
Implementation of Virtual Sensors in Body Sensor
Networks with the SPINE Framework

Nikhil Raveendranathan*, Vitali Loseu*, Eric Guenterberg*, Roberta Giannantonio'',
Raffaele Gravinat +, Marco Sgroit, Roozbeh Jafari *

*Embedded Systems and Signal Processing Lab, University of Texas at Dallas, Dallas, TX 75080
tWireless Sensor Networks Lab, Telecom Italia, Berkeley, CA 94720

+Department of Electronics, Informatics, and Systems, University of Calabria, Rende, Italy
§Telecom Italia, Torino, Italy

Abstract-Signal processing for Body Sensor Networks usually
comprises multiple levels of data abstraction, from raw sensor
data to data calculated from processing steps such as feature
extraction and classification. This paper presents a multi-layer
task model based on the concept of Virtual Sensors (VS) to
improve architecture modularity and design reusability. In our
pilot application of gait parameter extraction, VS are abstractions
of components of BSN classification systems that include sensor
sampling and processing tasks and provide data upon external
requests analogous to the function of physical sensors. The paper
presents an extension of the SPINE Framework including a new
buffer management scheme that facilitates the VS implementa-
tion.

I. INTRODUCTION

The wide variety of potential applications for Wireless
Sensor Networks (WSNs) in conjunction with severe resource
constraints [8] make it difficult to design an operating system
that is both sufficiently lightweight and powerful. Because of
resource abundance, traditional desktop operating systems pro-
vide APIs for many different problems and domains. However,
operating systems for WSNs, such as TinyOS [7], provide
only minimal facilities, such as communication and process
scheduling. For problems which share common structure, the
abstraction provided by a software framework can enhance
developer productivity and exploit problem-specific optimiza-
tions.

Middleware exploiting such structure for conventional wire-
less sensor networks includes TinyLIME [2] and GSN (Global
Sensor Network) [1]. In the context of the wireless networks
the idea has been explored in many works [6], [9], [1].
Authors in these works propose generic abstractions for all
system components, which allow for easier integration of new
components and functionality on the system.

Body Sensor Networks (BSNs) represent a new application
domain which has received much attention recently due to
potential benefits for medicine, entertainment, and training.
There are several properties of BSNs not present in stan-
dard WSN deployments, including single-hop networking, a
significantly more powerful node called a base station, and
applications requiring extensive signal processing and pattern

Corresponding author Nikhil Raveendranathan nikhilr@student.utdallas.edu

recognition. These properties offer considerable potential for
optimization and simplification. SPINE (Signal Processing in
Node Environment) [4] is a software framework that aims to
enable efficient implementations of signal processing on sensor
nodes in BSN. The framework allows application of multiple
features on to the sampled sensor data before sending it to the
base station. In this paper, we present a task abstraction layer
built on top of SPINE, called Virtual Sensors (VS), which
allow multiple layers and stages of processing. We further
describe the virtual sensor implementation of an HMM-based
module to extract temporal parameters from gait.

II. THE SPINE FRAMEWORK

SPINE is an open source domain-specific framework de-
signed to support flexible and distributed signal-processing for
wireless sensor network systems. The main goal of SPINE is to
provide WSN developers with support for rapid prototyping of
signal-processing applications. Other design principles include
code reusability and efficiency, application interoperability and
specific support for sensing operations.

SPINE is an application-level framework nominally inde-
pendent of the specific network topology and underlying low-
level communication protocol. However, the current imple-
mentation focuses on star-topology networks with multiple
sensor nodes and a single coordinator node. This network
architecture is particularly suitable for Body Sensor Networks
as well as vehicle automation systems and home automation
applications.

III. VIRTUAL SENSOR ARCHITECTURE

Physical sensors map an observed physical quantity, such as
temperature, acceleration, or sound, onto a data value and pro-
duce an output. The output is generated when inputs change,
as the result of an event, or in response to a request. Sensors
are transducers converting values from one form to another
using physical processes. Signal processing algorithms convert
values using digital processes. This observed similarity is the
motivation behind the virtual sensor abstraction. Virtual sen-
sors may be implemented directly in a programming language,
or as networks of other virtual sensors. Every processing task

978-1-4244-4110-5/09/$25.00 ©2009 IEEE 124 SIES 2009

Fig. 1. Example of Signal Processing

is represented as a virtual sensor, resulting in a multi -level
hierarchy, as shown in Fig. 1.

(1)

all inputs arrive for a virtual sensor arrive. This removes
the overhead of propagating a data through the network. For
example, every computational component in Fig. 1 can be
replaced with a virtual sensor. The output of each virtual
sensor is defined by a set of inputs and its configuration. Based
on this observation, a virtual sensor i denoted as V Si, and is
defined as

where I; denotes the set of inputs, O, denotes the set of
outputs, and C, denotes the configuration of V Si. The con-
figuration of each virtual sensor defines the type of its inputs
and outputs, the particular implementation used for a given
computation task, and a set of parameters required for a
particular implementation.

~ _ - - - Levels of Data
AbstractionComputational >

Components

where t:n is a vector that describes the types of inputs Ii, and
lout is defined similarly for the outputs O; The specific VS
implementation is denoted by a. If the user does not specify
a, the Virtual Sensor Manager (described below) will choose
the implementation. Configuration parameters for the VS are
specified by p.

This definition provides modularity for system designs.
Different configurations of the same virtual sensor can be
easily substituted without inducing changes in the rest of the
design. This property can be very useful when empirically
searching for the best implementation of a particular signal
processing component for a given application. Alternative
implementations do not need to be loaded into main memory
at all times. They can be stored in flash memory, or transferred
from a base station upon request.

B. Virtual Sensor Manager

Once all virtual sensors are initialized, no additional control
is required during execution. However, initialization requires
significant support from the Virtual Sensor Manager (VSM).
The VSM is responsible for creating, and configuring virtual
sensors and connections between virtual sensors. The follow-
ing subsections will describe the functionality of the VSM.

1) Virtual Sensor Configuration: Changes in inputs, virtual
sensors, or connections may invalidate the current configura-
tion, therefore reinitialization could happen any time. For ex-
ample, a Fig. 3(a) describes a system that takes a temperature
reading in Fahrenheit, and a heart rate in beats per minute. In
Fig. 3(b) a new thermometer, that produces output in Celsius,
is introduced. V S 1 has to be reconfigured to handle the new
conditions. To be able to configure/reconfigure the system at
run time, the VSM accesses a table that maps each available
combination of possible inputs and outputs to the appropriate
virtual sensor implementation. This can be represented by the
set A. Each entry a E A contains:

(3)

(2)

a == {t:n., lout, 1/J }

where 1/J is the virtual sensor implementation.

Fig. 2. System Architecture Overview

Fig. 2 provides a general overview of the virtual sensor
system architecture. A user requests certain outputs given
specified inputs. This request is handled by the Virtual Sensor
Manager, which configures a set of virtual sensors to handle
the computational task. Virtual sensors use the Buffer Manager
to setup communication with the help of buffers. Once con-
figured, the system activates, and virtual sensors collaborate
to produce the final outputs.

A. A Virtual Sensor
Software frameworks often provide hardware abstractions,

which isolate the users from eccentricities of individual hard-
ware by supplying a uniform method of accessing hardware of
a certain type. Virtual sensors provide this type of abstraction
by allowing signal processing tasks to be connected to each
other without either having knowledge of the connection:
virtual sensors have no knowledge of the provenance of their
inputs nor the destinations of their outputs. Also, the virtual
sensor system propagates outputs as soon as possible after

125 SIES 2009

Fig. 3. Example of Input Modification

Buffer m ITIIIIIIIIJ

IV. VIRTUAL SENSORS IN SPINE

Fig. 6. HMM Application Example

If the producer VS is reconfigured, and its output is changed,
the BM removes the buffer that associated with the previous
output and initiates a new buffer, based on the new configu-
ration information.

by the VSM to other virtual sensors that are interested in data
of this particular buffer. To read from a buffer, a virtual sensor
must register with the buffer as a reader, specifying the number
of samples used per read. Every time the producer writes to the
buffer, the BM checks if the buffer has enough information for
any of the readers, and signals readers when they can access
the data. Fig 5 shows an overview of the BM operation. It
shows that BM keeps track of buffers by ID, tracking the points
where the producer is writing to, and where each individual
reader is reading from.

Fig. 5. Buffer Manager Overview

As a test application for virtual sensors in SPINE, we
implemented a system for automatic event annotation based
on a left-right Hidden Markov Model (HMM) [5]. This ap-
proach can identify key events within a movement. The HMM
annotation system consists of four parts: 1) acceleration data
is collected by physical sensors, 2) it is filtered, 3) features are
extracted, and 4) the HMM annotates the events. The system
uses a single sensor node, and only one implementation was
created for each virtual sensor.

Based on the HMM model and assumptions we made,
we defined four virtual sensors described in Fig. 6. Arrows
connecting virtual sensors denote the data flow from the
producer to the consumer. The initial request is generated
by the Java application code running on a PC. This request
initiates the configuration of each of the four virtual sensors.
Virtual sensors are created as described in Section III-B 1. Once
all the virtual sensors have been initialized, the HMM virtual
sensor starts producing output every sample. The sampling
interval is defined for the accelerometer VS, which acts as
the data source for the whole model. The event-driven model
of programming supported by nesC [3] is well-suited for this
kind of application.

Temperature Heartbeat
(C) (born)

Temperature Heartbeat
(F) (born)

Fig. 4. Example of Input/Output Dependency

If the modification is not drastic enough to necessitate
changing the implementation method, reconfiguration can alter
parameters of a given implementation. During configuration of
a virtual sensor, VSM includes the address of the selected im-
plementation and the required parameters in the configuration
message c;

2) System Configuration: While individual virtual sensors
do not hold any information about other virtual sensors,
the system relies on their cooperation. At the beginning of
the system execution, the VSM receives the VS topology
configuration graph. Based on the requirements of the topology
configuration, the VSM initializes the appropriate VSs and
connects them as required. Input and output types are a
property of each virtual sensor. An output of one of the virtual
sensors is also an input of another virtual sensor. For example,
in Fig. 4, configuration of V 8 3 and V 8 4 depends on the
input they receive from V 8 1 . To simplify the configuration
and reconfiguration process, the VSM initializes VSs in a
specific order, to meet the requirement that each virtual sensor
cannot be created until all inputs are initialized. This ordering
can be determined with a topographical sort of the topology
configuration graph.

C. Buffer Manager

Signal processing for BSNs often relies on combining data
from multiple locations. As a result, virtual sensors can have
multiple inputs from different sensor nodes. To avoid syn-
chronization issues, virtual sensors implicitly use buffers for
communication. The Buffer Manager (BM) controls dynamic
buffer allocation and manages data flow in the system.

When a virtual sensor is created and configured, it initiates
a storage buffer for its output. The virtual sensor contacts the
BM and requests the creation of a buffer sufficient to hold its
output. The BM allocates a circular buffer of the required size
and returns the bufferID. This bufferID is propagated

126 SIES 2009

A. Implementation
Fig. 6 shows the different virtual sensors as blocks. The

layered model of the event annotation system allowed us
to develop and verify one component at a time. We started
with a MATLAB model as described in [5]. The code was
simplified to match sensor node capabilities, e.g. using fixed-
point math with limited precision. Then a PC version of
the code developed in C, and outputs were compared. After
making changes to assure matching output between the C and
MATLAB code, the C code was ported to nesC for the sensor
nodes. Any changes to the PC or sensor node code were ported
back to MATLAB to keep the versions synchronized.

Due to the limited debugging capabilities of the sensor
nodes, debugging was the most difficult part of the devel-
opment process. Some of the problems which were hard to
debug included high packet loss, hindering the basestation-
mote communication, and stack overflow due to excessive
memory usage. Other problems include freezing of system
due to higher processing overhead of one component over the
others. Another problem was the occurrence of "impossible"
state transitions in the HMM. The problem was that the HMM
involved a large number of summations, therefore the 16
bit number overflowed periodically, leading to unpredictable
results. Figuring out these problems required in-depth analysis
of the code and careful optimizations and corrections on
appropriate components.

B. Results
For our test case, we used this system to extract heel-down

and heel-lift events from a walking subject. The sensor node
contained a single tri-axial accelerometer sampling at 20 Hz
(the highest sampling rate achievable while performing the
processing steps). The event annotation was initially quite
sensitive to sensor node misplacement, so we trained it with
data from one subject with ten different trials. Each trial
contained approximately 50 steps and had a slightly different
sensor placement. This significantly increased accuracy. The
sensor node performed annotation and broadcast the raw
samples so results between different implementations could
be compared.

Fig. 7. Comparison of implementations

As can be seen in Fig. 7, the versions produce similar

results. While the state transitions are not completely synchro-
nized, the total times for a complete cycle are almost identical
(on average, the difference is less than 10 ms). On the far right
side of Fig. 7, a drastic difference can be observed between
the sensor node output and the others. This occurs rarely, but
consistently. We are still debugging the problem.

V. RESEARCH PLAN

This paper describes a work in progress, and several issues
must be addressed before this system can be adopted by the
larger community. A major obstacle was the limited debugging
capability of the motes, which lead to developing a C version
on the PC. Many aspects of SPINE and Virtual Sensors are
not present in the PC version, therefore porting the entire
SPINE framework to the PC for simulation and debugging
is critical. Furthermore, the current virtual sensor implemen-
tation is somewhat specific to the current application. More
development is required to support the full generic virtual
sensor model described in this paper. Also, we are working
on a method to load new code modules wirelessly. This will
greatly increase the flexibility of virtual sensors.

ACKNOWLEDGMENT

This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number FP7-
2007-2-224053.

This work is also supported by Telecom Italia through
technical and financial contributions.

REFERENCES

[l] K. Aberer, M. Hauswirth, and A. Salehi. A middlewarc for fast
and flexible sensor network deployment. In Proceedings of the 32nd
international conference on Very large data bases, pages 1199-1202.
VLDB Endowment, 2006.

[2] C. Curino, M. Giani, M. Giorgetta, A. Giusti, AL Murphy, GP Picco,
and D.E. e Informazione. TinyLIME: Bridging mobile and sensor
networks through middlewarc. In Third IEEE International Conference on
Pervasive Computing and Communications, 2005. PerCom 2005, pages
61-72, 2005.

[3] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded systems.
Acm Sigplan Notices, 38(5): I-II, 2003.

[4] R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R. Giannantonio,
and M. Sgroi. Development of body sensor network applications using
SPINE. In Proc. of the IEEE International Conference on Systems, Man,
and Cybernetics (SMC 2008), Singapore, 2008.

[5] Eric Guenterberg, Hassan Ghasemezadeh, and Roozbeh Jafari. A dis-
tributed hidden markov model for fine-grained annotation in body sensor
networks. In The Sixth International Workshop on Body Sensor Networks
(BSN) , 2009.

[6] S. Kabadayi, A. Pridgen, and C. Julien. Virtual sensors: Abstracting
data from physical sensors. In Proceedings of the 2006 International
Symposium on on World of Wireless, Mobile and Multimedia Networks,
pages 587-592. IEEE Computer Society Washington, DC, USA, 2006.

[7] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An operating system
for sensor networks. Ambient Intelligence, pages 115-148, 2005.

[8] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In Proceedings of the 4th international symposium on
Information processing in sensor networks. IEEE Press Piscataway, NJ,
USA, 2005.

[9] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and JM Rabaey. A
service-based universal application interface for ad hoc wireless sensor
and actuator networks. Ambient Intelligence, page 149, 2005.

127 SIES 2009

