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Abstract—The evaluation of the postural control system (PCS)
has applications in rehabilitation, sports medicine, gait analysis,
fall detection, and diagnosis of many diseases associated with a re-
duction in balance ability. Standing involves significant muscle use
to maintain balance, making standing balance a good indicator of
the health of the PCS. Inertial sensor systems have been used to
quantify standing balance by assessing displacement of the center
of mass, resulting in several standardized measures. Electromyo-
gram (EMG) sensors directly measure the muscle control signals.
Despite strong evidence of the potential of muscle activity for bal-
ance evaluation, less study has been done on extracting unique
features from EMG data that express balance abnormalities. In
this paper, we present machine learning and statistical techniques
to extract parameters from EMG sensors placed on the tibialis
anterior and gastrocnemius muscles, which show a strong corre-
lation to the standard parameters extracted from accelerometer
data. This novel interpretation of the neuromuscular system pro-
vides a unique method of assessing human balance based on EMG
signals. In order to verify the effectiveness of the introduced fea-
tures in measuring postural sway, we conduct several classification
tests that operate on the EMG features and predict significance of
different balance measures.

Index Terms—Accelerometer, body sensor networks, elec-
tromyogram (EMG), standing balance.

I. INTRODUCTION

HUMAN balance evaluation has many biomedical appli-
cations. Balance is maintained by the postural control

system (PCS) that uses sensor input from the eyes, the propri-
oceptive system (body position awareness), and the vestibular
system to evaluate the body’s position and correct imbalance
by sending corrective signals to muscles. PCS function can de-
crease because of problems in the sensory or disorders affecting
the control system in the basal ganglia. Neuro-degenerative dis-
orders such as Alzheimer’s, Parkinson’s, and Huntington’s dis-
eases often lead to a breakdown of PCS, while sports injuries can
affect the sensor systems [1]. This results in increased postural
sway [2] and can lead to falls [3] and decreased performance.
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The assessment of the PCS can aid in identifying the early
detection of disease in children and fall detection in elderly
population [4]. It also helps in gait analysis by finding shifts in
the balance pattern [5]. Sports medicine is another area where
postural stability testing helps in functional training and pro-
vides a useful tool for evaluating neurologic function following
a sports-related concussion [6].

Balance evaluation involves assessment of relevant vestibular
and neuromuscular system functions where the performance is
quantified in terms of strength, range of motion, coordination
and balance, mobility and risk of falls. Conventional methods of
balance evaluation include clinical tests administered by trained
therapists [7], assessment using force plates or other traditional
sensory devices [8], and the use of on-body sensors such as in-
ertial sensors [9]. Several clinical tests already exist but require
the expertise of physicians. Force plates have been widely used
in the past to investigate performance parameters of postural
system by analyzing the time trajectory of center of pressure
(COP) of the subject’s feet in horizontal plan. Body sensor net-
works (BSNs) have become more promising in biomedicine, as
they provide continuous monitoring with early detection, ambu-
latory monitoring, supervised rehabilitation and cost effective
alternative of healthcare [10].

Multiple performance metrics are proposed that significantly
describe the function of postural system during standing bal-
ance. Mostly, people with balance difficulties have greater sway
velocity and greater anteroposterior (A/P) displacement dur-
ing quiet standing [3], [11]. Such factors are commonly deter-
mined by means of either force plates [8] or inertial sensors [9].
With advancements in sensor technology, it is more feasible
to use lightweight motion sensors such as accelerometers for
balance evaluation [12]. In this case, certain parameters are ex-
tracted from movements of center of mass (COM) or COP. De-
spite the effectiveness of inertial information in detecting some
abnormalities, other physiological signals may be required to
monitor other diseases caused by reduction in balance abilities.
Electromyogram (EMG) signals produce significant responses
to changes in the PCS. In some applications, EMG sensors
suffice to detect balance abnormalities. For example, the fall
monitoring study in [13] discovers that parameters extracted
from movements of COP poorly contribute to fall prediction,
while measurements of muscular activities are the best factors
to predict falls. In other applications such as pathophysiology of
ataxia, EMG data are complementarily used with inertial infor-
mation to monitor abnormal balance control [14]. Therefore, in
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addition to body sway, balance control is related to various mus-
cle activities and their changing patterns. However, the absence
of a set of standardized parameters for expressing the operation
of the postural control system in terms of changes in muscle
contraction system makes balance assessment challenging. In
an effort to understand relationship between traditional per-
formance metrics and muscular activities, we investigate how
parameters obtained from inertial sensors correlate with that
of EMG signal measurements. We obtain the balance parame-
ters mentioned in [9] from experiments conducted on different
healthy subjects and classify each parameter as low, medium,
and high. We then find out if features measured from EMG sig-
nals can also be classified based on their correlation with the
balance parameters.

In this paper, we make the following contributions: 1) we
present a BSN platform for multimodal expression of postural
stability using inertial and electromyogram sensors. The plat-
form has potential for continuous and remote monitoring of the
PCS; 2) we develop statistical learning algorithms that extract
relevant information from EMG signals and identify appropri-
ate features that interpret functions of muscle contraction during
standing; and 3) we introduce a subject-independent classifica-
tion model that uses the prominent EMG features and measures
quality of PCS by assigning a standing movement to one of
several predefined balance categories.

II. RELATED WORK

Human gait analysis is an important application of bal-
ance assessment. Gait analysis has been widely studied by re-
searchers in different domains such as wireless sensor networks
and computer vision. In [5], Moe-Nilssen et al. introduce an
accelerometer-based system to measure linear acceleration of
upper body in a horizontal–vertical coordinate during gait. Pre-
sentation of this instrument is motivated by the fact that parame-
ters related to the movements of the COM are known as outcome
measures of quire or perturbed balance. Helbostad and Moe-
Nilssen [15] investigate the effect of gait speed on lateral bal-
ance control using inertial sensors. Sarkar et al. [16] introduce
a video-based system for subject identification. Their statisti-
cal model, in particular, examines the impact of five covariates,
namely camera angle, shoe type, grass or concrete surface, car-
rying of not carrying a briefcase, and time, on performance of the
recognition system. Another vision-based gait recognition tech-
nique is proposed by Liu and Sarkar [17]. They use an HMM-
based approach to build a unique dynamics-normalization model
of walking patterns. Linear discriminant analysis (LDA) is fur-
ther used to maximize intersubject silhouette distances and to
suppress intrasubject stance shapes.

Human performance in terms of quality of the balance con-
trol system has been studied from different views, each taking
into account a certain model with specific evaluation metrics.
Cybulski and Jaeger [18], in their study of standing perfor-
mance of paraplegia affected subjects, deduce and use statistical
parameters from a center-of-force monitoring platform. Few au-
thors have used accelerometer to measure the parameters used
in [18] and study balance and control. Kamen et al. [2] use two

uniaxial accelerometers on the forehead and back to measure
characteristics of postural sway. They perform analysis based
on amplitude and frequency of accelerometer data. Their results
show that the system can discriminate among balance tasks and
can differentiate between people with normal balance and those
with tendency toward frequent falls. Mayagoitia et al. [9] use a
single triaxial accelerometer placed on the back at approximate
height of the center of mass to evaluate standing balance. Chiari
et al. [19] present a system that measures trunk kinematic in-
formation using an accelerometer and provides acoustic feed-
back for balance improvement. The audio signals map ante-
rior/posterior and medial/lateral accelerations into stereo sounds
modulated in frequency, level and left/right balance. In [20],
Wall and Weinberg employ inertial sensors to design a prosthesis
improving postural stability for those elderly prone to falls. The
system provides feedback to the subject via an array of tactile
vibrators. In [21], Bonnet et al. mount a sensor suit of accelerom-
eter and magnetometer on the subject’s trunk to estimate the 3-D
orientation of the trunk for balance assessment. They illustrate
existence of several balance-related performance parameters by
analyzing measured angles. Asseldonk et al. [22] study the ef-
fect of external and internal forces on standing balance. They
measure kinematic reactions of a subject to sudden forward and
backward movements while standing on two force plates.

Several techniques for evaluating balance control in terms of
muscular activities are presented in literature. Winter et al. [23]
present a kinematic model of upper body balance, where EMG
sensors were obtained to reinforce the conclusions from the
moment of force analyses. A study on comparison of EMG
and kinetic parameters during balance responses in children is
presented by Sundermier et al. [24]. According to their results,
the correspondence of muscle activity with measurements of
COP confirms that muscle activities contribute to the balance.
Another study by Jeong et al. [25] stresses the effectiveness of
lower body muscular activities in classifying several perturba-
tions affecting postural balance. They use a waist pulling system
to generate horizontal classes of perturbations in five directions.
A neural network classifier is then used to classify EMG sig-
nals into the five categories. In [26], Fraser et al. investigate
the effect of balance status on muscle activities. In their study,
individuals with different balance capabilities perform two task
including treadmill walking and semantic judgment simultane-
ously. The results demonstrate increase in muscle activity of
those subjects with poor balance during dual task. Laughton
et al. [27] study relationship between muscle activity and postu-
ral sway during standing. For each traditional measure of postu-
ral sway obtain from force platform, they determine correspond-
ing EMG parameters using stepwise regression techniques.

Most techniques addressed earlier derive evaluation informa-
tion regarding balance control system using either inertial or
EMG sensors. This paper is motivated by the fact that although
sensor readings acquired from accelerometers provide a sub-
stantial indication of balance stability, interpretation of EMG
signals with respect to these parameters can bring these sen-
sors into a more structural way of evaluating balance based
on muscular activities [12]. Therefore, we investigate methods
of learning from inertial sensors to interpret EMG signals for
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Fig. 1. Calculation of coordinates at ground level using an accelerometer
placed on center of mass.

standing balance. To the best of our knowledge, this has not
been studied previously by other researchers.

III. EVALUATION MODEL

We use the balance evaluation model described in [9] to derive
performance metrics for standing balance. The system uses a
single accelerometer placed at the approximate height of the
COM on the subject’s back. All three acceleration components
are combined to build a vector and the path traced by this vector
is recorded.

The calculation of the coordinates of the path traced, as de-
picted in Fig. 1, is as follows: let ax, ay , and az denote accel-
erations in each direction, and g denote acceleration of gravity,
the combined accelerations, A is given by

A =
√

a2
x + a2

y + a2
z . (1)

The directional angles between A and each of X , Y , and
Z coordinates are denotes by α, β, and γ, respectively. From
Fig. 1, the term cos γ can be written as

cos γ = −dz

D
(2)

where D is the combined coordinates in the three directions,
x, y, and z; and dz represents the z coordinate of the end of
A (distance to the ground from the sensor). In this paper, we
assume that the distance dz is constant across all the subjects. In
reality, however, it may vary from one person to another. Given
the value of D, the coordinates of A at floor level (dx , dy ) can
be expressed as in (3) and (4)

dx = D cos α (3)

dy = D cos β. (4)

From this interpretation, five performance parameters includ-
ing mean speed, mean radius, mean frequency, A/P displace-
ment, and M/L displacement can be calculated. These features
in combination or individually give the measure of balance sta-
bility [3], [11].

Fig. 2. Sensor node with custom-designed inertial sensor board. Sensor board
has a triaxial accelerometer and a biaxial gyroscope.

The total distance covered in time t is denoted by Dt and is
given by

Dt =
N −1∑
i=0

√
(dyi

− dyi + 1 )2 + (dxi
− dxi + 1 )2 (5)

where N denotes the total number of data points in the traced
path in time t. Then the parameter mean speed can be represented
as

sm =
Dt

t
(6)

and mean radius is given by

rm =
1
N

N −1∑
i=0

√
d2

xi
+ d2

yi
. (7)

The parameter mean frequency can be expressed as

fm =
Dt

2πrm t
(8)

and A/P and M/L displacements are, respectively, given by

dA/P = max(dxi
) − min(dxi

) (9)

dM/L = max(dyi
) − min(dyi

). (10)

IV. SYSTEM ARCHITECTURE

The system consists of two subsystems operating in parallel—
the inertial sensor subsystem and EMG sensor subsystem. The
inertial sensor subsystem is a BSN of two nodes. One node is
placed on the body of the subject and the other is connected to
a desktop PC. Accelerometer values are transmitted to the node
connected to the PC by the node on the body.

A. Inertial Sensor Subsystem

Our inertial sensor subsystem is a BSN consisting two sensor
nodes. Basic platform for each node is a TelosB mote [28], which
is commercially available from XBow. The node placed on the
body has a custom-designed sensor board, shown in Fig. 2, with
the triaxial LIS3LV02DQ accelerometer that has a sensitivity
of 1024 LSb/g and is used in 2 g mode for our experiments.
The node samples the sensor at 40 Hz and sends data over a
wireless channel to a base station. The sampling rate is experi-
mentally chosen to provide sufficient resolution of human mo-
tion data while compensating for bandwidth constraints on our
sensor platform. The base station is another mote that relays the
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Fig. 3. EMG system suit used for collecting muscle activity data.

information to a PC via USB port. The sensor readings are
collected and processed in MATLAB.

B. EMG Sensor Subsystem

EMG sensors measure/record the electric activity generated
during muscle contractions that occur while performing the mo-
tions. EMG sensors are in the form of Ag–Cl surface electrodes
(as shown in Fig. 3) provided by Delsys, and each of these elec-
trodes is directly attached on the skin of the human participant to
collect an associated muscular activity. The effective sampling
rate for human muscular activity is 1000 Hz. The acquired EMG
signals from the surface electrodes are amplified and bandpass
filtered (20–450 Hz) by the EMG suit. Data are transferred from
EMG surface electrodes to a workstation in real time for further
postprocessing and analyzing using Myomonitor III (provided
by Delsys).

C. Balance Platform

We use a balance ball as the platform for assessing the quality
of standing balance. The platform is a “Both Sides Up” (BOSU)
Balance Trainer, which provides an unstable balance surface.
This device has two functional surfaces integrating dynamic
balance with functional or sports specific training. It can be
used platform side up for push-up and seated exercises. We
use this configuration, which provides an unstable surface when
subjects stand on the platform. Fig. 4 shows the platform along
with an experimental subject wearing motion and EMG sensors.
We integrate a HUSKY Digital Level to control the experiment
and for coaching purposes (e.g., the subject must tilt the ball 20◦

in an anterior direction). The digital level indicates the amount
of inclination when swaying on the platform.

As mentioned previously, our system is composed of two ma-
jor subsystems for simultaneous acquisition of inertial and EMG
data. These systems are perfectly synchronized through a soft-
ware module that functions on the base station. Practically, ac-
celerometer and EMG sensors can be integrated within a single
BSN platform for data collection and information processing.
This feature is enabled by body-worn mote-based sensor plat-
forms that accommodate multiple sensors. The focus of this pa-
per is on development of effective signal processing techniques
that establish applicability of EMG data for human balance eval-

Fig. 4. Balance platform and experimental subject wearing motion and EMG
sensors.

Fig. 5. Signal processing flow for accelerometer and EMG sensors.

uation. For this reason, we use off-the-shelf components such as
TelosB motes and Myomonitor III in this paper. This facilitates
the prototyping and algorithm development. However, we are
working on developing a unified multimodal BSN architecture
that integrates both accelerometer and EMG sensors within the
same platform.

V. METHODS

A. Signal Processing for Feature Analysis

Signal Processing involves extracting parameters from the
accelerometer and EMG signals, classifying the accelerometer
parameters and determining relationship between performance
measures and muscle activities using stepwise linear feature ex-
traction methods. These operations are divided into four stages
for each one of the inertial and EMG subsystems as explained
in the following and shown in Fig. 5.

Data collection: Accelerometer values and EMG signals are
continuously recorded for duration of 4 s during every trial.
The sampling rates of the accelerometer and EMG signals are
different. Data from accelerometer are sampled at 40 Hz and
that from the EMG sensors at 1000 Hz.

Preprocessing on inertial data: Data are passed through a
moving average filter to cancel high frequency noise. We de-
termine the size of the moving window empirically as a com-
promise between noise reduction and step response [29]. In our
system, a five-point window suffices to reduce the noise while
retains sharp step response.

Preprocessing on EMG: For each trial, EMG data are nor-
malized to the mean value of the entire trial. Data are then
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TABLE I
FIVE QUANTITATIVE FEATURES

TABLE II
EMG FEATURES

low-pass filtered at 35 Hz using a Butterworth filter. Such filter
has been shown to be effective for analysis of electrical activity
of muscles [30].

Parameter extraction: Five quantitative features are measured
using accelerometer data as described in Table I.

Quantization: For each quantitative feature obtained from the
accelerometer values, the data obtained are divided into three
classes, “low,’ “medium,” and “high.” The set of values of a
particular feature that is greater than the sum of the mean of the
feature and standard deviation is categorized as “high.” The set
of values less than the difference between the mean and standard
deviation is categorized as “low” and the rest of the values as
“medium.”

Feature extraction on EMG: To interpret the behavior of the
EMG signals depending on the classes defined from accelerom-
eter values, we need to have exhaustive set of EMG features.
An exhaustive set of statistical features are extracted from each
EMG signal (see Table II).

Feature analysis: Significant features for EMG signals are
extracted using forward stepwise discriminant analysis (FSDA)
[31]. Given the quantitative metrics measured from the ac-
celerometer, the purpose of feature analysis is to find out if
the EMG signals are representative of the quantitative features
for balance evaluation.

B. Experimental Procedure

Experiments were conducted on five male subjects aged be-
tween 25 and 32 years and height between 1.65 and 1.8 m, re-
spectively, with no previous history of disorders. Subjects with
corrected vision wore their glasses. Normal footwear was used
for all subjects.

A sensor node with a triaxial accelerometer was attached to
a belt which was worn around the waist of the subject. The
belt was worn such that the sensor node was positioned on
the lower back of the subject. This node was programmed to
communicate with another node connected to the USB port of a

TABLE III
TEST MOVEMENTS

desktop computer. A MATLAB tool was developed to read and
process the data from mote connected to the USB.

Although a number of muscles can be potentially active dur-
ing an action, in this paper, we constrained our system in using
only four EMG electrodes on lower leg muscles. The EMG
sensors were placed on right-front leg (tibialis anterior muscle),
right-back leg (gastrocnemius muscle), left-front leg (tibialis an-
terior muscle), and left-back leg (gastrocnemius muscle). The
Delsys “trigger module” enabled the EMG subsystem to work
synchronously with accelerometer. MATLAB behaved as a main
controller to send a trigger to EMG and accelerometer in order
to start acquisitions through the trigger module (for EMG) and
USB (for accelerometer).

The “trigger module” is a National Instrument USB-6501
Digital I/O device that can be connected to a computer or PDA
via USB. As the data acquisition system transmits EMG data
to the base station, the module communicates with the base
station and detects start and stop times of data collection. The
module outputs the start/stop times which can be further used
by inertial subsystem to synchronize itself with the Myomon-
itor. This allows the EMG subsystem to function as primary
component that controls the start and stop of a secondary data
acquisition system. In our system, the controller in MATLAB
operates at the base station and communicates with both EMG
and accelerometer sensors for the purpose of synchronization.

The process of data collection was controlled and managed
using our MATLAB tool. The EMG signals were obtained syn-
chronously with the accelerometer signals. The data, however,
were separately processed for the EMG and accelerometer. The
accelerometer and EMG data were recorded for 4 s for nine test
conditions per subject. The test conditions are given in Table III.
Two trials for each condition were conducted for every subject.
The angle of the tilt was measured from the level mounted on
the balance platform.

For every trial, the projection of the COM on the ground
was obtained using the expression we outlined earlier. From the
projections, five quantitative features, shown in Table I and de-
scribed in [18], were extracted. The calculation of these features
from the projected COM is described in Section III. For each
feature, the data obtained were divided into three regions as we
described in Section V-A.

EMG data were recorded for each trial. For each trial, four
channels of EMG data were obtained with each channel corre-
sponding to a particular muscle. The data obtained from each
channel were passed through a low-pass filter with a cutoff fre-
quency of 35 Hz. The filtered data were then used to determine
the onset of the EMG signal for each trial for each muscle.
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Fig. 6. Extraction of EMG features.

The onset was calculated as twice the standard deviation of the
baseline reference [32]. The baseline reference is the activity
measured in the muscles when the participants stand idle. We
used the first 10 ms of each trial as the baseline. For the purpose
of feature extraction, the filtered data were processed to obtain a
set of statistical features for each muscle and each trial. The fea-
ture signal energy (F1) was measured over the portion of signal
from onset to the end. The filtered data were processed using a
10 ms moving-window root mean square (rms). The mean rms
(F2) was calculated as the average rms values over all windows.
The onset value was used to determine the percentage of a trail
that each muscle was active. We named this feature as activation
rate (F3). Given that higher contraction of muscles are indicated
by high amplitude peaks in the EMG data streams, we extracted
several parameters from the peaks within each acquired signal.
The position, amplitude and width of each peak were determined
using least squares curve-fitting techniques. The slope of each
peak was defined by dividing the amplitude by the width. The
peak rate was measured as duration between two consecutive
peaks. From each set of peak rates, peak amplitudes and peak
widths, six statistical features (mean, maximum, minimum, stan-
dard deviation, and variance) were obtained which are denoted
by F5–F28 in Table II. An illustration of the feature extraction
from postprocessed EMG signal is given in Fig. 6.

For each quantitative feature measured from inertial sen-
sor, our quantization technique induces three trial-disjoint cat-
egories. These classes (low, medium, and high) were used to
divide the feature space on the EMG data into three categories.
For instance, when evaluating balance for the mean speed, the
EMG features are mapped into low speed, medium speed, and
high speed. To determine relationship between the quantitative
metrics and muscle activities, we used a stepwise feature se-
lection technique. The purpose of feature selection is to find
prominent features from the EMG data that provide descriptive
information for each category for each quantitative metric. The
FSDA [31] was used to select most useful features discrimi-
nating each category from the rest. Starting with the individual
features which provides the greatest univariate discrimination,
this method adds a new feature which, together with included
features, produces largest discrimination.

Two classification techniques, k-nearest-neighbor (k-NN)
and neural network [33], were chosen to verify the effective-

Fig. 7. Mean speed measured from acceleration data and quantized into
low/medium/high classes.

Fig. 8. M/L displacement measured from acceleration data and quantized into
low/medium/high classes.

ness of the selected EMG features in interpreting each category
(e.g., low speed). The k-NN was constructed with three different
configurations (k = 1, k = 3, k = 5, respectively) for binary clas-
sification. A two-layer feed-forward neural network was used to
build a binary neural classifier [34], where hyperbolic tangent
functions for the hidden layer and a logistic sigmoidal function
for the output layer were chosen. We measured classification ac-
curacy with two different values of the number of hidden units
(NH = 2, NH = 5, respectively).

VI. RESULTS

A. Data Quantization

The accelerometer data were obtained for 90 trials across
five subjects as described previously. The 3-D acceleration data
were used to find projection of the COM on the plane. The five-
acceleration performance parameters were calculated based on
the methods stated in Section III. For each parameter, the 90
trials were mapped into three classes representing quality of ob-
served action in terms of that given parameter. We subjectively
quantized every trial into quality levels low, medium, and high.
For example, with respect to the value of A/P displacement,
measured for each trial, we assigned a class label based on its
magnitude. This process was done for every accelerometer pa-
rameter obtained in each trial. Each EMG feature set was then
given the same quality label as its corresponding accelerometer
signal. The statistical approach explained in Section V-A was
used to find thresholds on each metric. Figs. 7 and 8 show
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TABLE IV
SIGNIFICANT EMG FEATURES DESCRIBING DIFFERENT

PERFORMANCE METRICS

sample distribution of performance parameters for one sub-
ject. For visualization, these values are shown only for mean
speed and M/L displacement. An interesting observation is the
existence of strong correlation between different balance pa-
rameters. That is, increase in speed is tightly coupled with the
increase in M/L displacement. This property of the accelerome-
ter data is highlighted by varying colors (e.g., movements have
the same color in both Figs. 7 and 8, respectively, except for
trials 7 and 15).

B. EMG Features

Once the quantization process is done, the next step is to
make EMG signals representative of performance parameters
for balance evaluation. To achieve this, we determined the fea-
tures from EMG signals prominent for each class. We used 50%
of the input trials (training set) to find significant features for
EMG and remaining trials (test set) for evaluation of the sys-
tem. Each EMG trial consists of four signals corresponding to
the four muscles. We extracted 28 features (see Table II) form
each EMG signal. These features form a 112-D space, which
represent some properties of muscle activities during the per-
formed action.

The obtained features were fed to our feature analysis box
(shown in Fig. 5) where only the most prominent features were
selected. The feature analysis was performed for each perfor-
mance parameter. FSDA was then used to select significant fea-
tures from the subset. These features and corresponding EMG
signals are listed in Table IV.

C. Classification

To get insight into the effectiveness of the acquired EMG fea-
tures, we used k-NN and neural classifiers. For each category
of an accelerometer parameter, the corresponding significant
features (extracted from Table IV) were extracted. These fea-
tures were used in a binary classifier to differentiate each quality
level from the rest. For example, to evaluate how accurate EMG
sensors represent performance metric medium M/L, the cor-
responding prominent feature (mean peak width from EMG2)
was extracted and fed to the classifiers to distinguish between
medium A/P and other two levels of M/L displacement (low
M/L and high M/L). The outcome of the classification for three
values of k (using k-NN) is illustrated in Fig. 9. In Fig. 10, the

Fig. 9. Classification accuracy of k-NN classifier using only EMG signals.

Fig. 10. Classification accuracy of neural network classifier using only EMG
signals.

classification accuracy for the neural classifier for two values of
NH is shown.

Classification results demonstrate existence of relatively con-
sistent accuracy across the two classifiers. Several categories
such as high speed, low frequency, high frequency, high A/P
and low M/L achieve good classification accuracy (more than
84% for both classifiers) confirming that selected attributes from
muscle activities provide meaningful description of postural
sway. Multiple classes such as low radius, low A/P and high
M/L obtain high classification accuracy on at least one classi-
fier. Given the fact that, mostly, the performance of the balance
control can be assessed using even one of the quantitative fea-
tures (e.g., speed in [3], or A/P in [11]), the results reveal that
the EMG features can be effectively used to evaluate postural
stability.

D. Classifier Performance

While classification accuracy can be used to quantify abil-
ity of EMG data for balance assessment, more robust measures
must be employed to compare performance of individual clas-
sifiers. When performing classification for a target category, a
test movement that belongs to this category might be assigned
to a different class (false negative). Furthermore, an unknown
movement within any class other than the target class may be
judged by the system to be in the target category (false positive).
Classification accuracy gives equal weights to the both types of
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TABLE V
BETWEEN SUBJECT CLASSIFICATION

misclassification. A more precise measure of classifier perfor-
mance is the well-known F-measure [35] that is the harmonic
mean of precision (P) and recall (R) and is defined as

F = 2 × P × R

P + R
. (11)

We calculated the value of F-measure for the five classifiers
used for recognition of each balance parameter. Numbers ranged
from 0.26 for the 1-NN classifier used to detect high frequency,
to 0.97 for the neural classifier that assigns class labels for
median radius. On average, k-NN and neural classifiers had
F-measures of 0.63 and 0.71, respectively. This shows that the
neural network classifier outperforms the k-NN.

E. Cross-Subject Validation

Through development of learning algorithms for interpreta-
tion of EMG signals and classification of balance parameters,
our system aims to establish an expressive relationship between
the PCS and muscular activities. Successful deployment of a
learning system requires the results to be independent of the
observations based on which the system has been developed. In
case of our framework, the balance evaluation algorithms use
data collected from five healthy subjects. In this section, we
demonstrate the robustness of our system to changes in target
population. For this purpose, we calculated classification accu-
racy on pairwise use of the subjects’ data for training and testing.
This allows us to estimate the amount of balance abnormality
for a new subject without previous training data from that sub-
ject. For each one of the five subjects, we first trained a neural
network classifier based on the collected data of that subject.
The classifier was then used to recognize movements of other
subjects as being within each balance category. The system was
first trained with the first subject (S1) and was tested on the rest
of the subjects (S2 , S3 , S4 , and S5). On average, the accuracy
was 99.11%, 90.38%, 92.26%, and 92.37% for each of the test
subjects S2 , S3 , S4 , and S5 , respectively. The overall accuracy
of between-subject classification, with S1 being used for train-
ing, was 93.53%, which was the highest overall accuracy among
all the subjects used for training. We obtained the lowest over-
all accuracy (84.68%) when the fifth subject (S5) was used for
training and others (S1 , S2 , S3 , and S4) for testing. Individual
accuracies were 86.27%, 89.86%, 81.24%, and 81.35% for S1 ,
S2 , S3 , and S4 , respectively.

For each pair of subjects used for training and testing, Ta-
ble V shows the classification accuracy averaged over all the
15 quantized balance categories. The lowest average accuracy
is 81.24% which belongs to the classifier trained using S5 and
tested on S3 . The highest accuracy (99.11%) was obtained when

S1 was used to train the classifier and S2 was used to test it.
This empirical study of between-subject classification clearly
shows that the EMG features introduced by our system can
actively express the quality of balance control without regard
the experimental data used for development of our learning
algorithms.

VII. CONCLUSION AND FUTURE WORK

We introduced a physiological monitoring system that col-
lects acceleration and muscle activity signals and performs anal-
ysis on those signals during standing balance. The objective of
our system is to assess the behavior of the EMG signals to inter-
pret the activity of postural control system in terms of balance
control. Performance of postural control system is primarily
quantified in terms of five metrics which can be directly mea-
sured from accelerometer data. For the EMG signals, however,
the quality of performed action is represented using a set of
prominent features obtained after processing the EMG signals
in conjunction with the accelerometer parameters. In order to
evaluate effectiveness of the extracted features, we conducted
several classification tests on the EMG features. Our results
showed that the introduced features can estimate, with high ac-
curacy, significance of each quantitative parameter for balance
assessment.

In this paper, we used off-the-shelf EMG sensor suits for data
collection. These sensors have not been fully integrated with
our mote-based BSN architecture that accommodates inertial
sensors. As part of our ongoing research, we are working on de-
velopment of a unified end-to-end system that consists of both
EMG and motion sensors on the same hardware. Moreover, to
provide a complete evaluation of the system, we plan to investi-
gate methods of integrating a gold standard balance system with
our experiments.
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