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Abstract— In this paper, an orientation transformation (OT) 

algorithm is presented that increases the effectiveness of 

performing activity recognition using body sensor networks 

(BSNs). One of the main limitations of current recognition 

systems is the requirement of maintaining a known, or original, 

orientation of the sensor on the body. The proposed OT 

algorithm overcomes this limitation by transforming the sensor 

data into the original orientation framework such that 

orientation dependent recognition algorithms can still be used to 

perform activity recognition irrespective of sensor orientation on 

body. The approach is tested on an orientation dependent activity 

recognition system which is based on dynamic time warping 

(DTW). The DTW algorithm is used to detect the activities after 

the data is transformed by OT. The precision and recall for the 

activity recognition for five subjects and five movements was 

observed to range from 74% to 100% and from 83% to 100%, 

respectively. The correlation coefficient between the transformed 

data and the data from the original orientation is above 0.94 on 

axis with well-defined patterns. 
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I. INTRODUCTION 

Activity recognition is an important application providing 
interesting ways to assess health and wellness of an individual. 
It has monumental impact on longitudinal studies for those 
neurodegenerative disorders that affect motor functionality. 
Wearable sensors with inertial measurement units (IMUs) 
consisting of 3-axis accelerometers and 3-axis gyroscopes 
provide an unobtrusive way to monitor and detect activities. 

There are several sensor orientation dependent activity 
recognition systems that use data from sensors to perform 
activity recognition [1, 2, 3]. These techniques perform 
accurate activity recognition when the sensor orientation is 
maintained according to the orientation used in the training 
phase. However, if the sensor orientation on the body is 
changed due to user's movements or because of incorrect 
sensor placement by the user, these activity recognition 
techniques can fail. This drawback is more significant in the 
case where data is collected to perform longitudinal study 
because such valuable data cannot be generated again. Hence 
an orientation independent way of performing activity 
recognition is needed.  

Throughout this paper, the original orientation describes 
the placement of the sensor during initial set up and training 
phase of the algorithm. The orientation dependent activity 

recognition algorithms are trained to recognize activities in the 
original orientation. The new orientation describes the 
placement of the sensor after misplacement on the same body 
part. The algorithms trained by the original orientation will 
have to be applied to the readings acquired in the new 
orientation. This discrepancy between the original and the new 
orientation introduces challenges for activity recognition. 

The main contribution of this paper is the orientation 
transformation (OT) algorithm. In our approach, we learn the 
orientation difference between the original orientation and the 
new orientation of the sensor when the user performs a known 
movement in the new orientation. This difference is quantified 
as a rotation matrix (R-matrix). The R-matrix is used to 
transform the data collected in the new orientation into the 
original orientation. This ensures that the orientation dependent 
activity recognition techniques are now independent of sensor 
orientation changes, making it more robust. The user could 
wear the sensor with any orientation. Our technique requires 
that the sensor is rigidly attached to the body. It cannot handle 
scenarios where the sensor is not firmly attached or it is loose 
or wobbling.   

There are two main limitations of our approach. First is that 
it requires sensor readings for two known postures in the new 
orientation of the sensor. The second limitation is that the two 
postures should be such that the accelerometer readings in 
those postures have a non-zero angular rotation or difference. 
These limitations, however, are easily addressable. Once the 
user wears the sensor in any new orientation he/she can be 
asked to perform a certain movement like stand-to-sit such that 
the two postures stand and sit can be noted in the first few 
sensor readings.  

The remainder of this paper is structured as follows. 
Related works are discussed in section II. Section III covers our 
proposed algorithm. In section IV, we describe the 
experimental setup and discuss the experimental results. Lastly, 
in section V, we present our conclusions and future work. 

II. RELATED WORKS 

In some prior research, statistical techniques are used to 
extract orientation independent features from the sensor data 
and train classifiers to perform activity recognition [4]. The 
feature set used is limited and better recognition results for 
more activities can be obtained by using more orientation 
dependent features [3]. Additionally, these techniques are 
standalone techniques and do not work in conjunction with 
other orientation dependent techniques already available.   



There have been some other works that leverage 
transformation techniques added to the existing activity 
recognition algorithms. In some of these studies restrictions are 
placed on the number of orientations the sensor could have if 
misplaced. For each of these orientations the corresponding R-
matrix is already calculated [5]. The gravity vector 
representation from the sensor is used to match one of the 
known orientations. The corresponding R-matrix is used to 
transform the data. Activity recognition is then performed by a 
classifier which is trained using data from each of the sensor 
orientations after appropriate data transformations. This setup 
restricts orientation changes on the sensor and hence cannot be 
applied to scenarios where there could be more flexibility in 
placing the sensor on the body. 

Some researchers have also looked at achieving orientation 
independent activity recognition by detecting cyclic 
movements like walking and learning the R-matrix 
representing the difference between the original orientation and 
the new orientation using the statistics derived from walking 
data [6]. However an assumption is made that at any point in 
time, the orientation of the sensor which is placed on the thigh 
can change by rotating only about one coordinate axis. This 
assumption does not apply to those cases where the sensors are 
of such small form-factors that they could have rotations about 
multiple axes when placed on the body. 

In comparison to these investigations, our approach has a 
few advantages. It acts as an add-on to existing orientation 
dependent systems and facilitates their use without imposing 
any constraints on the sensor orientation on the body. No prior 
knowledge about new orientation is needed. Furthermore, no 
assumptions on any specific axis of rotation for orientation 
change of sensors are made. 

III. PROPOSED APPROACH 

In our approach, we learn the orientation difference 
between the new and the original orientation and quantify it in 
an R-matrix. In order to learn the orientation difference 
between two Cartesian coordinate systems, a common inertial 
reference system is needed. When the sensor is placed on the 
body, there is no known common reference system between the 
original and new orientations. The movements could be treated 
as the common aspect between the original and the new 
orientation. Hence, movements that are found in both 
orientations are used to construct the shared reference system.  

Let the original sensor orientation coordinate system be 
denoted as S1 and the new sensor orientation coordinate system 
be denoted as S2. A representation of the inertial reference 
system and the sensor coordinate system in both the original 
orientation and the new orientation can be seen in Fig. 1. The x, 
y and z axes of the common 3D inertial reference system are 

represented as   ,    and   .     ,     and      represent x, y 

and z axes of the original orientation, S1, of the sensor.    , 
    and      represent x, y and z axes of the new orientation, 
S2, of the sensor. 

 

Fig. 1. Inertial reference system vs. sensor orientations S1 and S2 

Finding the orientation difference between the new and the 
original sensor orientation can be broken down into three steps 
that are described in detail below. 

A. Define a common inertial reference frame 

The common inertial frame of reference is constructed 
using common movements performed in both orientations. Let 
us consider one such movement that was done in both 
orientations, say a sit-to-stand movement. The information 
common to both orientations in this movement are: the initial 
posture (sitting, annotated as posture-1) and the final posture 
(standing, annotated as posture-2). The inertial frame of 
reference with respect to any sensor orientation is defined: 

Definition 1: Given two postures posture-1 and posture-2, 
and the normalized acceleration vectors in those postures, such 
that the angular difference between them is non-zero, the x, y, 
and z axes of the inertial frame of reference are given as: 

X Axis: Cross product of the normalized acceleration  
      vectors for posture-1 and posture-2  

Z Axis: Normalized acceleration vector for posture-1 

Y Axis: Cross product of Z and X axis. 

These acceleration vectors represent the effect of only 

gravity on the sensors in those postures. Consider the 

following example that illustrates the construction of the 

inertial reference system. The movement  used is sit-to-stand: 

In sensor orientation S of the sensor, let   
  be the normalized 

acceleration vector for  posture-1 (sitting posture) and let   
  

be the normalized acceleration vector for the posture-2 

(standing posture). Let   
 ,   

  and   
  be the representation of 

the x, y, and z axes of the inertial reference frame with respect 

to the orientation of the sensor (i.e. S). As shown in Fig. 2, 

using Definition 1, the inertial frame of reference is 

constructed as  
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Fig. 2. Inertial reference frame in-terms of the orientation axes system S 

  This process is done for the original and the new sensor 

orientations (i.e. S1 and S2). Thus the inertial frame of 

reference that is common to both the original orientation and 

the new orientation is constructed in both orientations as   
  , 

  
  ,   

  ,   
  ,   

  , and   
   and all are 3 1 row vectors. 

B. Derive R-matrix for the orientation difference between each 

of the sensor orientations and the inertial reference frame 

  The orientation difference is calculated using the constructed 

inertial frame of reference.   

Let R be the rotation matrix describing the rotation from 

orientation S to the inertial reference frame described as  

     
               

               

               

                   (6) 

R can also be written in terms of   
 ,   

  and   
   calculated in 

(1) ,(2) and (3) as  
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This process is completed for the original and the new sensor 

orientations (i.e. S1 and S2) to get corresponding rotation 

matrices   and   . 

C. Find the R-matrix representing the orientation difference 

between the new and the original orientation. 

  The representation of the rotation matrix R for the orientation 

difference between S2 and S1 is given as  

   
                     

                     

                      

                (8) 

This can also be calculated using R1 and R2 as  

     
                    (9) 

where   
  represents transpose of the matrix   . The R-matrix 

in (9) is multiplied with acceleration vectors collected in S2 

(new orientation), to transform readings to orientation system 

S1 (original orientation). 

IV. EXPERIMENTS AND RESULTS 

We conducted experiments to validate the OT algorithm. In 
these experiments, data collection was performed using IMU 
sensors with a 3-axis accelerometer and a 3-axis gyroscope at a 
sampling rate of 20Hz. 

The first set of experiments was designed to test the data 
transformation of the OT algorithm. Two sensors, S1 and S2, 

were glued to each other in different orientations and attached 
to the right thigh of a subject. The subject was then asked to 
perform the stand-to-sit and sit-to-stand movements ten times. 
Since the orientations were different, the same movements had 
different patterns from the view of each sensor. The OT 
transformation algorithm was applied, and the orientation 
difference between the two sensor orientations was learned in 
the form of the R-matrix. The R-matrix was used to transform 
the sensor data collected in sensor S2 orientation to the sensor 
S1 orientation. The correlation coefficient for the signals on 
each of the axis is presented in Table I. 

TABLE I. CORRELATION COEFFICIENT VALUE BETWEEN DATA 

FROM SENSOR S1 AND THE TRANSFORMED DATA FROM S2 

Axis Correlation Coefficient 

Accelerometer-XAxis 0.9807 

Accelerometer-YAxis 0.4941 

Accelerometer-ZAxis 0.9968 

Gyroscope-XAxis 0.7939 

Gyroscope-YAxis 0.9442 

Gyroscope-ZAxis 0.5930 

 

From Table I, it can be seen that in the accelerometer's X 
and Z axes and the gyroscope's Y axis, the correlation 
coefficients are higher than on the other axes since the major 
component of the movement occurred on these axes. On the 
remaining axes, the movement performed does not create well 
defined repeatable patterns resulting in the lower correlation 
coefficients. These similarity measures show that the OT 
algorithm accurately transforms the data.   

 We also conducted experiments to check the effectiveness 
of the algorithm in empowering orientation dependent activity 
recognition algorithms. The algorithm we chose for this 
purpose is based on DTW [7, 8, 9]. We used the SPRING 
algorithm to implement DTW for these experiments [10]. Data 
collection for this experiment was performed as follows. Five 
subjects were asked to wear three sensors, one on the right 
thigh, one on the waist, and the last on the right ankle. Three 
sessions of data collection were performed on each subject. 
The movements performed in each session were stand-to-sit, 
sit-to-stand, sit-to-lie, lie-to-sit, and kneel. 

 At the beginning of each session, the orientations of the 
sensors were changed to a random state. Each movement was 
performed ten times in each session. Per subject, 30 total 
instances of each movement were collected from the sessions. 
Thus from all the subjects, a total of 150 instances of each 
movement were collected from all of the sessions. In order to 
perform activity recognition for each subject, the template for 
each type of movement was learned from the first session. Data 
from the second and third sessions were transformed into the 
orientation from the first session using the OT algorithm. The 
learned templates were applied to data from first session and 
the transformed data from the other sessions to perform activity 
recognition. The precision (Pr) and recall (Rc) for the activity 
recognition performed for each subject (Sub1-5) for each 
movement (M) in the order given above are shown in Table II. 

Y Si = Z Si X  X S
i

X Si  = a S1 X a S2

Z Si = a S1

Y s

X s

Z s

a S2



TABLE II. SUBJECT-WISE ACTIVITY RECOGNITION RESULTS 

 Sub1 Sub2 Sub3 Sub4 Sub5 

M Pr Rc Pr Rc Pr Rc Pr Rc Pr Rc 

1 100 97 100 100 100 100 100 100 100 100 

2 100 100 100 100 100 91 100 91 100 97 

3 100 100 100 100 100 100 100 100 74 83 

4 100 100 100 100 100 100 77 100 91 97 

5 100 100 100 100 100 100 100 100 100 100 

 From Table II, we can see that DTW yields good precision 
and recall with the OT algorithm. The DTW-distance 
histogram is used as a metric to evaluate the performance of 
DTW. Better separation and discrimination between the target 
movements and non-target movements is obtained with a larger 
DTW-distance. The histogram of DTW-distance obtained 
while searching for stand-to-sit movement from one of the data 
collection sessions is shown in Fig. 3. The OT algorithm was 
used to transform the data prior to the calculation of the DTW-
distance. The white bars in Fig. 3 highlight the DTW-distance 
bins (with respect to the template) for the target-movement 
instances in the transformed movement data. The black bars 
indicate the DTW-distance bins for non-target movement 
samples. The separation between the black and the white bars 
are an indication of the performance of the DTW. A good 
separation tells us that the OT algorithm successfully 
transforms the movement data to the original orientation and 
that the target movements can be successfully distinguished.   

Fig. 3. DTW distance histograms for the transformed data 

For comparison, a histogram was plotted for the DTW-
distance obtained while searching for the stand-to-sit target-
movement in movement data which was collected in the 
original orientation of the sensor. Here, no transformation 
technique was performed. This histogram is shown in Fig. 4. 
From Fig. 3 and Fig. 4, we can see that the OT algorithm 
provides good separation between the histogram bins and that 
the DTW performance is not affected by the OT algorithm. 

V. CONCLUSION AND FUTURE WORK 

In this paper we presented the orientation transformation 
(OT) algorithm to transform sensor data from a new orientation 
into the original orientation. Our experimental results show 
that our algorithm successfully transforms the sensor data and 
can enable an orientation dependent activity recognition 
algorithm like DTW to achieve suitable recognition accuracy 
with orientation changes in the sensor. However, this algorithm 
makes some assumptions on the availability of posture 

information. While this can be easily addressed by enforcing a 
calibration movement, it creates an inconvenience for users. 
For seamless online activity recognition without any user 
intervention, orientation independent posture recognition has to 
be incorporated. Our future work comprises of finding a 
posture recognition technique to make the OT algorithm even 
more robust.  

Fig. 4. DTW distance histograms for movement data in original orientation 
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