
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Figure 8. the CCA correlations for different target frequencies. 
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Figure 9. Comparison of the measure ûi for the SSVEP and no SSVEP trials 

For the SSVEP task, there was no training required and for 
the testing, a set of 30 trials of eight seconds long was recorded 
per subject. Fig. 8 shows the CCA correlations of different 
frequencies for the SSVEP test data for subject 1. The target 
frequencies show clear peaks for their corresponding SSVEP 
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data (Red, Green, and Blue curves) and demonstrated no 
significant peak for the no SSVEP data (Black curves). As 
illustrated in Fig. 8, the CCA correlation values for frequencies 
between 5-10 Hz are investigated using Eq. (3). Fig. 9 shows the 
measure Ai defined in Eq. (3) for the SSVEP/no SSVEP trials of 
subject 1. The trials 1-18 are associated with the SSVEP data, 
and the trials 19-30 represent the no SSVEP data. Fig. 9 shows 
that the measure Ai is consistently lower for the no SSVEP data 
compared to the SSVEP data which verifies its effectiveness to 
distinguish the two signals. 

Table I reports the accuracy of classifying SSVEP/no SSVEP 
on the four different subjects. The accuracy is always higher 
than 93%. It also shows that there is no False Positive (FP) error. 
Please note that we forced the errors towards the False Negatives 
(FN) by highly waiting the FPs. Since, FP is the error that occurs 
by classifying a no SSVEP trial as the SSVEP trial and is a more 
crucial error to handle in the combined task compared to FN. 

T A B L E I. THE CLASSIFICATION ACCURACY: S S V E P / NO S S V E P 

Subject 
Subject 1 
Subject 2 
Subject 3 
Subject 4 
Subject 5 

Accuracy 
100% 
97% 
100% 
93% 
97% 

False Positive 
0 
0 
0 
0 
0 

False Negative 
0 
1 
0 
2 
1 

For the MI-based task, we collected 80 trials from each 
subject. Then, we trained the SVM classifier using the recorded 
training data. The radial basis kernel was used in the SVM 
classifier and the kernel parameters were optimized using cross 
validation on the training data. In the testing phase, a set of 40 
eight seconds long trials was recorded per subject and the 
accuracy was calculated. Table II reports the classification 
accuracy of the MI/ no MI on our five subjects. It is observed 
that the detection accuracy is 95% and above. Similar to the 
SSVEP-based system, the FP error was forced to zero. 

TABLE II. THE SVM CLASSIFICATION ACCURACY: MI/ NO MI 

Subject 
Subject 1 
Subject 2 
Subject 3 
Subject 4 
Subject 5 

Accuracy 
95% 

97.5% 
100% 
95% 
100% 

False Positive 
0 
0 
0 
0 
0 

False Negative 
2 
1 
0 
2 
0 

We also investigated classification of the combined SSVEP 
and MI test data to assess the accuracy of the target system 
detector illustrated in Fig. 7. Table III reports the accuracy of 
different possible outputs. It is observed that combining the 
SSVEP and MI input data did not decrease the overall accuracy 
of the system. The results reported in Table III illustrate that the 
detector accurately discriminates the underlying information 
behind the two tasks. Note that the invalid case of an input being 
detected as SSVEP and MI at the same time did not occur on the 
combined data which shows the reliability of the system to pick 
the right target between the two BCI tasks. 

TABLE III. THE ACCURACY OF THE TARGET SYSTEM DETECTION 

Subjects 

Subject 1 
Subject 2 
Subject 3 
Subject 4 
Subject 5 

Accuracy 
SSVEP 

& NO MI 
98.2% 
99.1% 
100% 
98.2% 
100% 

NO SSVEP 
& MI 
100% 
99.1% 
100% 
98.2% 
99.1% 

NO SSVEP 
& NO MI 
98.2% 
98.2% 
100% 
96.4% 
99.1% 

V . CONCLUSION 

In this paper, a novel detection system for simultaneous 
classification of the MI and SSVEP tasks is introduced as an 
effort towards more practical and effective BCI during more 
complex tasks. In this study, subjects participated in performing 
MI and SSVEP tasks by focusing on one of the three flickering 
visual stimuli (SSVEP), or imagining the left or right hand 
movements (MI), or performed none of the tasks. The 
experimental results and analyses demonstrated that the 
proposed system successfully classifies the combined input data 
to choose the right BCI task with minimal changes in the 
overall accuracy of the system. 

V I . ACKNOWLEDGEMENT 

This work was supported in part by the National Science 
Foundation, under grant CNS-1150079, the Semiconductor 
Research Corporation, task # 1836.103 through the Texas 
Analog Center of Excellence (TxACE). Any opinions, findings, 
conclusions, or recommendations expressed in this material are 
those of the authors and do not necessarily reflect the views of 
the funding organizations. 

V I I . REFERENCES 

[I] Ebrahimi, T, Vesin, J.M, Garcia, G. "Brain-Computer Interfaces in 
Multimedia Communication," IEEE Signal Processing Magazine, Vol. 
20 14-24,2003. 

[2] Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., 
Vaughan, T.M.: "Brain-Computer Interfaces for Communication and 
Control," Clinical Neurophysiology,Vol. 113 , 767-791,2002. 

[3] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi, "A 
review of classification algorithms for eegbased brain-computer 
interfaces," Journal of Neural Engineering, vol. 4,. R1-R13, 2007. 

[4] Omid Dehzangi, Mansoor Zolghadri Jahromi, and Shahram Taheri. 
2007. High performance classification of two imagery tasks in the 
cue-based brain computer interface. the I A P R international conference 
on Pattern recognition in bioinformatics (PRIB'07), Springer-Verlag, 
Berlin, Heidelberg, 378-390. 

[5] Kelly S , Lalor E , Finucane C, McDarby G and Reilly R 2005 Visual 
spatial attention control in an independent brain-computer interface 
I E E E Trans. Biomed. Eng. 52 1588-96 

[6] Brainard, D . H. (1997) The Psychophysics Toolbox, Spatial Vision 
10:433-436. 

[7] 12 Storch H and Zwiers F 1999 Statistical Analysis in Climate 
Research (Cambridge: Cambridge University Press) 

[8] Lin Z , Zhang C, Wu W and Gao X 2006 Frequency recognition based 
on canonical correlation analysis for SSVEP-based BCIs IEEE Trans. 
Biomed. Eng. 53 2610^4 

[9] Bin, G.Y., Gao, X.R. , Yan, Z., Hong, B., Gao, S.K.: An online multi­
channel S S V E P based brain-computer interface using a canonical 
correlation analysis method. J. Neural. Eng. 6 (2009) 

[10] D. Allen and C. MacKinnon, "Time-frequency analysis of movement-
related spectral power in E E G during repetitive movements: A 
comparison of methods," Journal of neuroscience methods, vol. 186, 
no. 1, pp. 107-115, 2010 

[II] Higuchi, T.: Approach to an Irregular Time Series on the Basis of 
Fractal Theory. Physical D 31, 277-283 (1988) 

[12] L. Safavian, W. Kinsner, and H. Turanli, "A quantitative comparison 
of different mother wavelets for characterizing transients in power 
systems," in Electrical and Computer Engineering, 2005. Canadian 
Conference on. IEEE, 2006, pp. 1461-1464. 


